Approximate dynamic programming and reinforcement learning for control

Lucian Buşoniu

Universitat Politècnica de València, 21-23 June 2017

Summary and open issues

Part III

Optimistic planning

1 Introduction

- 2 Optimistic planning with discrete actions
- Optimistic planning with continuous actions
- 4 Optimistic minimax search
- 5 Summary and open issues

Summary and open issues

Recall: Deterministic problem

- Observe states x, apply actions u, receive rewards r
- System: dynamics $x_{k+1} = f(x_k, u_k)$
- Performance: reward function $r_{k+1} = \rho(x_k, u_k)$
- Objective: maximize discounted return ∑_{k=0}[∞] γ^k r_{k+1}, discount factor γ ∈ (0, 1)

Summary and open issues

Part III in course structure

- Problem definition. Discrete-variable exact methods
- Continuous-variable, approximation-based methods
- Optimistic planning

Methods presented so far are the main ones in the field In this part, **current research** topic in the ROCON group at Cluj.

Online planning idea

Intro

00000

At each step k, solve local optimal control at state x_k :

- Infinite action sequences: $\boldsymbol{u}_{\infty} = (u_k, u_{k+1}, \dots)$
- Optimization problem: $\sup_{\boldsymbol{u}_{\infty}} \boldsymbol{v}(\boldsymbol{u}_{\infty}) (= \sum_{i=0}^{\infty} \gamma^{i} r_{k+1+i})$

OMS

- 1. Explore sequences from x_k , to find a near-optimal one
- 2. Apply first action of this sequence, and repeat

Receding-horizon model-predictive control

Summary and open issues

Intro OMS 000000

Summary and open issues

Optimistic planning (OP) idea

initialize set of all possible sequences repeat

select most promising, optimistic set refine selected set

until computation budget *n* exhausted return sequence in best set

Advantages of OP

 Near-optimality guarantees as a function of computation *n* and of complexity κ of the problem:

 $error = O(g(n, \kappa))$

- ...for general nonlinear dynamics and rewards
- Since it reruns at each state, no direct dependence on state space size – continuous states not a problem

Intro OPD OPC OMS Summary and open issues

Algorithm landscape

By model usage:

- Model-based: f, ρ known
- Model-free: *f*, *ρ* unknown (reinforcement learning)

By interaction level:

- Offline: algorithm runs in advance
- Online: algorithm runs with the system

Exact vs. approximate:

- Exact: x, u small number of discrete values
- Approximate: x, u continuous (or many discrete values)

Optimistic planning with discrete actions

- Setting and algoritm
- Analysis
- Examples and real-time application
- Optimistic planning with continuous actions
- 4 Optimistic minimax search
- 5 Summary and open issues

Problem setting

Assumptions

- Finite, discrete action space $U = \{u^1, \dots, u^M\}$
- Bounded reward function $\rho(x, u) \in [0, 1], \forall x, u$

- Again, continuous states handled natively
- If actions continuous ⇒ must be discretized

Intro OPD OPC OMS Summary and open issues of

Values

Finite sequence u_d also seen as set of infinite sequences (u₀,..., u_{d-1}, *, *,...)

•
$$\ell(\boldsymbol{u}_d) = \sum_{k=0}^{d-1} \gamma^k \rho(\boldsymbol{x}_k, \boldsymbol{u}_k)$$

lower bound on returns of $\boldsymbol{u}_{\infty} \in \boldsymbol{u}_d$

•
$$b(\boldsymbol{u}_d) = \ell(\boldsymbol{u}_d) + \frac{\gamma^d}{1-\gamma}$$

upper bound on returns of $\boldsymbol{u}_{\infty} \in \boldsymbol{u}_d$

 v(u_d) = sup_{u∞∈u_d} v(u_∞) value of applying u_d and then acting optimally

Algorithm: OPD

Optimistic planning for deterministic systems (OPD) initialize empty sequence u_0 (= all infinite sequences) **loop** *n* times select **optimistic** leaf sequence u_d^{\dagger} , maximizing *b* expand u_d^{\dagger} : initialize all values for the d + 1-th action **end loop return** greedy u_{d*}^* maximizing ℓ

Introduction

Optimistic planning with discrete actions Setting and algoritm

Analysis

- Examples and real-time application
- Optimistic planning with continuous actions
- 4 Optimistic minimax search
- 5 Summary and open issues

 $\underset{OO}{\text{Summary and open issues}}$

Near-optimality vs. depth

- OPD returns a sequence u^{*}_{d*}, with length
 d* = the deepest expanded d
- Provide the sequence is near-optimal:

$$oldsymbol{v}^* - oldsymbol{v}(oldsymbol{u}^*_{oldsymbol{d}^*}) \leq rac{\gamma^{oldsymbol{d}^*}}{1-\gamma}$$

where v^* the optimal value (at x_0)

Summary and open issues

Case 1: All paths optimal

Take a tree where all rewards are 1:

$$n = \sum_{i=0}^{d} M^{d} = \frac{M^{d+1} - 1}{M - 1}$$

and the tree grows very slowly with budget n

Case 2: One path optimal

Take a tree where rewards are 1 only along a single path (thick line), and 0 everywhere else:

So to expand down to depth *d*, we must spend only n = d, and the tree grows very fast with *n*

Summary and open issues

General case: Branching factor

• Algorithm only expands in near-optimal subtree:

$$\mathcal{T}^* = \left\{ oldsymbol{u}_d \mid oldsymbol{v}^* - oldsymbol{v}(oldsymbol{u}_d) \leq rac{\gamma^d}{1-\gamma}
ight\}$$

 Define κ = asymptotic branching factor of *T**: problem complexity measure, κ ∈ [1, K]

Depth vs. budget n

To reach depth *d* in tree with branching factor κ , we must expand $n = O(\kappa^d)$ nodes

$$\Rightarrow \quad d^* = \Omega(\frac{\log n}{\log \kappa})$$

Summary and open issues

Final guarantee: Near-optimality vs. budget

Theorem

- OPD returns a long sequence $\boldsymbol{u}_{d^*}^*, d^* = \Omega(\frac{\log n}{\log \kappa})$
- This sequence is near-optimal:

$$\boldsymbol{v}^* - \boldsymbol{v}(\boldsymbol{u}_{d^*}^*) \leq \frac{\gamma^{d^*}}{1 - \gamma} = \begin{cases} O(n^{-\frac{\log 1/\gamma}{\log \kappa}}) & \text{ if } \kappa > 1\\ O(\gamma^{n/C}) & \text{ if } \kappa = 1 \end{cases}$$

- General optimal control, paid by exponential computation $n = O(\kappa^d)$
- But κ can be small in interesting problems!

Introduction

Optimistic planning with discrete actions

- Setting and algoritm
- Analysis
- Examples and real-time application
- Optimistic planning with continuous actions
- 4 Optimistic minimax search
- 5 Summary and open issues

Summary and open issues

Recall: Inverted pendulum swing-up

- $\mathbf{x} = [\alpha, \dot{\alpha}]^{\top}, u = \text{voltage}$
- Stabilize pointing up, requires swing-up

Challenging for planning:

long trajectories, misleading short-term rewards

ntro OPD OPC OMS

Summary and open issues

Simulation: Inverted pendulum demo

Swingup trajectory:

Demo

Real-time idea

Challenge: computation time large and must be handled!

- Usually only first action of each sequence is sent to actuator
- But remember: OP returns long sequences!
- ⇒ Send a longer subsequence (length d'), and **use the time to compute in the background**

Real-time architecture

- Compute initial sequence (system assumed stable)
- Send to buffer, and immediately start computing next sequence from predicted state

Summary and open issues

Setting up real-time OPD

- We usually want to use all available time: $n = \left| d' \frac{T_s}{T_e} \right|$.
- \Rightarrow Select subsequence length d' so that:

$$d' rac{T_s}{T_e} - \kappa^{d'/c} - 1 \geq 0$$

• Or, when κ , *c* unknown:

$$(d' rac{T_s}{T_e} - 1)(K - 1) - K^{d'+1} + 1 \ge 0$$

Summary and open issues

Real-time results: Inverted pendulum

2 Optimistic planning with discrete actions

Optimistic planning with continuous actions

- Setting and algorithm
- Analysis
- Examples
- 4) Optimistic minimax search
- 5 Summary and open issues

Summary and open issues

Assumptions

- Rewards *r* ∈ [0, 1]
- Scalar continuous action space U = [0, 1] (can be extended to vector actions)
- Lipschitz-continuous dynamics and rewards:

$$\|f(x, u) - f(x', u')\| \le L_f(\|x - x'\| + |u - u'|) \\ |\rho(x, u) - \rho(x', u')| \le L_\rho(\|x - x'\| + |u - u'|)$$

• $\gamma L_f < 1$: most restrictive

Search refinement

• Split U^{∞} iteratively, leading to a tree of hyperboxes

- Each box *i* only represents explicitly dimensions already split, k = 0,..., K_i - 1
- Box *i* has value $v(i) = \sum_{k=0}^{K_i-1} \gamma^k r_{i,k+1}$, rewards of center sequence

Summary and open issues

Lipschitz value function

• For any two action sequences u_{∞}, u'_{∞} :

$$|\mathbf{v}(\mathbf{u}_{\infty}) - \mathbf{v}(\mathbf{u}_{\infty}')| \leq \frac{L_{
ho}}{1 - \gamma L_{f}} \sum_{k=0}^{\infty} \gamma^{k} |u_{k} - u_{k}'|$$

 Intuition: states (and so rewards) may diverge somewhat, but divergence controlled due to γL_f < 1

Box upper bound

• For any sequence \boldsymbol{u}_{∞} in box *i*:

OPC

$$\mathbf{v}(\mathbf{u}_{\infty}) \leq \mathbf{v}(i) + \frac{\max\{1, L_{\rho}\}}{1 - \gamma L_{f}} \sum_{k=0}^{\infty} \gamma^{k} \mathbf{w}_{i,k} := b(i)$$

• *w*_{*i*,*k*} width of dimension *k*, 1 if not split yet

b(i) b-value of box i

Summary and open issues

Intro OPD OPC OMS Summary and open issues

Diameter and dimension selection

- **Diameter** $\delta(i) := \frac{\max\{1, L_{\rho}\}}{1 \gamma L_{f}} \sum_{k=0}^{\infty} \gamma^{k} w_{i,k}$ = uncertainty on values in the box
- Impact of dimension k on uncertainty is $\gamma^k w_{i,k}$
- ⇒ when splitting a box, choose dimension with largest impact, to reduce uncertainty the most
 - Always split into odd $T > 1/\gamma$ pieces

Intro OPD OPC OMS Summary and open issues

OPC algorithm

Optimistic planning with continuous actions (OPC) Input: budget of model calls *n* initialize tree with root box U^{∞} while *n* not exhausted do select optimistic leaf box $i^{\dagger} = \arg \max_{i \in \mathcal{L}} b(i)$ select max-impact dimension $k^{\dagger} = \arg \max_{k} \gamma^{k} w_{i^{\dagger},k}$ split i^{\dagger} along k^{\dagger} , creating *T* children on the tree end while return best center sequence seen, $i^{*} = \arg \max_{i} v(i)$

Computation measured by model calls (f, ρ) instead of node expansions, since an expansion simulates sequences of varying lengths, at varying computational costs

Introduction

- 2 Optimistic planning with discrete actions
- Optimistic planning with continuous actions
 Setting and algorithm
 - Analysis
 - Examples
 - 4 Optimistic minimax search
 - 5 Summary and open issues

Intro OPD OPC OMS Summary and open issues

Near-optimality vs. diameter

OPC returns a sequence i^* that is near-optimal:

$$\mathbf{v}^* - \mathbf{v}(i^*) \leq \delta^*$$

where δ^* is the smallest diameter of any expanded node

OPC OMS Summary and open issues

Diameter vs. depth

Given depth in tree d =total number of splits:

$$\delta(i) = \tilde{O}(\gamma \sqrt{\frac{2d \tau - 1}{\tau^2}}), \text{ where } \tau = \left\lceil \frac{\log 1/T}{\log \gamma} \right\rceil$$

Diameters vary by the order of splits, but they all converge to 0 roughly exponentially in \sqrt{d} . Example:

Intro OPD OPC OMS Summary and open issues

Branching factor

OPC only expands in near-optimal subtree:

$$\mathcal{T}^* = \{i \in \mathcal{T} \mid v^* - v(i) \leq \delta(i)\}$$

 Special cases more complicated than OPD, but asymptotic branching factor t ∈ [1, T] of T* remains good problem complexity measure

 Intro
 OPD
 OPC
 OMS
 Summary and open issues

 000000
 0000000000000
 000000000000
 000000000000
 000000000000

Depth vs. budget n

To reach depth *d* in tree with branching factor *t*, we must expand $O(t^d)$ **nodes**, which takes $n = O(dt^d) = \tilde{O}(t^d)$ **model calls**

$$\Rightarrow$$
 largest depth $d^* = \tilde{\Omega}(\frac{\log n}{\log t})$

Summary and open issues

Final guarantee: Near-optimality vs. budget

Theorem

After spending *n* model calls, OPC suboptimality is:

$$\mathbf{v}^* - \mathbf{v}(i^*) \le \delta^* \le \delta(\mathbf{d}^*) = \begin{cases} \tilde{O}(\gamma \sqrt{\frac{2(\tau-1)\log n}{\tau^2 \log t}}), & \text{if } t > 1\\ \tilde{O}(\gamma^{n^{1/4}b}), & \text{if } t = 1 \end{cases}$$

- Convergence faster when t smaller
- When t = 1, convergence is fast, with power $n^{1/4}$
- When t > 1, we pay for generality: exponential computation t^d to reach depth d

Introduction

2 Optimistic planning with discrete actions

Optimistic planning with continuous actions

- Setting and algorithm
- Analysis
- Examples
- Optimistic minimax search
- 5 Summary and open issues

Summary and open issues

Inverted pendulum demo

Note different variant of the algorithm called 'simultaneous' OPC, with nearly the same guarantees

Demo

ntro OPD **OPC** OMS

OMS

Summary and open issues

Quanser pendulum

System:

- x = rod angle α, base angle θ, angular velocities
- *u* = motor voltage ∈ [-9, 9] V
- Sampling time $T_{\rm s} = 0.05$

Goal: stabilize pointing up:

- $\rho = -\alpha^2 \theta^2 .005(\dot{\alpha}^2 + \dot{\theta}^2) .05u^2$, normalized to [0, 1]
- Discount factor $\gamma = 0.85$
- Swingup required

Controlled trajectory

n = 5000 model calls; note adaptive discretization of control magnitude

Real-time control

Uses the same parallelized real-time framework as OPD

Real-time demo

Introduction

- 2 Optimistic planning with discrete actions
- Optimistic planning with continuous actions
- Optimistic minimax search
 - Algorithm
 - Analysis
 - Example

Problem setting

- Maximizer & minimizer agents, with actions *u* ∈ *U* and *w* ∈ *W*; |*U*| = *N*_U, |*W*| = *N*_W
- They alternately take an infinite sequence of actions:

$$(u_0, w_0, u_1, w_1, \dots) =: (z_0, z_1, z_2, \dots) = \boldsymbol{z}_{\infty}$$

- Dynamics $x_{d+1} = f(x_d, z_d)$, rewards $r(x_d, z_d)$
- Denote finite sequence $\boldsymbol{z}_d = (z_0, \dots, z_{d-1})$

Intro OPD OPC OMS Summary and open issues

Objective

Infinite-horizon value of sequence \boldsymbol{z}_{∞} :

$$v(\mathbf{z}_{\infty}) := \sum_{d=0}^{\infty} \gamma^d \rho(x_d, z_d).$$

Objective: discounted minimax-optimal solution:

$$v^* := \max_{u_0} \min_{w_0} \cdots \max_{u_k} \min_{w_k} \cdots v(\boldsymbol{z}_{\infty})$$

Main assumption

Assumption

The rewards $\rho(x, z)$ are in [0, 1] for all $x \in X, z \in U \cup W$.

⇒ lower & upper bounds on all sequences \boldsymbol{z}_{∞} starting with \boldsymbol{z}_{d} : $l(\boldsymbol{z}_{d}) = \sum_{j=0}^{d-1} \gamma^{j} \rho(\boldsymbol{x}_{j}, \boldsymbol{z}_{j}), \quad b(\boldsymbol{z}_{d}) = l(\boldsymbol{z}_{d}) + \frac{\gamma^{d}}{1-\gamma} =: l(\boldsymbol{z}_{d}) + \delta(d)$ where diameter $\delta(d) = \frac{\gamma^{d}}{1-\gamma}$

Introduction

- 2 Optimistic planning with discrete actions
- Optimistic planning with continuous actions
- Optimistic minimax search
 Algorithm
 - Analysis
 - Example
- 5 Summary and open issues

OMS expands tree of possible minmax sequences, using lower and upper bounds on node values

Natural application of optimistic principle, and already known since ${\sim}1980$ as best-first B* search

OMS

Summary and open issues

OMS algorithm (cont'd)

for $\ell = 1, ..., n$ do propagate lower & upper bounds L, B at each node:

$$L(\mathbf{z}) \leftarrow \begin{cases} l(\mathbf{z}), & \text{if } \mathbf{z} \text{ leaf} \\ \max / \min_{\mathbf{z}' \in \text{children}(\mathbf{z})} L(\mathbf{z}'), & \text{otherwise} \end{cases}$$
$$B(\mathbf{z}) \leftarrow \begin{cases} b(\mathbf{z}), & \text{if } \mathbf{z} \text{ leaf} \\ \max / \min_{\mathbf{z}' \in \text{children}(\mathbf{z})} B(\mathbf{z}'), & \text{otherwise} \end{cases}$$

choose node to expand: $z \leftarrow$ root, and while not leaf:

$$\mathbf{z} \leftarrow \begin{cases} \arg \max_{\mathbf{z}' \in \mathsf{children}(\mathbf{z})} B(\mathbf{z}'), & \text{if } \mathbf{z} \text{ max node} \\ \arg \min_{\mathbf{z}' \in \mathsf{children}(\mathbf{z})} L(\mathbf{z}'), & \text{if } \mathbf{z} \text{ min node} \end{cases}$$

expand z end for output a maximum-depth expanded node \hat{z}

Introduction

- 2 Optimistic planning with discrete actions
- Optimistic planning with continuous actions
- Optimistic minimax search
 - Algorithm
 - Analysis
 - Example
 - 5 Summary and open issues

Summary and open issues

Near-optimality versus diameter

For finite sequence z, let v(z) be the minimax-optimal value among sequences starting with z

If d^* is the largest depth expanded, the solution \hat{z} returned by OMS is $\delta(d^*)$ -optimal:

$$\left| \boldsymbol{v}^* - \boldsymbol{v}(\widehat{\boldsymbol{z}}) \right| \leq \delta(\boldsymbol{d}^*) = rac{\gamma^{\boldsymbol{d}^*}}{1 - \gamma}$$

Note the sequence is already d^* steps long, by definition

Explored tree

• Algorithm only expands nodes in the subtree:

 $\mathcal{T}^* := \big\{ \boldsymbol{z}_d \, \big| \, \big| \boldsymbol{v}^* - \boldsymbol{v}(\boldsymbol{z}') \big| \leq \delta(\boldsymbol{d}), \forall \boldsymbol{z}' \text{ on path from root to } \boldsymbol{z}_d \big\}$

• Intuition: From the information available down to node z_d (interval of values of width $\delta(d) = \frac{\gamma^d}{1-\gamma}$), cannot decide whether the node is (not) optimal. So it must be explored.

 $\underset{OO}{\text{Summary and open issues}}$

Example where the full tree is explored

- All rewards equal to 1, $v^* = \frac{1}{1-\gamma}$
- All solutions have value v^* , so \mathcal{T}^* is the full tree
- $|\mathcal{T}_d^*| = (N_U N_W)^{d/2}$, branching factor $\beta = \sqrt{N_U N_W}$

 $\underset{OO}{\text{Summary and open issues}}$

General case: Branching factor

- Low-complexity special case more involved; in general, branching factor remains a good measure of complexity
- Let $\beta \in [1, \sqrt{N_U N_W}]$ = asymptotic branching factor of \mathcal{T}^*
- Problem simpler when β smaller

Intro OPD OPC OMS Summary and open issues

Depth vs. budget n

To reach depth *d* in tree with branching factor β , we must expand $n = O(\beta^d)$ nodes

$$\Rightarrow \quad d^* = \Omega(\frac{\log n}{\log \beta})$$

 $\underset{OO}{\text{Summary and open issues}}$

Final guarantee: Near-optimality vs. budget

Theorem

Given budget *n*, we have:

$$|\mathbf{v}^* - \mathbf{v}(\widehat{\mathbf{z}})| \le \delta(\mathbf{d}^*) = rac{\gamma^{\mathbf{d}^*}}{1 - \gamma} \begin{cases} \mathrm{O}(n^{-rac{\log 1/\gamma}{\log eta}}) & ext{if } eta > 1\\ \mathrm{O}(\gamma^{n/C}) & ext{if } eta = 1 \end{cases}$$

- Faster convergence when β smaller (simpler problem)
- Exponential convergence when $\beta = 1$

Introduction

- 2 Optimistic planning with discrete actions
- Optimistic planning with continuous actions
- Optimistic minimax search
 - Algorithm
 - Analysis
 - Example

5 Summary and open issues

Intro OPD OPC OMS Summary and open issues

HIV infection treatment

6 states:

 T_1, T_2, T_1^t, T_2^t – healthy & infected target cells / ml (type 1 & 2) V, E – free virus copies & immune response cells / ml

- 2 binary actions u_1 , u_2 : application of RTI and PI drugs
- Disturbance: stochastic drug effectiveness
- Goal: Starting from high level of infection x_0 , optimally switch drugs on and off to:
 - maximize immune response
 - e minimize virus load
 - Image: minimize drug use

$$r = c_E E - c_V V - c_1 \epsilon_1 - c_2 \epsilon_2$$

Intro OPD OPC OMS Summary and open issues

HIV: OMS results

Budget of n = 4000 node expansions

Infection eventually controlled without drugs

Introduction

- 2 Optimistic planning with discrete actions
- Optimistic planning with continuous actions
- 4 Optimistic minimax search
- 5 Summary and open issues

Open issues

RL & DP active research fields

Open problems:

- Approximator design
- Data efficiency
- High-dimensional states and actions
- Unmeasurable states
- Safety and stability guarantees

OPD OPC

OMS 00000 0000000 Summary and open issues $\circ \bullet$

Summary

RL, DP, and planning = Near-optimal control of general nonlinear, possibly unknown systems

References for Part III

- Munos, From Bandits to Monte Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning, Foundations and Trends in Machine Learning, 7, 2014.
- Hren, Munos, *OP of deterministic systems*, EWRL 2008.
- Busoniu, Pall, Munos, Discounted Near-Optimal Control of General Continuous-Action Nonlinear Systems Using Optimistic Planning, ACC 2016.
- Busoniu, Pall, Munos, An analysis of optimistic, best-first search for minimax sequential decision making, ADPRL 2014.
- + control applications: TAC'16, Automatica'17, ACC'17, etc.