
Approximate dynamic programming and
reinforcement learning for control

Lucian Buşoniu

Universitat Politècnica de València, 21-23 June 2017

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Part II

Continuous case

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

The need for approximation

Classical algorithms – tabular representations,
e.g. Q(x , u) separately for all x , u values
In control applications, x , u continuous! E.g. robot arm:

Tabular representation impossible

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

The need for approximation (cont’d)

In real control applications,
the functions of interest must be approximated

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Part II in course structure

Problem definition. Discrete-variable exact methods
Continuous-variable, approximation-based methods
Optimistic planning

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

1 Introduction

2 Approximation
General function approximation
Approximation in DP and RL

3 Model-based approximate dynamic programming

4 Model-free approximate dynamic programming

5 Approximate temporal difference methods

6 Policy gradient

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Approximation

Function approximation:
function with an infinite number of values
→ represent using a small number of values

f (x) f̂ (x)

?

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Parametric approximation

Parametric approximation: fixed form f̂ (x),
value determined by a parameter vector θ:

f̂ (x ; θ)

1 Linear approximation: weighted sum of basis functions φ,
with parameters as weights:

f̂ (x ; θ) = φ1(x)θ1 + φ2(x)θ2 + . . . φn(x)θn

=
n∑

i=1

φi(x)θi = φ>(x)θ

Note: linear in the parameters, may be nonlinear in x !

2 Nonlinear approximation: remains in the general form

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Linear parametric approximation: Interpolation

Interpolation:
D-dimensional grid of center points
Multilinear interpolation between these points
Equivalent to pyramidal basis functions

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Linear parametric approximation: RBFs

Radial basis functions (Gaussian):

φ(x) = exp
[
−(x − c)2

b2

]
(1-dim)

φ(x) = exp

[
−

D∑
d=1

(xd − cd)2

b2
d

]
(D-dim)

Possibly normalized: φ̃i(x) = φi (x)P
i′ 6=i φi′ (x)

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Training linear approximators: Least-squares

ns samples (xj , f (xj)), objective described by the system of
equations:

f̂ (x1; θ) = φ1(x1)θ1 + φ2(x1)θ2 + . . . φn(x1)θn = f (x1)

· · ·

f̂ (xns ; θ) = φ1(xns)θ1 + φ2(xns)θ2 + . . . φn(xns)θn = f (xns)

Matrix form:φ1(x1) φ2(x1) . . . φn(x1)
· · · · · · · · · · · ·

φ1(xns) φ2(x1) . . . φn(xns)

 · θ =

 f (x1)
· · ·

f (xns)

 Aθ = b

Linear regression

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Least-squares

System is overdetermined, (ns > n),
equations will not (all) hold with equality
⇒ Solve in the least-squares sense:

min
θ

ns∑
j=1

∣∣∣f (xj)− f̂ (xj ; θ)
∣∣∣2

...linear algebra and calculus...

θ = (A>A)−1A>b

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Example: Rosenbrock “banana” function

f (x) = (1− x1)
2 + 100[(x2 + 1.5)− x2

1]2, x = [x1, x2]
>

Training: 200 randomly distributed points
Validation: grid of 31× 31 points

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Rosenbrock function: Linear approximator results

6x6 RBFs: Interpolation on 6x6 grid:

RBF approximation smoother (wide RBFs)
Interpolation = collection of multilinear surfaces

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Nonlinear parametric approximation: Neural networks

Neural network:
Neurons with (non)linear activation functions
Interconnected by weighted links
On multiple layers

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Rosenbrock function: Neural network result

One hidden layer with 10 neurons and tangent-sigmoidal
activation functions; linear output layer.
500 training epochs.

Due to better flexibility of the neural network, results are better
than with linear approximators.

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Nonparametric approximation

Recall parametric approximation:
fixed shape, fixed number of parameters

Nonparametric approximation:
shape, number of parameters depend on the data

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Nonparametric approximation: LLR

Local linear regression, LLR:
Database of points (x , f (x)) (e.g. the training data)
For given x0, finds the k nearest neighbors
Result computed with linear regression (LS) on these
neighbors

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Rosenbrock function: LLR result

Database = the 200 training points; k = 5
Validation: same grid of 31× 31 points

Performance in-between linear approximator
and neural network

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Comparison of approximators

In combination with DP and RL
linear easier to analyze than nonlinear
parametric easier to analyze than nonparametric

Flexibility
nonlinear more flexible than linear
nonparametric more flexible than parametric,
shape of parametric approx. must be tuned manually
nonparametric adapt to data:
complexity as the number of data grows must be controlled

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

1 Introduction

2 Approximation
General function approximation
Approximation in DP and RL

3 Model-based approximate dynamic programming

4 Model-free approximate dynamic programming

5 Approximate temporal difference methods

6 Policy gradient

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Approximation in DP and RL

Problems to address:
1 Representation: Q(x , u), possibly h(x)

Using the approximation methods discussed

2 Maximization: how to solve maxu Q(x , u)

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Solution 1 for maximization: Implicit policy

Policy never represented explicitly

Greedy actions computed on-demand from Q̂:

h(x) = arg max
u

Q̂(x , u)

Approximator must ensure efficient solution for arg max
Problem then boils down to
approximating the Q-function

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Solution 2 for maximization: Explicit policy

Policy explicitly approximated, ĥ(x)

Advantages:
Continuous actions easier to use
Easier to incorporate a priori knowledge
in the policy representation

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Action discretization

For now, we use solution 1 (implicit h)

Approximator must ensure efficient solution for arg max

⇒ Typically: action discretization

Choose M discrete actions u1, . . . , uM ∈ U
compute “arg max” by direct enumeration

Example: discretization on a grid

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

State-space approximation

Typically: basis functions

φ1, . . . , φN : X → [0,∞)

E.g. pyramidal, RBFs

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Discrete-action Q-function approximator

Given:
1 N basis functions φ1, . . . , φN
2 M discrete actions u1, . . . , uM

Store:
3 N ·M parameters θ

(one for each basis function – discrete action pair)

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Discrete-action Q-function approximator (cont’d)

Approximate Q-function:

Q̂(x , uj ; θ) =
N∑

i=1

φi(x)θi,j = [φ1(x) . . . φN(x)]

θ1,j
...

θN,j



Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Example: Inverted pendulum

x = [angle α, velocity α̇]>

u = voltage

ρ(x , u) = −x>
[
5 0
0 0.1

]
x − u>1u

Discount factor γ = 0.98

Objective: stabilize pointing up
Insufficient torque⇒ swing-up required

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Inverted pendulum: Optimal solution

Left: Q-function for u = 0 Right: policy

Replay

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Additional questions raised by approximation

1 Convergence: does the algorithm remain convergent?

2 Solution quality: is the solution found at a controlled
distance from the optimum?

3 Consistency: for an ideal, infinite-precision approximator,
would the optimal solution be recovered?

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

1 Introduction

2 Approximation

3 Model-based approximate dynamic programming
Interpolated Q-iteration

4 Model-free approximate dynamic programming

5 Approximate temporal difference methods

6 Policy gradient

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Algorithm landscape

By model usage:
Model-based: f , ρ known
Model-free: f , ρ unknown (reinforcement learning)

By interaction level:
Offline: algorithm runs in advance
Online: algorithm runs with the system

Exact vs. approximate:
Exact: x , u small number of discrete values
Approximate: x , u continuous (or many discrete values)

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Interpolation-based approximator (“fuzzy”)

Interpolation = pyramidal BFs =
= cross-product of triangular MFs

Each BF i has center xi

θi,j has meaning of Q-value for the pair (xi , uj), since:
φi(xi) = 1, φi ′(xi) = 0 for i ′ 6= i

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Interpolated Q-iteration (fuzzy Q-iteration)

Recall classical Q-iteration:
repeat at each iteration `

for all x , u do
Q`+1(x , u)← ρ(x , u) + γ maxu′ Q`(f (x , u), u′)

end for
until convergence

Fuzzy Q-iteration
repeat at each iteration `

for all centers xi , discrete actions uj do
θ`+1,i,j ← ρ(xi , uj) + γ maxj ′ Q̂(f (xi , uj), uj ′ ; θ`)

end for
until convergence

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Policy

Recall optimal policy:

h∗(x) = arg max
u

Q∗(x , u)

In fuzzy Q-iteration:

ĥ∗(x) = arg max
uj , j=1,...,M

Q̂(x , uj ; θ
∗)

θ∗ = parameters at convergence

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Convergence

Monotonic convergence to a near-optimal solution

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Convergence proof line

Similarly to classical Q-iteration:
Each iteration is a contraction with factor γ:

‖θ`+1 − θ∗‖∞ ≤ γ ‖θ` − θ∗‖∞
⇒ Monotonic convergence to θ∗

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Solution quality

Approximator characterized by minimum distance to Q∗:

ε = min
θ

∥∥∥Q∗(x , u)− Q̂(x , u; θ)
∥∥∥
∞

1 Sub-optimality of Q-function Q̂(x , u; θ∗) bounded:∥∥∥Q∗(x , u)− Q̂(x , u; θ∗)
∥∥∥
∞
≤ 2ε

1− γ

2 Sub-optimality of resulting policy ĥ∗ bounded by 4ε
(1−γ)2

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Consistency

Consistency: Q̂θ∗ → Q∗ as precision increases

Precision:


δx = max

x
min

i
‖x − xi‖2

δu = max
u

min
j

∥∥u − uj
∥∥

2

Under appropriate technical conditions,
⇒ limδx→0,δu→0 Q̂θ∗ = Q∗ — consistency

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Inverted pendulum: Fuzzy Q-iteration

BFs: equidistant grid 41× 21
Discretization: 5 actions, distributed around 0

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Inverted pendulum: Fuzzy Q-iteration demo

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

1 Introduction

2 Approximation

3 Model-based approximate dynamic programming

4 Model-free approximate dynamic programming
Fitted Q-iteration
Least-squares policy iteration

5 Approximate temporal difference methods

6 Policy gradient

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Algorithm landscape

By model usage:
Model-based: f , ρ known
Model-free: f , ρ unknown (reinforcement learning)

By interaction level:
Offline: algorithm runs in advance
Online: algorithm runs with the system

Exact vs. approximate:
Exact: x , u small number of discrete values
Approximate: x , u continuous (or many discrete values)

Note: All remaining algorithms in this part work directly in
stochastic problems (although we introduce them in the
deterministic case)

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Fitted Q-iteration

Start from fuzzy Q-iteration and extend it to:
other approximators than fuzzy/interpolation
model-free context – RL

Note: For offline RL methods, exploration boils down to having
a “sufficiently informative” set of transitions

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Intermediate model-based algorithm

Recall fuzzy Q-iteration:
for all xi , uj θ`+1,i,j ← ρ(xi , uj) + γ maxj′ Q̂(f (xi , uj), uj′ ; θ`) end for

1 Use arbitrary state-action samples
2 Extend to generic approximation
3 Find parameters using least-squares

given (xs, us), s = 1, . . . , ns
repeat at each iteration `

for s = 1, . . . , ns do
qs ← ρ(xs, us) + γ maxu′ Q̂(f (xs, us), u′; θ`)

end for
θ`+1 ← arg min

∑ns
s=1

∣∣∣qs − Q̂(xs, us; θ)
∣∣∣2

until finished

Note: Fuzzy Q-iteration equivalent to generalized algo if interpolation
is used and the samples are all the combinations xi , uj

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Fitted Q-iteration: Final algorithm

4 Use transitions instead of model

Fitted Q-iteration
given (xs, us, rs, x ′s), s = 1, . . . , ns
repeat at each iteration `

for s = 1, . . . , ns do
qs ← rs + γ maxu′ Q̂(x ′s, u′; θ`)

end for
θ`+1 ← arg min

∑ns
s=1

∣∣∣qs − Q̂(xs, us; θ)
∣∣∣2

until finished

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Fitted Q-iteration: Convergence

Convergence to a sequence of solutions,
all of them near-optimal

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

1 Introduction

2 Approximation

3 Model-based approximate dynamic programming

4 Model-free approximate dynamic programming
Fitted Q-iteration
Least-squares policy iteration

5 Approximate temporal difference methods

6 Policy gradient

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Approximate policy iteration

Recall: classical policy iteration
repeat at each iteration `

policy evaluation: find Qh`

policy improvement: h`+1(x)← arg maxu Qh`(x , u)
until convergence

Approximate policy iteration
repeat at each iteration `

approximate policy evaluation: find Q̂h`

policy improvement: h`+1(x)← arg maxu Q̂h`(x , u)
until finished

Policy still implicitly represented (solution 1)

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Approximate policy evaluation

Main problem: Approximate policy evaluation:
find Q̂h`

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Projected Bellman equation

Recall: Bellman equation for Qh, discrete case:

Qh(x , u) = ρ(x , u) + γQh(f (x , u), h(f (x , u)))

Qh = T h(Qh) (Bellman mapping)

Approximation: Q̂ = PT h(Q̂)

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Solution (sketch)

Projected Bellman equation:

Q̂ = PT h(Q̂), Q̂(x , u; θ) = φ>(x , u)θ

Matrix form:

Aθ = γBθ + b, A, B ∈ Rn×n, b ∈ Rn

(equivalent to (A− γB)θ = b)

Estimate from data (xs, us, rs, x ′s):

A← A + φ(xs, us)φ
>(xs, us)

B ← B + φ(xs, us)φ
>(x ′s, h(x ′s))

b ← b + φ(xs, us)rs

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Least-squares policy iteration

Evaluates h using projected Bellman equation

Least-squares policy iteration (LSPI)

date fiind (xs, us, rs, x ′s), s = 1, . . . , ns
repeat at each iteration

A← 0, B ← 0, b ← 0
for s = 1, . . . , ns do

A← A + φ(xs, us)φ
>(xs, us)

B ← B + φ(xs, us)φ
>(x ′s, h(x ′s))

b ← b + φ(xs, us)rs
end for
solve Aθ = γBθ + b to find θ
implicit policy improvement: h(x)← arg maxu Q̂(x , u; θ)

until finished

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

LSPI: Convergence

Under appropriate conditions, LSPI converges to
a sequence of policies,
all within a bounded distance from h∗

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Inverted pendulum: LSPI

Basis functions: 15× 9 grid of RBFs
Discretization: 3 equidistant actions
Data: 7500 transitions from uniformly random (x , u)

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Inverted pendulum: LSPI demo

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

AVI vs. API comparison

Number of iterations to convergence
Usually, approximate value iteration >

approximate policy iteration

Complexity
Depends on the particular algorithms
E.g. one fuzzy Q iteration < one LSPI iteration

Convergence
approximate value and policy iteration
both converge to a sequence of solutions,
each of them near-optimal
in interesting cases (e.g. interpolation), approximate value
iteration converges to a unique solution

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

1 Introduction

2 Approximation

3 Model-based approximate dynamic programming

4 Model-free approximate dynamic programming

5 Approximate temporal difference methods
Approximate Q-learning
Approximate SARSA

6 Policy gradient

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Algorithm landscape

By model usage:
Model-based: f , ρ known
Model-free: f , ρ unknown (reinforcement learning)

By interaction level:
Offline: algorithm runs in advance
Online: algorithm runs with the system

Exact vs. approximate:
Exact: x , u small number of discrete values
Approximate: x , u continuous (or many discrete values)

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Recall: Classical Q-learning

Q-learning with ε-greedy exploration
for each trial do

init x0
repeat at each step k

uk =

{
arg maxu Q(xk , u) w.p. (1− εk)

random w.p. εk
apply uk , measure xk+1, receive rk+1
Q(xk , uk)← Q(xk , uk) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk)]

until trial finished
end for

Temporal difference: [rk+1 + γ maxu′ Q(xk+1, u′)−Q(xk , uk)]

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Approximate Q-learning

Q-learning decreases the temporal difference:

Q(xk , uk)← Q(xk , uk)+αk [rk+1+γ max
u′

Q(xk+1, u′)−Q(xk , uk)]

rk+1 + γ maxu′ Q(xk+1, u′) replaces ideal target Q∗(xk , uk)

[See Bellman: Q∗(x , u) = ρ(x , u) + γ maxu′ Q∗(x ′, u′)]

⇒ Ideally, decrease error [Q∗(xk , uk)−Q(xk , uk)]

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Approximate Q-learning (cont’d)

Approximation: use Q̂(x , u; θ), update parameters

Gradient descent on the error [Q∗(xk , uk)− Q̂(xk , uk ; θ)]:

θk+1 = θk −
1
2
αk

∂

∂θ

[
Q∗(xk , uk)− Q̂(xk , uk ; θk)

]
2

= θk + αk
∂

∂θ
Q̂(xk , uk ; θk) ·

[
Q∗(xk , uk)− Q̂(xk , uk ; θk)

]
Use available estimate of Q∗(xk , uk):

θk+1 = θk + αk
∂

∂θ
Q̂(xk , uk ; θk)·[

rk+1 + γ max
u′

Q̂(xk+1, u′; θk)− Q̂(xk , uk ; θk)

]
(approximate temporal difference)

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Approximate Q-learning: Algorithm

Approximate Q-learning with ε-greedy exploration
for each trial do

init x0
repeat at each step k

uk =

{
arg maxu Q̂(xk , u; θk) w.p. (1− εk)

random w.p. εk
apply uk , measure xk+1, receive rk+1

θk+1 = θk + αk
∂

∂θ
Q̂(xk , uk ; θk)·[

rk+1 + γ max
u′

Q̂(xk+1, u′; θk)− Q̂(xk , uk ; θk)

]
until trial finished

end for

Of course, exploration needed also in approximate case

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Maximization in approximate Q-learning

Greedy actions computed on-demand,
greedy policy represented implicitly (type 1)
Approximator must ensure efficient max solution
E.g. discrete actions & basis functions in x

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Approx. Q-learning: robot walking demo (E.
Schuitema)

Approximator: tile coding

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Approximate Q-learning with deep neural networks

Q-function represented by neural networks Q̂(xk+1, ·; θk)

Deep neural networks, i.e. many layers
with specific structures and activation functions
Network trained to minimize temporal difference,
like standard approximate Q-learning
Training on mini-batches of samples, so in fact algorithm is
in-between fitted Q-iteration and Q-learning

(DeepMind, Human-level control through deep reinforcement learning, Nature 2015)

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

1 Introduction

2 Approximation

3 Model-based approximate dynamic programming

4 Model-free approximate dynamic programming

5 Approximate temporal difference methods
Approximate Q-learning
Approximate SARSA

6 Policy gradient

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Approximate SARSA

Recall classical SARSA:

Q(xk , uk)← Q(xk , uk) + αk [rk+1 + γQ(xk+1, uk+1)−Q(xk , uk)]

Approximation: similar to Q-learning
update parameters
based on the gradient of the Q-function
and the approximate temporal difference

θk+1 = θk + αk
∂

∂θ
Q̂(xk , uk ; θk) ·[

rk+1 + γQ̂(xk+1, uk+1; θk)− Q̂(xk , uk ; θk)
]

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Approximate SARSA: Algorithm

Approximate SARSA
for each trial do

init x0
choose u0 (e.g. ε-greedy in Q(x0, ·; θ0))
repeat at each step k

apply uk , measure xk+1, receive rk+1
choose uk+1 (e.g. ε-greedy in Q(xk+1, ·; θk))

θk+1 = θk + αk
∂

∂θ
Q̂(xk , uk ; θk)·[

rk+1 + γQ̂(xk+1, uk+1; θk)− Q̂(xk , uk ; θk)
]

until trial finished
end for

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Goalkeeper robot: SARSA demo (S. Adam)

Learn how to catch ball, using video camera image
Employs experience replay

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

1 Introduction

2 Approximation

3 Model-based approximate dynamic programming

4 Model-free approximate dynamic programming

5 Approximate temporal difference methods

6 Policy gradient

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Algorithm landscape

By model usage:
Model-based: f , ρ known
Model-free: f , ρ unknown (reinforcement learning)

By interaction level:
Offline: algorithm runs in advance
Online: algorithm runs with the system

Exact vs. approximate:
Exact: x , u small number of discrete values
Approximate: x , u continuous (or many discrete values)

Same classification as approximate TD

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Policy representation

Type 2: Policy explicitly approximated
Recall advantages: easier to handle continuous actions,
prior knowledge
For example, BF representation:

h̄(x ;ϑ) =
n∑

i=1

φi(x)ϑi

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Policy with exploration

Online RL⇒ policy gradient must explore

Zero-mean Gaussian exploration:

P(u|x) = N (h̄(x ;ϑ),Σ) =: ĥ(x , u; θ)

with θ containing ϑ as well as the covariances in Σ

So policy in fact represented as probabilities, including
random exploration

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Trajectory

Trajectory τ := (x0, u0, . . . , xk , uk , . . .) generated with ĥ;
and resulting rewards r1, . . . , rk−1, . . .

Return along the trajectory:

R(τ) =
∞∑

k=0

γk rk+1 =
∞∑

k=0

γkρ(xk , uk)

Probability of the trajectory under policy parameters θ:

Pθ(τ) =
∞∏

k=0

ĥ(xk , uk ; θ)

where xk+1 = f (xk , uk)

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Performance objective

Take x0 fixed, for simplicity

Objective

Maximize expected return from x0 of policy ĥ(·, ·; θ),
given by parameter θ:

R(x0) = Eθ {R(τ)} =

∫
R(τ)Pθ(τ)dτ =: Jθ

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Main idea

Gradient ascent on J(θ):

θ ← θ + α∇θJθ

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Gradient derivation

∇θJθ =

∫
R(τ)∇θPθ(τ)dτ

=

∫
R(τ)Pθ(τ)∇θ log Pθ(τ)dτ

= Eθ

{
R(τ)∇θ log

[∞∏
k=0

ĥ(xk , uk ; θ)

]}

= Eθ

{
R(τ)

∞∑
k=0

∇θ log ĥ(xk , uk ; θ)

}
Where we:

used “likelihood ratio trick” ∇θPθ(τ) = Pθ(τ)∇θ log Pθ(τ)

replaced integral by expectation, and substituted Pθ(τ)

replaced log of product by sum of logs

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Gradient implementation

Many methods exist to estimate gradient, based on
Monte-Carlo
E.g. REINFORCE uses current policy to execute ns
sample trajectories, each of finite length K , and estimates:

∇̂θJθ =
1
ns

ns∑
j=1

[
K−1∑
k=0

γk rs,k

] [
K−1∑
k=0

∇θ log ĥ(xs,k , us,k ; θ)

]

(with possible addition of a baseline to reduce variance)
Compare with exact formula:

∇θJθ = Eθ

{
R(τ)

∞∑
k=0

∇θ log ĥ(xk , uk ; θ)

}

Gradient ∇θ log ĥ preferably computable in closed-form

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

Power-assisted wheelchair (Autonomad, G. Feng)

Hybrid power source: human and battery
Objective: drive a given distance, optimizing assistance to:

(i) attain desired user fatigue level at task completion
(ii) minimize battery usage

Challenge: user has unknown torque dynamics, based
on fatigue, motivation, velocity etc.

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

PAW: Policy gradient

Policy parameterized using RBFs
Literature model for user, unknown to the algorithm
Rewards on distance, fatigue, and electrical power
components

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

PAW: Early results

Target distance inaccurately reached

Intro Approximation Model-based ADP Model-free ADP Approximate TD Policy gradient

PAW: Final learning results

Large assistance at start, to motivate user;
tapering down so desired location and fatigue reached

Appendix

References for Part II

Bertsekas & Tsitsiklis, Neuro-Dynamic Programming,
1996.
Bertsekas, Dynamic Programming and Optimal Control,
vol. 2, 4th ed., 2012.
Sutton & Barto, Reinforcement Learning: An Introduction,
1998.
Szepesvári, Algorithms for Reinforcement Learning, 2010.
Buşoniu, Babuška, De Schutter, & Ernst, Reinforcement
Learning and Dynamic Programming Using Function
Approximators, 2010.
Deisenroth, Neumann, & Peters, A Survey of Policy Search
for Robotics, Foundations and Trends in Robotics 2, 2011.

	Introduction
	Introduction

	Approximation
	General function approximation
	Approximation in DP and RL

	Model-based approximate dynamic programming
	Interpolated Q-iteration

	Model-free approximate dynamic programming
	Fitted Q-iteration
	Least-squares policy iteration

	Approximate temporal difference methods
	Approximate Q-learning
	Approximate SARSA

	Policy gradient
	Policy gradient

	Appendix

