Approximate dynamic programming and
reinforcement learning for control

Lucian Busoniu

Universitat Politécnica de Valéncia, 21-23 June 2017

Part Il

Continuous case

The need for approximation

@ Classical algorithms — tabular representations,
e.g. Q(x, u) separately for all x, u values
@ In control applications, x, u continuous! E.g. robot arm:

N

@ Tabular representation impossible up

Intro
oeo

The need for approximation (cont’'d)

In real control applications,
the functions of interest must be approximated

Intro
ooe

Part Il in course structure

o
@ Continuous-variable, approximation-based methods
@ Optimistic planning

Approximation

Q Introduction

e Approximation
@ General function approximation

@ Approximation in DP and RL
Q Model-based approximate dynamic programming
e Model-free approximate dynamic programming
e Approximate temporal difference methods

@ Policy gradient

u

Approximation
©0000000000000

Approximation

Function approximation:
function with an infinite number of values
— represent using a small number of values

f(x) F(x)

True values y

Parametric approximation

~

Parametric approximation: fixed form f(x),
value determined by a parameter vector 6:

~

f(x; 0)

@ Linear approximation: weighted sum of basis functions ¢,
with parameters as weights:

F(x:0) = 61(X)81 + 62(X)82 + ... dn(X)n
n
= 6i(x)0i =" (x)8
i=1
Note: linear in the parameters, may be nonlinear in x!

© Nonlinear approximation: remains in the general form

u

Approximation
00®00000000000

Linear parametric approximation: Interpolation

Interpolation:
@ D-dimensional grid of center points
@ Multilinear interpolation between these points
@ Equivalent to pyramidal basis functions

05

u

Approximation
000®0000000000

Linear parametric approximation: RBFs

Radial basis functions (Gaussian):

A2
o(x) = exp [—(szc)} (1-dim)

D (xg — €q)?
—exp[Z d d] (D-dim)
a=1

Possibly normalized: ¢;(x) = %

o(x)

Approximation
0000@000000000

Training linear approximators: Least-squares

@ n, samples (x;, f(x;)), objective described by the system of
equations:

~

f(x1:0) = 1(x1)01 + d2(x1)02 + ... on(x1)0n = f(x1)

~

f(Xn; 0) = d1(Xn,)01 + P2(Xn)02 + . .. dn(Xn)0n = f(Xn,)
@ Matrix form:
d1(x1) d2(x1) ... én(Xy)} {f(ﬂ)}
=1 ... A =b
&1(Xn,) @2(x1) ... én(Xn,) f(Xn,)

@ Linear regression

Approximation
00000@00000000

Least-squares

@ System is overdetermined, (n; > n),
equations will not (all) hold with equality
= Solve in the Ieast-squares sense:

2
f(x;) — f(x;:0)

...linear algebra and calculus...

e 0=(ATA'ATb

Approximation
000000®0000000

Example: Rosenbrock “banana” function

True values y

o f(x)=(1—x)2+100[(x2 + 1.5) — x2]2, x=[x1,x]"
@ Training: 200 randomly distributed points
@ Validation: grid of 31 x 31 points

Approximation
00000008000000

Rosenbrock function: Linear approximator results

6x6 RBFs: Interpolation on 6x6 grid:

RBFs output; MSE=5399

linearinterp output; MSE=4175

2000 2000

18004 L : - 1500

1000 1000

@ RBF approximation smoother (wide RBFs)
@ Interpolation = collection of multilinear surfaces

Approximation
00000000800000

Nonlinear parametric approximation: Neural networks

Neural network:
@ Neurons with (non)linear activation functions
@ Interconnected by weighted links
@ On multiple layers

nivel de intrare nivel ascuns nivel de iesire
o)
Wy 7
| N B
)) a7
x, —»0 :

O @
O '% @H v,

X > LT
P D g Wﬂi”

WI/:,,, ‘ @ i“i

Approximation
00000000080000

Rosenbrock function: Neural network result

One hidden layer with 10 neurons and tangent-sigmoidal
activation functions; linear output layer.
500 training epochs.

NN output, MSE=300.83

Due to better flexibility of the neural network, results are better
than with linear approximators. ([

Approximation
0000000000e000

Nonparametric approximation

Recall parametric approximation:
fixed shape, fixed number of parameters

Nonparametric approximation:
shape, number of parameters depend on the data

Approximation
00000000000e00

Nonparametric approximation: LLR

Local linear regression, LLR:
@ Database of points (x, f(x)) (e.g. the training data)
@ For given xp, finds the k nearest neighbors

@ Result computed with linear regression (LS) on these
neighbors

f(x),

+
~ +
f(Xo) _____ % P
.
+ 1 .
X, X

Approximation
00000000000080

Rosenbrock function: LLR result

Database = the 200 training points; k =5
Validation: same grid of 31 x 31 points

LLR output; MSE=1600

2000,
1500
1000

@ Performance in-between linear approximator
and neural network

Approximation
0000000000000e

Comparison of approximators

In combination with DP and RL
@ linear easier to analyze than nonlinear
@ parametric easier to analyze than nonparametric

Flexibility
@ nonlinear more flexible than linear

@ nonparametric more flexible than parametric,
shape of parametric approx. must be tuned manually

@ nonparametric adapt to data:
complexity as the number of data grows must be controlled

Approximation
©0000000000

9 Approximation

@ Approximation in DP and RL

Approximation
0®000000000

Approximation in DP and RL

Problems to address:

@ Representation: Q(x, u), possibly h(x)
Using the approximation methods discussed

@ Maximization: how to solve max, Q(x, u)

Approximation
00800000000

Solution 1 for maximization: Implicit policy

@ Policy never represented explicitly
@ Greedy actions computed on-demand from Q:

h(x) = arg max @(X, u)
u

@ Approximator must ensure efficient solution for arg max

@ Problem then boils down to
approximating the Q-function

Approximation
000®0000000

Solution 2 for maximization: Explicit policy

@ Policy explicitly approximated, E(x)

Advantages:
@ Continuous actions easier to use

@ Easier to incorporate a priori knowledge
in the policy representation

Approximation
00008000000

Action discretization

@ For now, we use solution 1 (implicit h)
@ Approximator must ensure efficient solution for arg max
= Typically: action discretization

@ Choose M discrete actions uq,...,uy € U
compute “arg max” by direct enumeration

@ Example: discretization on a grid
u, U, ce Uy

+—

Approximation
[oleTelee] YoloTolele}

State-space approximation

@ Typically: basis functions

¢17""¢N:X—>[07OO)

@ E.g. pyramidal, RBFs

/‘\\
N

O DOONIN
9*\‘:2‘7‘\

/4 \\\
(“?:,‘?»‘;

4 1
W S N

N\ 74
/A

7

Approximation
00000000000

Discrete-action Q-function approximator

Given:
@ N basis functions ¢1, ..., on
@ M discrete actions uy, ..., Uy
Store:

© N - M parameters 6
(one for each basis function — discrete action pair)

Approximation
00000008000

Discrete-action Q-function approximator (cont’d)

Approximate Q-function:

Q(x, uj; 6 Zqi): Oij =[o1(x) ... on(xX)]

Approximation
00000000800

Example: Inverted pendulum

@ x = [angle «, velocity &] "
@ u =voltage
5 0
— .yl T
@ p(x,u)=—x {O 0.1]x u'tu

@ Discount factor v = 0.98

@ Objective: stabilize pointing up
@ Insufficient torque = swing-up required

u

Approximation
00000000080

Inverted pendulum: Optimal solution

Left: Q-function for u =0 Right: policy

h(a,a') V]

Q(oc’,0)
o [rad/s]

o [radis] o lrad]

Approximation
00000000008

Additional questions raised by approximation

@ Convergence: does the algorithm remain convergent?

© Solution quality: is the solution found at a controlled
distance from the optimum?

© Consistency: for an ideal, infinite-precision approximator,
would the optimal solution be recovered?

Model-based ADP

Q Model-based approximate dynamic programming
@ Interpolated Q-iteration

Model-based ADP

Algorithm landscape

By model usage:
@ Model-based: f, p known
@ Model-free: f, p unknown (reinforcement learning)

By interaction level:
@ Offline: algorithm runs in advance
@ Online: algorithm runs with the system

Exact vs. approximate:
@ Exact: x, u small number of discrete values
@ Approximate: x, u continuous (or many discrete values)

Model-based ADP
000000000

Interpolation-based approximator (“fuzzy”)

@ Interpolation = pyramidal BFs =
= cross-product of triangular MFs

! //‘\\
\ \ 9N\
O OO
gos \/ A0\
=) Y DA
YN) 2\ A4
05 7 WA X ,;;‘Iﬁ L

N -
\}/
A\ 774
X, 05 -1

@ Each BF i has center x;

@ ¢;; has meaning of Q-value for the pair (x;, u;), since:

oi(x;) =1,¢p(x;) = 0fori" # i W

Model-based ADP
0e0000000

Interpolated Q-iteration (fuzzy Q-iteration)

Recall classical Q-iteration:

Qui1(x, u) max, Qy u

Fuzzy Q-iteration

repeat at each iteration ¢
for all centers x;, discrete actions u; do

Ovs1,ij — p(X;, Uj) + vy max;y Q(f(x;, uj), uy; 0r)
end for
until convergence

Model-based ADP
[e]e] lelelelelele)

Policy

@ Recall optimal policy:

h*(x) = argmax Q*(x, u)
u

@ In fuzzy Q-iteration:

E*(x) = argmax a(x, uj; 0%)
u, j=1,....M

0* = parameters at convergence

Model-based ADP
[e]e]e] lelelelele)

Convergence

Monotonic convergence to a near-optimal solution

A

Q*

Model-based ADP
[e]e]e]e] Telelele)

Convergence proof line

Similarly to classical Q-iteration:
@ Each iteration is a contraction with factor ~:

10011 — 0o < Y1160 — 07|

= Monotonic convergence to §*

1y

1 |
| i
|

I

|

S
a=]16,-6|l.. '

Model-based ADP
[e]e]e]e]e] lelele)

Solution quality
Approximator characterized by minimum distance to Q*:

- = min @ (x.) - B0, i) _

space of
approximate
Q-functions Q

@ Sub-optimality of Q-function @(x, u; 6*) bounded:
2¢
<

o~ 1-7

HQ*(X, u)— @(x, u; 6%)

@ Sub-optimality of resulting policy h* bounded by Uiigv)?

Model-based ADP
000000800

Consistency

@ Consistency: Q" — Q* as precision increases

dx = maxmin ||x — x;||»
X i

@ Precision: _
by = maxmin ||u — uj|,
u

@ Under appropriate technical conditions,
= lims, 0.5, .0 Q" = Q* — consistency

Model-based ADP
000000080

Inverted pendulum: Fuzzy Q-iteration

BFs: equidistant grid 41 x 21
Discretization: 5 actions, distributed around 0

u

Model-based ADP

0O0000000e

Fuzzy Q-iteration, ell=161

-2000.

Q(ot,0',0)

4000

Inverted pendulum: Fuzzy Q-iteration demo

h,a)

T T
2000 Oetta ~ Ve
100 - -
0 L L . .
0 20 40 60 80 100 120 140 160 180

ell

Model-free ADP

Q Model-free approximate dynamic programming
@ Fitted Q-iteration
@ Least-squares policy iteration

Model-free ADP

Algorithm landscape

By model usage:
@ Model-based: f, p known
@ Model-free: f, p unknown (reinforcement learning)

By interaction level:
@ Offline: algorithm runs in advance
@ Online: algorithm runs with the system

Exact vs. approximate:
@ Exact: x, u small number of discrete values
@ Approximate: x, u continuous (or many discrete values)

Note: All remaining algorithms in this part work directly in
stochastic problems (although we introduce them in the
deterministic case) u

Model-free ADP
[Jelele]

Fitted Q-iteration

Start from fuzzy Q-iteration and extend it to:
@ other approximators than fuzzy/interpolation
@ model-free context — RL

Note: For offline RL methods, exploration boils down to having
a “sufficiently informative” set of transitions

Model-free ADP
[e] Tele]

Intermediate model-based algorithm

Recall fuzzy Q-iteration:

@ Use arbitrary state-action samples
@ Extend to generic approximation
© Find parameters using least-squares

given (xs,Us), S=1,...,n;
repeat at each iteration /¢
fors=1,...,n,do R
gs < p(Xs, Us) + v maxy Q(f(xs, us), U'; 0y)
end for -)
Op41 — argmin > o [gs — Q(Xs, Us; 0)
until finished

Note: Fuzzy Q-iteration equivalent to generalized algo if interpolation
is used and the samples are all the combinations Xx;, u; i“i

Model-free ADP
[e]e] o]

Fitted Q-iteration: Final algorithm

© Use transitions instead of model

Fitted Q-iteration

given (Xs, Us, s, X5), S =1,..., N
repeat at each iteration ¢
fors=1,...,n,do
Qs < I's +ymaxy Q(xg, U'; 0;)
end for

_ . 2
Or+1 — argmin >, |gs — Q(Xs, Us; 0)
until finished

Model-free ADP
[e]e]e]]

Fitted Q-iteration: Convergence

Convergence to a sequence of solutions,
all of them near-optimal

Model-free ADP
0000000000

Q Model-free approximate dynamic programming

@ Least-squares policy iteration

Model-free ADP
0e00000000

Approximate policy iteration

Recall: classical policy iteration

Approximate policy iteration

repeat at each iteration ¢ N
approximate policy evaluation: find Q’VA
policy improvement: hy, 1(x) « argmax, Q" (x, u)
until finished

Policy still implicitly represented (solution 1)

Model-free ADP
00e0000000

Approximate policy evaluation

Main problem: Approximate policy evaluation:
find Q™

Model-free ADP
0008000000

Projected Bellman equation

@ Recall: Bellman equation for Q" discrete case:

Q"(x, u) = p(x, u) +~Q"(f(x, u), h(f(x, u)))
Q" = T"(Q") (Bellman mapping)

@ Approximation: Q = PTN(Q)

Space of Q-functions Space of Q-functions
T P
TOQ Q
Space of

approximate Q-functions

Model-free ADP
0000e00000

Solution (sketch)

@ Projected Bellman equation:

Q=PT"(Q), Qx,u;0)=0¢(x,u)f

@ Matrix form:
A9 =~B0 + b, A BcR™" pecR"
(equivalent to (A —vB)f = b)
@ Estimate from data (xs, us, rs, X5):

A— A+ ¢(XS> Us)¢T(XSa US)
B — B+ ¢(xs, Us)¢T(Xéa h(xs))
b — b+ ¢(xs, Us)rs

Model-free ADP Ap|
000000000e0000 [e]e

Evaluates h using projected Bellman equation

Least-squares policy iteration (LSPI)

date fiind (Xs, Us, Is, X5), S=1,..., 1
repeat at each iteration
A—0, B—0, b0
fors=1,...,n,do
A— A+ o(Xs, Us)¢T(Xs, Us)
B — B+ ¢(xs, Us)p " (x5, h(xE))
b — b+ ¢(Xs, Us)rs
end for
solve A9 = vB0O + b to find 0 N
implicit policy improvement: h(x) < arg max, Q(x, u; 0)
until finished

Model-free ADP
[e]e]eleele] lolele]

LSPI: Convergence

Under appropriate conditions, LSPI converges to
a sequence of policies,
all within a bounded distance from h*

h*

Model-free ADP
0000000800

Inverted pendulum: LSPI

Basis functions: 15 x 9 grid of RBFs
Discretization: 3 equidistant actions
Data: 7500 transitions from uniformly random (x, u)

Ny

RN //I '

Y SO T
Ve ; u 1
T + T
3 0 3

v

XA

¥
WK

ks
Al (gl'

u

Model-free ADP

0000000080

Inverted pendulum: LSPI demo

Least-squares policy iteration, ell=9 he,o’)

2000

0

-2000

Q(ot,0',0)

-4000 |2

-6000.

ell

Model-free ADP
000000000

AVl vs. APl comparison

Number of iterations to convergence
@ Usually, approximate value iteration >
approximate policy iteration
Complexity
@ Depends on the particular algorithms
@ E.g. one fuzzy Q iteration < one LSPI iteration

Convergence

@ approximate value and policy iteration
both converge to a sequence of solutions,
each of them near-optimal

@ in interesting cases (e.g. interpolation), approximate value
iteration converges to a unique solution

Approximate TD

e Approximate temporal difference methods
@ Approximate Q-learning
@ Approximate SARSA

Approximate TD

Algorithm landscape

By model usage:
@ Model-based: f, p known
@ Model-free: f, p unknown (reinforcement learning)

By interaction level:
@ Offline: algorithm runs in advance
@ Online: algorithm runs with the system

Exact vs. approximate:
@ Exact: x, u small number of discrete values
@ Approximate: x, u continuous (or many discrete values)

Approximate TD
©000000

Recall: Classical Q-learning

Q-learning with e-greedy exploration
for each trial do
init Xo
repeat at each step k
_ Jargmax, Q(xk,u) w.p. (1 —ek)
| random W.p. €k
apply ux, measure Xy 1, receive ry 4
Q(Xk, k) — Q(Xk, Ux) + v
[Fks1 + max Q(Xk11, U") — Q(xx,)]
until trial finished
end for

Temporal difference: [rc 1 +vmaxy Q(Xki1,U’) — Q(Xk, Uk)]

u

Approximate TD
0®00000

Approximate Q-learning

@ Q-learning decreases the temporal difference:

Q(Xk, Ux) — Q(Xk, Uk)+ak[ris1+7 max Q(Xk41, U')—Q(Xk, uk)]

@ i1 +ymaxy Q(xk.1,U") replaces ideal target Q*(x, uk)

[See Bellman: Q*(x, u) = p(x, u) + ymaxy, Q*(x’,u')]

= ldeally, decrease error [Q* (X, ux) — Q(Xk, Uk)]

Approximate TD
00®0000

Approximate Q-learning (cont’d)

Approximation: use a(x, u; 0), update parameters

~

@ Gradient descent on the error [Q*(Xk, uk) — Q(Xk, Ux; 0)]:
10 1., ~
Ok1 = Ok = 50k, {Q (Xie, U) — Q(Xk, Uk; HK)} 2

9) .
=0k + OékO*QQ(Xk» Ug; B) - {Q' (X Uk) — Q(Xk, Uk; Qk)}

@ Use available estimate of Q*(x, uk):
o ~
9k+1 = Hk + akio(xkv Uk, 9/()
00
Fier1 + 7 Max Q(Xkt1, U5 0) — Q(Xk, Uk; QK)}

(approximate temporal difference)

Mod DP Mc Approximate TD
00 s Yol) 0OO@0000000

Approximate Q-learning: Algorithm

Approximate Q-learning with e-greedy exploration
for each trial do
init X0
repeat at each step k
_ Jargmax, E?(xk, u;0k) w.p. (1 —ex)
| random W.p. £
apply ux, measure Xy 1, receive ry

~

0
Okt = Ok + QK%Q(XM Uk Ok)-

[fk+1 +7ymax Q(X41, U’ 0) — Q(Xic, Uk; Ok)

until trial finished
end for

Of course, exploration needed also in approximate case

u

Approximate TD
0000800

Maximization in approximate Q-learning

@ Greedy actions computed on-demand,

greedy policy represented implicitly (type 1)
@ Approximator must ensure efficient max solution
@ E.g. discrete actions & basis functions in x

Approximate TD

0000080

Approx. Q-learning: robot walking demo (E.
Schuitema)

Approximator: tile coding

u

Approximate TD
000000®

Approximate Q-learning with deep neural networks

@ Q-function represented by neural networks E)(Xk+1)

@ Deep neural networks, i.e. many layers
with specific structures and activation functions

@ Network trained to minimize temporal difference,
like standard approximate Q-learning

@ Training on mini-batches of samples, so in fact algorithm is
in-between fitted Q-iteration and Q-learning

Approximate TD
0000

e Approximate temporal difference methods

@ Approximate SARSA

Approximate TD
0@00

Approximate SARSA

Recall classical SARSA:

Approximation: similar to Q-learning
@ update parameters
@ based on the gradient of the Q-function
@ and the approximate temporal difference

0k+1 = Gk + ak%a(xk~ Ug; 9/() .

Mot + YQ(Xks 1, Uk1;) — Q(Xk, Uk 9/()}

Imr)—\}xpru imation

ApprOX|mate SARSA Algorlthm

Approximate SARSA

for each trial do
init xg
choose uy (e.g. e-greedy in Q(xo, -; 0o))
repeat at each step k
apply ux, measure Xy 1, receive ry. 1
choose ux. 1 (e.g. e-greedy in Q(Xx11,-; 0k))
0 Ok, i)
{fk+1 + Y Q(Xk 11, Uk1: B) — QX Ui 9k)}
until trial finished
end for

Ok1 = Ok + ak

Approximate TD
o0ooe

Goalkeeper robot: SARSA demo (S. Adam)

Learn how to catch ball, using video camera image
Employs experience replay

Policy gradient

e Policy gradient

Policy gradient

Algorithm landscape

By model usage:
@ Model-based: f, p known
@ Model-free: f, p unknown (reinforcement learning)

By interaction level:
@ Offline: algorithm runs in advance
@ Online: algorithm runs with the system

Exact vs. approximate:
@ Exact: x, u small number of discrete values
@ Approximate: x, u continuous (or many discrete values)

Same classification as approximate TD

Policy gradient
0000000000

Policy representation

@ Type 2: Policy explicitly approximated
@ Recall advantages: easier to handle continuous actions,
prior knowledge

@ For example, BF representation:

h(x;9) = ¢i(x)¥;
i=1

Policy gradient
O@000000000

Policy with exploration

@ Online RL = policy gradient must explore
Prob(u)

— > U
h(x)

@ Zero-mean Gaussian exploration:

- ~

P(ulx) = N(h(x; 9),X) =: h(x, u; 0)

with 6 containing ¥ as well as the covariances in

@ So policy in fact represented as probabilities, including
random exploration

Trajectory

n ' v 7

K-1 Tk
O VR, SR T T
o
I

~—

T

@ Trajectory 7 := (Xo, Up, - - - , Xk, Uk, - - -) generated with h;
and resulting rewards ry, ..., fc_1,.- -

@ Return along the trajectory:
R(T) = 7reer = 7*p(xk, uk)
k=0 k=0

@ Probability of the trajectory under policy parameters 6:

Po(r) = [h(xc, uk: 0)
k=0

where Xk, 1 = f(xk, Uk) w

Policy gradient
[e]e]e] lelelelelele]e]

Performance objective

Take xq fixed, for simplicity

Objective

Maximize expected return from xq of policy B(-, 5 0),
given by parameter 6:

R(xo) =E¢{R(7)} = /R(T)PQ(T)O’T =y

Policy gradient
[e]e]ele] Telelelele]e]

Main idea

Gradient ascent on J(6):

0 — 0+ aVydy

Policy gradient
[e]e]ele]e] lelelele]e]

Gradient derivation

Vody :/R(T)VQPQ(T)dT

- / R(r)Py(r)Vglog Ps(r)dr

= Ey {R(T)Vg log [H (X, u; 9)] }

k=0

=Ey {R(T) Z Vylog E(Xk, Ug; 9)}
k=0
Where we:

@ used “likelihood ratio trick” Vg Py(7) = Py(7)Vglog Py(T)
@ replaced integral by expectation, and substituted Py(7)
@ replaced log of product by sum of logs

Policy gradient
00000080000

Gradient implementation

@ Many methods exist to estimate gradient, based on
Monte-Carlo

@ E.g. REINFORCE uses current policy to execute ng
sample trajectories, each of finite length K, and estimates:

. 1 ns [K-1
Vodp = —- > [Z Is, k] [Z Vo log h(Xs x, Us kﬂ)]
S

j=1 Lk=0
(with possible addition of a baseline to reduce variance)
@ Compare with exact formula:

Vodp = Eg {R(T)Z Vg log h(Xk, Ug; 9)}

k=0

@ Gradient Vylog h preferably computable in closed-form 0[]

Policy gradient
0O000000e000

Power-assisted wheelchair (Autonomad, G. Feng)

@ Hybrid power source: human and battery
@ Objective: drive a given distance, optimizing assistance to:
(i) attain desired user fatigue level at task completion
(i) minimize battery usage
@ Challenge: user has unknown torque dynamics, based
on fatigue, motivation, velocity etc. u

Policy gradient
0O0000000e00

PAW: Policy gradient

@ Policy parameterized using RBFs
@ Literature model for user, unknown to the algorithm

@ Rewards on distance, fatigue, and electrical power
components

Policy gradient
00000000080

PAW: Early results

40
AR —
0 L [T=
0 2 4 6 T 10
40 tim
20
) T I . .
0 2 4 6 8 10
4 firr
£
T2 /\—/\ v
= 0 L . L W -human
0 2 4 6 8 10
0.7 fim
E 0.6 Sof
0.5
0 2 4 6 8 10

time

Target distance inaccurately reached

Policy gradient
O000000000e

PAW: Final learning results

50
E
=4 Uh
0 =
V] 2 4 6 3 10
20 tirm
810
0]]
V] 2 4 6 8 10
5 tirm,
2
= m v
= 0 1 | 1 V -human =]
0 2 4 6 [] 10
0.6 tirn,
5 0.55
0.5 Sof
0 2 4 6 8 10
time

Large assistance at start, to motivate user;
tapering down so desired location and fatigue reached

Appendix

References for Part Il

@ Bertsekas & Tsitsiklis, Neuro-Dynamic Programming,
1996.

@ Bertsekas, Dynamic Programming and Optimal Control,
vol. 2, 4th ed., 2012.

@ Sutton & Barto, Reinforcement Learning: An Introduction,
1998.

@ Szepesvari, Algorithms for Reinforcement Learning, 2010.

@ Busoniu, Babuska, De Schutter, & Ernst, Reinforcement
Learning and Dynamic Programming Using Function
Approximators, 2010.

@ Deisenroth, Neumann, & Peters, A Survey of Policy Search
for Robotics, Foundations and Trends in Robotics 2, 2011.

u

	Introduction
	Introduction

	Approximation
	General function approximation
	Approximation in DP and RL

	Model-based approximate dynamic programming
	Interpolated Q-iteration

	Model-free approximate dynamic programming
	Fitted Q-iteration
	Least-squares policy iteration

	Approximate temporal difference methods
	Approximate Q-learning
	Approximate SARSA

	Policy gradient
	Policy gradient

	Appendix

