Approximate dynamic programming and reinforcement learning for control

Lucian Buşoniu

Universitat Politècnica de València, 21-23 June 2017

Introduction Dynamic programming Monte Carlo

Temporal differences

Part I

Problem definition. Discrete case

Introduction ●○○○○○○○ Dynamic programming

Monte Carlo

Temporal differences

Main idea

Find a **control** law to **optimize** cumulative performance for a **general** system

Reinforcement learning: system unknown, learn from data

Introduction	Problem definition	Dynamic programming	Monte Carlo	Temporal differences
0000000				

RL principle

- Interact with system: measure states, apply actions
- Performance feedback in the form of rewards
- Inspired by human and animal learning

Monte Carlo

Temporal differences

Example: Domestic robot

A domestic robot ensures light switches are off Abstractization to high-level control (physical actions implemented by low-level controllers)

- States: grid coordinates, switch states
- Actions: movements NSEW, toggling switch
- Rewards: when switches toggled on→off

Monte Carlo

Temporal differences

Example: Robot arm

Low-level control

- States: link angles and angular velocities
- Actions: motor voltages
- Rewards: e.g. to reach a desired configuration, give larger rewards as robot gets closer to it

Many other applications

Artificial intelligence, medicine, multiagent systems, economics etc.

Why learning?

Learning finds solution that:

- cannot be designed in advance
 - problem incompletely known (e.g. robotic space exploration)
 - problem too complex (e.g. controlling strongly nonlinear systems)
- 2 continually improve
- adapt to time-varying environments

Model-based methods

We will also focus on model-based methods, because they:

- form the basis of RL (e.g. dynamic programming)
- are inspired by RL (e.g. optimistic planning)
- are useful separately from RL, when a model is known, since they can address complex (nonlinear) problems

Monte Carlo

Temporal differences

High-level course structure

- Problem definition. Discrete-variable exact methods
- Continuous-variable, approximation-based methods
- Optimistic planning

Problem definition

- Markov decision process
- Control policy and objective
- Optimal solution
- Oynamic programming, DP
 - Monte Carlo, MC

Monte Carlo

Temporal differences

Simple example: Cleaning robot

- Cleaning robot in a 1-D world
- Collects trash (reward +5) or power pack (reward +1)
- Once either trash of power pack collected, episode ends

State & action

- Robot is in a certain state *x* (cell)
- and applies an action *u* (e.g. moves right)

- State space *X* = {0, 1, 2, 3, 4, 5}
- Action space $U = \{-1, 1\} = \{$ left, right $\}$

Transitions and rewards

- Robot reaches a new state x'
- and receives a reward r = quality of transition (here, +5 for collecting the trash)

Introduction Problem definition Dynamic programming

Monte Carlo

Temporal differences

Transition and reward functions

• Transition function (system behavior):

$$x' = f(x, u) = \begin{cases} x & ext{if } x ext{ terminal (0 sau 5)} \\ x + u & ext{otherwise} \end{cases}$$

• Reward function (immediate performance):

$$r = \rho(x, u) = \begin{cases} 1 & \text{if } x = 1 \text{ and } u = -1 \text{ (power pack)} \\ 5 & \text{if } x = 4 \text{ and } u = 1 \text{ (trash)} \\ 0 & \text{otherwise} \end{cases}$$

Note: Terminal states cannot be exited & are not rewarded!

Introduction Problem definition Dynamic programming

Monte Carlo

Temporal differences

Markov decision process

Markov decision process (MDP)

Consists of:

- State space X
- Action space U
- **③** Transition function x' = f(x, u), $f: X \times U \rightarrow X$
- Reward function $r = \rho(x, u), \quad \rho : X \times U \to \mathbb{R}$

Introduction

Problem definition

Markov decision process

Control policy and objective

- Optimal solution
- 3 Dynamic programming, DP
- Monte Carlo, MC
- 5 Temporal differences, TD

Control policy

- Control policy *h*: maps *x* to *u* (state feedback)
- Encodes the behavior of the controller

Example: h(0) = * (terminal state, action is irrelevant), h(1) = -1, h(2) = 1, h(3) = 1, h(4) = 1, h(5) = *

Introduction	Problem definition	Dynamic programming	Monte Carlo	Temporal differences
	000000000000000000000000000000000000000			

Return

Take policy *h* that always moves right

$$R^{h}(2) = \gamma^{0}r_{1} + \gamma^{1}r_{2} + \gamma^{2}r_{3} + \gamma^{3}0 + \gamma^{4}0 + \dots$$
$$= \gamma^{2} \cdot 5$$

Since x_3 is terminal, all later rewards are 0

Control objective

Find *h* that maximizes the return:

$$R^{h}(x_{0}) = \sum_{k=0}^{\infty} \gamma^{k} r_{k+1} = \sum_{k=0}^{\infty} \gamma^{k} \rho(x_{k}, h(x_{k}))$$
from any x_{0}

Discount factor $\gamma \in [0, 1)$:

- represents an increasing uncertainty about the future
- bounds the infinite sum (if rewards bounded)
- induces a "pseudo-horizon" for the optimal control
- helps the convergence of algorithms

Note: There are also other types of return!

Introduction Problem definition Dynamic programming

Monte Carlo

Temporal differences

Choosing the discount factor

To choose γ , **trade-off** between:

- Long-term quality of the solution (large γ)
- 2 "Simplicity" of the problem (small γ)

In practice, γ should be sufficiently large so as not to ignore important rewards along the system trajectories

Introduction Problem definition Dynamic programming Monte Carlo Tempo

Temporal differences

Example: Choosing γ for a simple system

Step response of a first-order linear system:

What should γ be so that the rewards upon entering steady state are visible from the initial state?

Temporal differences

Solution: Choosing γ for a simple system

For $k \approx 60$, γ^k should not be too small, e.g.

$$egin{aligned} & \gamma^{60} \geq 0.05 \ & \gamma \geq 0.05^{1/60} pprox 0.9513 \end{aligned}$$

 γ^k for $\gamma = 0.96$:

Stochastic case outline

In response to u in x, system no longer reacts deterministically – it can reach one of several states with different probabilities

Stochastic MDP

- State and action spaces X, U have the same meaning
- Transition function gives probabilities $\tilde{f}(x, u, x')$, $\tilde{f}: X \times U \times X \rightarrow [0, 1]$
- Solution Reward function of the whole transition $\tilde{\rho}(x, u, x')$, $\tilde{\rho}: X \times U \times X \to \mathbb{R}$

Revised objective

Find *h* to maximize the expected return:

$$\mathcal{R}^{h}(x_{0}) = \mathrm{E}\left\{\sum_{k=0}^{\infty}\gamma^{k}\tilde{\rho}(x_{k},h(x_{k}),x_{k+1})\right\}$$

from any x_0

Introduction

Problem definition

- Markov decision process
- Control policy and objective
- Optimal solution
- 3 Dynamic programming, DP
- Monte Carlo, MC
- 5 Temporal differences, TD

Introduction Problem definition Dynamic programming

Monte Carlo

Temporal differences

Back to deterministic objective

Find optimal policy h^* that maximizes return

$$\mathcal{R}^{h}(x_{0}) = \sum_{k=0}^{\infty} \gamma^{k} r_{k+1} = \sum_{k=0}^{\infty} \gamma^{k} \rho(x_{k}, h(x_{k}))$$

from any x_0

- We will characterize the optimal solution
- Before that, characterize any policy

Q-value function

Q-function of a policy *h*

measures the quality of state-action pairs:

$$Q^{h}(x_{0}, u_{0}) = \rho(x_{0}, u_{0}) + \gamma R^{h}(x_{1})$$

(return achieved by executing u_0 in x_0 and then following h)

Q-function details

• First action *u*₀ free; remaining actions chosen with *h*

• Explicit formula using return:

$$Q^{h}(x_{0}, u_{0}) = \sum_{k=0}^{\infty} \gamma^{k} \rho(x_{k}, u_{k}) = \rho(x_{0}, u_{0}) + \sum_{k=1}^{\infty} \gamma^{k} \rho(x_{k}, h(x_{k}))$$
$$= \rho(x_{0}, u_{0}) + \gamma \sum_{k=0}^{\infty} \gamma^{k} \rho(x_{k+1}, h(x_{k+1}))$$
$$= \rho(x_{0}, u_{0}) + \gamma R^{h}(x_{1})$$

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Bellman equation

• Go one step further in the equation:

$$Q^{h}(x_{0}, u_{0}) = \rho(x_{0}, u_{0}) + \gamma R^{h}(x_{1})$$

= $\rho(x_{0}, u_{0}) + \gamma [\rho(x_{1}, h(x_{1})) + \gamma R^{h}(x_{2})]$
= $\rho(x_{0}, u_{0}) + \gamma Q^{h}(x_{1}, h(x_{1}))$

Recall that $x_1 = f(x_0, u_0)$

\Rightarrow Bellman equation for Q^h

$$Q^{h}(x, u) = \rho(x, u) + \gamma Q^{h}(f(x, u), h(f(x, u)))$$

Introduction Problem definition

Dynamic programming

Monte Carlo

Temporal differences

Cleaning robot: Q-function example

Discount factor $\gamma = 0.5$ Policy h(x) = 1, always move right

Optimal solution

• Optimal Q-function:

$$Q^* = \max_h Q^h$$

 \Rightarrow "Greedy" policy in Q^* :

$$h^*(x) = \operatorname*{arg\,max}_u Q^*(x, u)$$

is **optimal** (achieves maximal returns) (if multiple actions maximize, break ties arbitrarily)

Monte Carlo

Temporal differences

Bellman optimality equation

$$\begin{aligned} Q^*(x_0, u_0) &= \max_h Q^h(x_0, u_0) \\ &= \max_{u_1, u_2, \dots} \left[\rho(x_0, u_0) + \gamma \rho(x_1, u_1) + \gamma^2 \rho(x_2, u_2) + \dots \right] \\ &= \rho(x_0, u_0) + \gamma \max_{u_1, u_2, \dots} \left[\rho(x_1, u_1) + \gamma \rho(x_2, u_2) + \dots \right] \\ &= \rho(x_0, u_0) + \gamma \max_{u_1} \left\{ \rho(x_1, u_1) + \gamma \max_{u_2, \dots} \left[\rho(x_2, u_2) + \dots \right] \right\} \\ &= \rho(x_0, u_0) + \gamma \max_{u_1} Q^*(x_1, u_1) \end{aligned}$$

Recall $x_1 = f(x_0, u_0)$

Bellman optimality equation (for Q^*)

$$Q^*(x, u) = \rho(x, u) + \gamma \max_{u'} Q^*(f(x, u), u')$$

Monte Carlo

Temporal differences

Cleaning robot: Optimal Q-function

Discount factor $\gamma = 0.5$

Introduction Problem definition Dynamic programming

Monte Carlo

Temporal differences

A small detour: Familiar linear case

$$x_{k+1} = Ax_k + Bu_k =: f(x_k, u_k)$$

min $J(x_0) = \min \sum_{k=0}^{\infty} \gamma^k (x_k^\top Q x_k + u_k^\top R u_k)$
$$= \max \sum_{k=0}^{\infty} \gamma^k (-x_k^\top Q x_k - u_k^\top R u_k)$$

$$=: \max \sum_{k=0}^{\infty} \gamma^k \rho(x_k, u_k)$$

- Usually, $\gamma = 1$ taken in control, whereas we need $\gamma < 1$
- Note x and u are continuous during this detour

Linear case solution

• Bellman optimality equation turns into the Riccati equation:

$$Y = A^{\top} (\gamma Y - \gamma^2 Y B (\gamma B^{\top} Y B + R)^{-1} B^{\top} Y) A + Q$$

with optimal Q-function:

$$Q^*(x, u) = -x^\top Q x - u^\top R u - \gamma (A x + B u)^\top Y (A x + B u)$$

- Intuition: optimal cost $J(x) = x^{\top} Y x$
- Optimal control policy $h^*(x) = -\gamma(\gamma B^\top YB + R)^{-1}B^\top YAx$

Introduction Problem definition Dynar

Dynamic programming

Monte Carlo

Temporal differences

Up next:

Algorithms to find the optimal solution

Algorithm landscape

By model usage:

- Model-based: f, ρ known
- Model-free: f, ρ unknown (reinforcement learning)

By interaction level:

- Offline: algorithm runs in advance
- Online: algorithm runs with the system

Exact vs. approximate:

- Exact: x, u small number of discrete values
- Approximate: x, u continuous (or many discrete values)

First: Dynamic programming in the discrete case

3 Dynamic programming, DP

- Value iteration
- Policy iteration
- DP analysis
- 4 Monte Carlo, MC

Introduction Problem definition Dynamic Occords Occord

Dynamic programming

Monte Carlo

Temporal differences

Value iteration idea

We use Q-functions \Rightarrow specific algorithm "Q-iteration" (there are others)

- 1: find optimal Q-function Q*
- 2: compute h^* , greedy in Q^*

Introduction Problem definition Dynamic programming coordinate control of the con

Q-iteration

• Transforms Bellman optimality equation:

$$Q^*(x, u) = \rho(x, u) + \gamma \max_{u'} Q^*(f(x, u), u')$$

into an iterative procedure:

Q-iteration repeat at each iteration ℓ for all x, u do $Q_{\ell+1}(x, u) \leftarrow \rho(x, u) + \gamma \max_{u'} Q_{\ell}(f(x, u), u')$ end for until convergence to Q^* Once Q^* available: $h^*(x) = \arg \max_u Q^*(x, u)$

Monte Carlo

Temporal differences

Cleaning robot: Q-iteration demo

Discount factor: $\gamma = 0.5$

Q-iteration, ell=4

Monte Carlo

Temporal differences

Cleaning robot: Q-iteration

	$\mathcal{Q}_{\ell+1}(x,u) \leftarrow ho(x,u) + \gamma \max_{u'} \mathcal{Q}_{\ell}(f(x,u),u')$					
	<i>x</i> = 0	<i>x</i> = 1	<i>x</i> = 2	<i>x</i> = 3	<i>x</i> = 4	<i>x</i> = 5
Q_0	0;0	0;0	0;0	0;0	0;0	0;0
Q_1	0;0	1;0	0;0	0;0	0;5	0;0
Q_2	0;0	1;0	<mark>0.5</mark> ;0	0;2.5	0;5	0;0
Q_3	0;0	1; 0.25	0.5; 1.25	0.25; 2.5	1.25;5	0;0
Q_4	0;0	1; 0.625	0.5; 1.25	0.625; 2.5	1.25;5	0;0
Q_5	0;0	1; 0.625	0.5; 1.25	0.625; 2.5	1.25;5	0;0
h^*	*	-1	1	1	1	*

$$h^*(x) = rg\max_{u} Q^*(x, u)$$

- Problem definition
- 3 Dynamic programming, DP
 Value iteration
 Policy iteration
 DP analysis
 - Monte Carlo, MC
 - 5 Temporal differences, TD

Introduction

Problem definition

Dynamic programming

Monte Carlo

Temporal differences

Policy iteration

Policy iteration

initialize policy h_0 **repeat** at each iteration ℓ 1: policy evaluation: find Q^{h_ℓ} 2: policy improvement: $h_{\ell+1}(x) \leftarrow \arg \max_u Q^{h_\ell}(x, u)$ **until** convergence to h^*

Policy evaluation

Similarly to Q-iteration:

• Transforms Bellman equation for Q^h:

$$Q^{h}(x, u) = \rho(x, u) + \gamma Q^{h}(f(x, u), h(f(x, u)))$$

into an iterative procedure:

Policy evaluation

repeat at each iteration τ for all x, u do $Q_{\tau+1}(x, u) \leftarrow \rho(x, u) + \gamma Q_{\tau}(f(x, u), h(f(x, u)))$ end for until convergence to Q^h

Monte Carlo

Temporal differences

Cleaning robot: Policy iteration demo

Initial policy: always move left

Policy evaluation, tau=3 (at policy iteration ell=4)

Monte Carlo

Temporal differences

Cleaning robot: Policy iteration

$oldsymbol{Q}_{ au+1}(x,u) \leftarrow ho(x,u) + \gamma oldsymbol{Q}_{ au}(f(x,u),h(f(x,u)))$								
$h_{\ell+1}(x) \leftarrow rg \max Q^{h_\ell}(x,u)$								
			u	. ,				
	<i>x</i> = 0	<i>x</i> = 1	<i>x</i> = 2	<i>x</i> = 3	<i>x</i> = 4	<i>x</i> = 5		
h_0	*	-1	-1	-1	-1	*		
Q_0	0;0	0;0	0;0	0;0	0;0	0;0		
Q_1	0;0	<mark>1</mark> ;0	0;0	0;0	0;5	0;0		
Q_2	0;0	1;0	<mark>0.5</mark> ;0	0;0	0;5	0;0		
Q_3	0;0	1; 0.25	0.5;0	0.25;0	0;5	0;0		
Q_4	0;0	1; 0.25	0.5; 0.125	0.25;0	0.125;5	0;0		
Q_5	0;0	1; 0.25	0.5; 0.125	0.25; 0.0625	0.125;5	0;0		
Q_6	0;0	1; 0.25	0.5; 0.125	0.25; 0.0625	0.125;5	0;0		
h_1	*	-1	-1	-1	1	*		

...algorithm continues...

Introduction Problem definition Dynamic programming Monte Carlo

Cleaning robot: Policy iteration (cont'd)

	<i>x</i> = 0	<i>x</i> = 1	<i>x</i> = 2	<i>x</i> = 3	<i>x</i> = 4	<i>x</i> = 5
h_1	*	-1	-1	-1	1	*
Q_0	0;0	0;0	0;0	0;0	0;0	0;0
	•••	•••	•••	•••		•••
Q_5	0;0	1;0.25	0.5; 0.125	0.25; 2.5	0.125;5	0;0
h_2	*	-1	-1	1	1	*
Q_0	0;0	0;0	0;0	0;0	0;0	0;0
	• • •					• • •
Q_4	0;0	1;0.25	0.5; 1.25	0.25; 2.5	1.25;5	0;0
h_3	*	-1	1	1	1	*
Q_0	0;0	0;0	0;0	0;0	0;0	0;0
• • •	•••		• • •			•••
Q_5	0;0	1; 0.625	0.5; 1.25	0.625; 2.5	1.25;5	0;0
h_4	*	-1	1	1	1	*

- Problem definition
- 3 Dynamic programming, DP
 Value iteration
 Policy iteration
 DP analysis
 - 4 Monte Carlo, MC
 - 5 Temporal differences, TD

Introduction Problem definition Dynamic programming Monte Carlo Te

Temporal differences

Convergence of Q-iteration

• Each iteration is a contraction with factor γ :

$$\left\| oldsymbol{Q}_{\ell+1} - oldsymbol{Q}^*
ight\|_{\infty} \leq \gamma \left\| oldsymbol{Q}_{\ell} - oldsymbol{Q}^*
ight\|_{\infty}$$

⇒ Q-iteration monotonically converges to Q^* , with convergence rate $\gamma \Rightarrow \gamma$ helps convergence

Stopping condition

- Convergence to ${\it Q}^*$ only guaranteed asymptotically, as $\ell \to \infty$
- In practice, algorithm can be stopped when:

$$\|\boldsymbol{Q}_{\ell+1} - \boldsymbol{Q}_{\ell}\|_{\infty} \leq \varepsilon_{qiter}$$

Convergence of policy iteration

Policy evaluation component - like Q-iteration:

- Policy evaluation is a contraction with factor γ
- \Rightarrow monotonic convergence to Q^h , with rate γ

Complete policy iteration algorithm:

- Policy is either improved or already optimal
- But the maximum number of improvements is finite! $(|U|^{|X|})$
- \Rightarrow **convergence** to h^* in a finite number of iterations

Stopping conditions

In practice:

• Policy evaluation can be stopped when:

$$\|\boldsymbol{Q}_{\tau+1} - \boldsymbol{Q}_{\tau}\| \leq \varepsilon_{\text{peval}}$$

• Policy iteration can be stopped when:

$$\|h_{\ell+1} - h_{\ell}\| \leq \varepsilon_{\text{piter}}$$

• Note: $\varepsilon_{\text{piter}}$ can be taken 0!

Monte Carlo

Temporal differences

Q-iteration vs. policy iteration

Number of iterations to convergence

Q-iteration > policy iteration

Complexity

- one iteration of Q-iteration
 - > one iteration of policy evaluation
- complete Q-iteration ??? complete policy iteration

- Problem definition
- Oynamic programming, DP
- 4 Monte Carlo, MC
- 5 Temporal differences, TD

Algorithm landscape

By model usage:

- Model-based: f, ρ known
- Model-free: f, ρ unknown (reinforcement learning)

By interaction level:

- Offline: algorithm runs in advance
- Online: algorithm runs with the system

Exact vs. approximate:

- Exact: x, u small number of discrete values
- Approximate: x, u continuous (or many discrete values)

Next: Online RL, still in the discrete case

Monte Carlo

Temporal differences

Policy evaluation change

To find Q^h:

- So far: model-based policy evaluation
- Reinforcement learning: model not available!
- Learn Q^h from data or by online interaction with the system

Introduction Problem definition Dynamic programming

Monte Carlo 0000000000

Temporal differences

Monte Carlo policy evaluation

Recall:
$$Q^{h}(x_{0}, u_{0}) = \rho(x_{0}, u_{0}) + \gamma R^{h}(x_{1})$$

 $\downarrow^{\gamma^{0}} r_{1} \qquad \gamma^{1} r_{2} \qquad \gamma^{\kappa^{2}} r_{\kappa^{1}} \qquad \gamma^{\kappa^{2}} r_{\kappa}$
 $(x_{0}) \qquad (x_{1}) \qquad (x_{2}) \qquad (x_{2}) \qquad (x_{1}) \qquad (x_{1$

• Trial (trajectory) from (x_0, u_0) to terminal x_K using $u_1 = h(x_1), u_2 = h(x_2)$ etc.

 $\Rightarrow Q^h(x_0, u_0) =$ return along trajectory:

$$Q^{h}(x_{0}, u_{0}) = \sum_{j=0}^{K-1} \gamma^{j} r_{j+1}$$

Furthermore, at each step:

$$Q^{h}(x_{k},u_{k})=\sum_{j=k}^{K-1}\gamma^{j-k}r_{j+1}$$

Temporal differences

Stochastic case idea

Average return samples over multiple trajectories

Monte Carlo

Temporal differences

Monte Carlo policy iteration

Monte Carlo policy iteration

for each iteration ℓ do run *N* trials applying h_{ℓ} reset accumulator A(x, u), counter C(x, u) to 0 for each step *k* of each trial *i* do $A(x_k, u_k) \leftarrow A(x_k, u_k) + \sum_{j=k}^{K_i-1} \gamma^{j-k} r_{i,j+1}$ (return) $C(x_k, u_k) \leftarrow C(x_k, u_k) + 1$ end for $Q^{h_{\ell}}(x, u) \leftarrow A(x, u)/C(x, u)$ $h_{\ell+1}(x) \leftarrow \arg \max_u Q^{h_{\ell}}(x, u)$ end for

Note: must ensure a terminal state is always reached!

Monte Carlo

Temporal differences

Cleaning robot: Monte Carlo demo

Monte Carlo, trial 70 [piter 7 done, peval 10]

Need for exploration

 $Q^h(x, u) \leftarrow A(x, u) / \mathbf{C}(\mathbf{x}, \mathbf{u})$

How to ensure C(x, u) > 0 – information about each (x, u)?

- Select representative initial states x₀
- 2 Actions:

 u_0 representative, sometimes different from $h(x_0)$ and in addition, perhaps:

 u_k representative, sometime different from $h(x_k)$

Exploration-exploitation

• Exploration needed:

actions different from the current policy

• Exploitation of current knowledge also needed: current policy must be applied

Exploration-exploitation dilemma – essential in all RL algorithms

(not just in MC)

Exploration-exploitation: *ε*-greedy strategy

• Simple solution: ε-greedy

$$u_{k} = \begin{cases} h(x_{k}) = \arg \max_{u} Q(x_{k}, u) & \text{with probability } (1 - \varepsilon_{k}) \\ \text{a random action} & \text{w.p. } \varepsilon_{k} \end{cases}$$

Exploration probability ε_k ∈ (0, 1) usually decreased over time

Introduction Problem definition Dynamic programming

Monte Carlo

Temporal differences

Optimistic policy improvement

- Policy unchanged for N trials
- \Rightarrow Algorithm learns slowly
 - Policy improvement after each trial = optimistic

Optimistic Monte Carlo

Optimistic Monte Carlo method init accumulator A(x, u), counter C(x, u) to 0 for each trial do execute trial, e.g. applying ε -greedy: $u_{k} = \begin{cases} \arg \max_{u} Q(x_{k}, u) & \text{w.p. } (1 - \varepsilon_{k}) \\ \text{random} & \text{w.p. } \varepsilon_{k} \end{cases}$ for each step k do $A(x_k, u_k) \leftarrow A(x_k, u_k) + \sum_{i=k}^{K-1} \gamma^{j-k} r_{j+1}$ $C(x_k, u_k) \leftarrow C(x_k, u_k) + 1$ end for $Q(x, u) \leftarrow A(x, u)/C(x, u)$ end for

- *h* implicit, greedy in *Q*
- Q updated \Rightarrow implicit improvement of policy h

Introduction Problem definition Dynamic programming Monte Carlo Tem

Temporal differences

Cleaning robot: Optimistic Monte Carlo demo

Monte Carlo, trial 70 [piter 70 done, peval 1]

Introduction

- Problem definition
- 3 Dynamic programming, DP
- 4 Monte Carlo, MC
- Temporal differences, TD
 Introduction
 - SARSA
 - Q-learning

Introduction Problem definition Dynamic programming Monte Carlo **Temporal differences**

DP perspective

Start from policy evaluation:

 $\boldsymbol{Q}_{\tau+1}(\boldsymbol{x},\boldsymbol{u}) \leftarrow \rho(\boldsymbol{x},\boldsymbol{u}) + \gamma \boldsymbol{Q}_{\tau}(f(\boldsymbol{x},\boldsymbol{u}),h(f(\boldsymbol{x},\boldsymbol{u})))$

Instead of model, use the transition at each step k (x_k, u_k, x_{k+1}, r_{k+1}, u_{k+1}): Q(x_k, u_k) ← r_{k+1} + $\gamma Q(x_{k+1}, u_{k+1})$ Note: x_{k+1} = f(x_k, u_k), r_{k+1} = $\rho(x_k, u_k)$, u_{k+1} ~ h(x_{k+1})

Solution in the incremental update: $Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k \cdot [r_{k+1} + \gamma Q(x_{k+1}, u_{k+1}) - Q(x_k, u_k)]$ $\alpha_k \in (0, 1] \text{ learning rate}$

Intermediate algorithm

Temporal differences for policy h evaluation for each trial do init x_0 , choose initial action u_0 **repeat** at each step k apply u_k , measure x_{k+1} , receive r_{k+1} choose **next** action $u_{k+1} \sim h(x_{k+1})$ $Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k$ $[r_{k+1} + \gamma Q(x_{k+1}, u_{k+1}) - Q(x_k, u_k)]$ until trial finished end for

MC perspective

Temporal differences for policy h evaluation for each trial do ... repeat each step kapply u_k , measure x_{k+1} , receive r_{k+1} $Q(x_k, u_k) \leftarrow ...Q...$ until trial finished end for

Monte Carlo

for each trial do execute trial

 $Q(x, u) \leftarrow A(x, u)/C(x, u)$ end for

MC and DP perspectives

- Learn from online interaction: like MC, unlike DP
- Update after each transition, using previous Q-values: like DP, unlike MC

Exploration-exploitation

choose next action $u_{k+1} \sim h(x_{k+1})$

- Information about (x, u) ≠ (x, h(x)) needed
 ⇒ exploration
- *h* must be followed ⇒ exploitation
- E.g. ε-greedy:

$$u_{k+1} = \begin{cases} h(x_{k+1}) & \text{w.p. } (1 - \varepsilon_{k+1}) \\ \text{random} & \text{w.p. } \varepsilon_{k+1} \end{cases}$$

Introduction

- Problem definition
- Oynamic programming, DP
- 4 Monte Carlo, MC
- Temporal differences, TD
 Introduction
 SARSA
 - Q-learning

Temporal differences

Policy improvement

- Previous algorithm: h fixed
- Improving h: simplest, after each transition
- ⇒ interpretation: policy iteration optimistic at the transition level
 - *h* implicit, greedy in *Q* (update *Q* ⇒ implicitly improve *h*)

SARSA

SARSA with ε -greedy exploration for each trial do init x_0 $u_{0} = \begin{cases} \arg \max_{u} Q(x_{0}, u) & \text{w.p. } (1 - \varepsilon_{0}) \\ \text{random} & \text{w.p. } \varepsilon_{0} \end{cases}$ **repeat** at each step k apply u_k , measure x_{k+1} , receive r_{k+1} $u_{k+1} = \begin{cases} \arg \max_{u} Q(x_{k+1}, u) & \text{w.p. } (1 - \varepsilon_{k+1}) \\ \text{random} & \text{w.p. } \varepsilon_{k+1} \end{cases}$ $Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k$ $[r_{k+1} + \gamma Q(x_{k+1}, u_{k+1}) - Q(x_k, u_k)]$ until trial finished end for

Monte Carlo

Temporal differences

Origin of the name SARSA

 $(x_k, u_k, r_{k+1}, x_{k+1}, u_{k+1}) =$ (State, Action, Reward, State, Action) = SARSA

gramming Mor

Monte Carlo

Temporal differences

Cleaning robot: SARSA demo

Parameters: $\alpha = 0.2$, $\varepsilon = 0.3$ (constant) $x_0 = 2$ or 3 (random)

SARSA, trial 8, step 3

Introduction

- Problem definition
- Oynamic programming, DP
- 4 Monte Carlo, MC
- Temporal differences, TD
 Introduction
 SARSA
 Q-learning

Introduction Problem definition Dynamic programming Monte Carlo Constraints

Q-learning

Similarly to SARSA, start from Q-iteration: $Q_{\ell+1}(x, u) \leftarrow \rho(x, u) + \gamma \max_{u'} Q_{\ell}(f(x, u), u')$

Instead of model, use at each step k the transition (x_k, u_k, x_{k+1}, r_{k+1}): Q(x_k, u_k) ← r_{k+1} + $\gamma \max_{u'} Q(x_{k+1}, u')$ Note: x_{k+1} = f(x_k, u_k), r_{k+1} = $\rho(x_k, u_k)$

■ Turn into **incremental** update: $Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k \cdot [r_{k+1} + \gamma \max_{u'} Q(x_{k+1}, u') - Q(x_k, u_k)]$

Temporal differences

Q-learning

Q-learning with ε -greedy exploration for each trial do init x_0 **repeat** at each step k $u_{k} = \begin{cases} \arg \max_{u} Q(x_{k}, u) & \text{w.p. } (1 - \varepsilon_{k}) \\ \text{random} & \text{w.p. } \varepsilon_{k} \end{cases}$ apply u_k , measure x_{k+1} , receive r_{k+1} $Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k$ $[r_{k+1} + \gamma \max_{u'} Q(x_{k+1}, u') - Q(x_k, u_k)]$ until trial finished end for

Introduction Problem definition Dynamic programming

Monte Carlo

Temporal differences

Cleaning robot: Q-learning demo

Parameters – like in SARSA: $\alpha = 0.2$, $\varepsilon = 0.3$ (constant) $x_0 = 2 \text{ or } 3 \text{ (random)}$

Q-learning, trial 8, step 3

Convergence

Conditions for convergence to Q^* in both SARSA and Q-learning:

- All pairs (x, u) continue to be updated: requires exploration, e.g. ε-greedy
- 2 Technical conditions on α_k (goes to 0, $\sum_{k=0}^{\infty} \alpha_k^2 = \text{finite}$, but not too fast, $\sum_{k=0}^{\infty} \alpha_k \to \infty$)

In addition, for SARSA:

Solicy must become greedy asymptotically e.g. for ε-greedy, lim_{k→∞} ε_k = 0

Introduction	Problem definition	Dynamic programming	Monte Carlo

Discussion

SARSA on-policy

 Always updates towards the Q-function of the current policy

Q-learning off-policy

 No matter what the current policy, always updates towards optimal Q-function

Both algorithms remain valid for stochastic problems

Discussion (cont'd)

Advantages of temporal differences

- Easy to understand and implement
- Low complexity \Rightarrow fast execution

SARSA vs. Q-learning

- SARSA complexity smaller than Q-learning (no max in the update)
- Performance: better algo depends on the problem

α_k, ε_k sequences greatly influence performance

Main disadvantage: TD require large number of data Two possible solutions:

- Eligibility traces
- Experience replay

References for Part I

- Bertsekas, *Dynamic Programming and Optimal Control*, vol. 2, 4th ed., 2012.
- Sutton & Barto, *Reinforcement Learning: An Introduction*, 1998.
- Szepesvári, Algorithms for Reinforcement Learning, 2010.
- Buşoniu, Babuška, De Schutter, & Ernst, *Reinforcement Learning and Dynamic Programming Using Function Approximators*, 2010.