
Approximate dynamic programming and
reinforcement learning for control

Lucian Buşoniu

Universitat Politècnica de València, 21-23 June 2017

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Part I

Problem definition. Discrete case

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Main idea

Find a control law
to optimize cumulative performance

for a general system

Reinforcement learning: system unknown, learn from data

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

RL principle

Interact with system: measure states, apply actions
Performance feedback in the form of rewards
Inspired by human and animal learning

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Example: Domestic robot

A domestic robot ensures light switches are off
Abstractization to high-level control (physical actions
implemented by low-level controllers)

States: grid coordinates, switch states
Actions: movements NSEW, toggling switch
Rewards: when switches toggled on→off

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Example: Robot arm

Low-level control
States: link angles and angular velocities
Actions: motor voltages
Rewards: e.g. to reach a desired configuration,
give larger rewards as robot gets closer to it

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Many other applications

Artificial intelligence, medicine, multiagent systems, economics
etc.

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Why learning?

Learning finds solution that:
1 cannot be designed in advance

– problem incompletely known
(e.g. robotic space exploration)

– problem too complex
(e.g. controlling strongly nonlinear systems)

2 continually improve
3 adapt to time-varying environments

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Model-based methods

We will also focus on model-based methods, because they:
form the basis of RL (e.g. dynamic programming)
are inspired by RL (e.g. optimistic planning)
are useful separately from RL, when a model is known,
since they can address complex (nonlinear) problems

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

High-level course structure

Problem definition. Discrete-variable exact methods
Continuous-variable, approximation-based methods
Optimistic planning

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

1 Introduction

2 Problem definition
Markov decision process
Control policy and objective
Optimal solution

3 Dynamic programming, DP

4 Monte Carlo, MC

5 Temporal differences, TD

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Simple example: Cleaning robot

Cleaning robot in a 1-D world
Collects trash (reward +5) or power pack (reward +1)
Once either trash of power pack collected, episode ends

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

State & action

Robot is in a certain state x (cell)
and applies an action u (e.g. moves right)

State space X = {0, 1, 2, 3, 4, 5}
Action space U = {−1, 1} = {left, right}

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Transitions and rewards

Robot reaches a new state x ′

and receives a reward r = quality of transition
(here, +5 for collecting the trash)

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Transition and reward functions

Transition function (system behavior):

x ′ = f (x , u) =

{
x if x terminal (0 sau 5)
x + u otherwise

Reward function (immediate performance):

r = ρ(x , u) =


1 if x = 1 and u = −1 (power pack)
5 if x = 4 and u = 1 (trash)
0 otherwise

Note: Terminal states cannot be exited & are not rewarded!

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Markov decision process

Markov decision process (MDP)
Consists of:

1 State space X
2 Action space U
3 Transition function x ′ = f (x , u), f : X × U → X
4 Reward function r = ρ(x , u), ρ : X × U → R

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

1 Introduction

2 Problem definition
Markov decision process
Control policy and objective
Optimal solution

3 Dynamic programming, DP

4 Monte Carlo, MC

5 Temporal differences, TD

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Control policy

Control policy h: maps x to u (state feedback)
Encodes the behavior of the controller

Example: h(0) = ∗ (terminal state, action is irrelevant),
h(1) = −1, h(2) = 1, h(3) = 1, h(4) = 1, h(5) = ∗

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Return

Take policy h that always moves right

Rh(2) = γ0r1 + γ1r2 + γ2r3 + γ30 + γ40 + . . .

= γ2 · 5

Since x3 is terminal, all later rewards are 0

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Control objective

Find h that maximizes the return:
Rh(x0) =

∞∑
k=0

γk rk+1 =
∞∑

k=0
γkρ(xk , h(xk))

from any x0

Discount factor γ ∈ [0, 1):
represents an increasing uncertainty about the future
bounds the infinite sum (if rewards bounded)
induces a “pseudo-horizon” for the optimal control
helps the convergence of algorithms

Note: There are also other types of return!

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Choosing the discount factor

To choose γ, trade-off between:
1 Long-term quality of the solution (large γ)
2 “Simplicity” of the problem (small γ)

In practice, γ should be sufficiently large so as not to ignore
important rewards along the system trajectories

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Example: Choosing γ for a simple system

Step response of a first-order linear system:

What should γ be so that the rewards upon entering steady
state are visible from the initial state?

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Solution: Choosing γ for a simple system

For k ≈ 60, γk should not be too small, e.g.

γ60 ≥ 0.05

γ ≥ 0.051/60 ≈ 0.9513

γk for γ = 0.96:

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Stochastic case outline

In response to u in x , system no longer reacts deterministically
– it can reach one of several states with different probabilities

Stochastic MDP
1 State and action spaces X , U have the same meaning
2 Transition function gives probabilities f̃ (x , u, x ′),

f̃ : X × U × X → [0, 1]

3 Reward function of the whole transition ρ̃(x , u, x ′),
ρ̃ : X × U × X → R

Revised objective
Find h to maximize the expected return:

Rh(x0) = E
{ ∞∑

k=0
γk ρ̃(xk , h(xk), xk+1)

}
from any x0

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

1 Introduction

2 Problem definition
Markov decision process
Control policy and objective
Optimal solution

3 Dynamic programming, DP

4 Monte Carlo, MC

5 Temporal differences, TD

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Back to deterministic objective

Find optimal policy h∗ that maximizes return

Rh(x0) =
∞∑

k=0

γk rk+1 =
∞∑

k=0

γkρ(xk , h(xk))

from any x0

We will characterize the optimal solution
Before that, characterize any policy

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Q-value function

Q-function of a policy h
measures the quality of state-action pairs:

Qh(x0, u0) = ρ(x0, u0) + γRh(x1)

(return achieved by executing u0 in x0 and then following h)

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Q-function details

First action u0 free; remaining actions chosen with h

Explicit formula using return:

Qh(x0, u0) =
∞∑

k=0

γkρ(xk , uk) = ρ(x0, u0) +
∞∑

k=1

γkρ(xk , h(xk))

= ρ(x0, u0) + γ

∞∑
k=0

γkρ(xk+1, h(xk+1))

= ρ(x0, u0) + γRh(x1)

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Bellman equation

Go one step further in the equation:

Qh(x0, u0) = ρ(x0, u0) + γRh(x1)

= ρ(x0, u0) + γ[ρ(x1, h(x1)) + γRh(x2)]

= ρ(x0, u0) + γQh(x1, h(x1))

Recall that x1 = f (x0, u0)

⇒ Bellman equation for Qh

Qh(x , u) = ρ(x , u) + γQh(f (x , u), h(f (x , u)))

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Cleaning robot: Q-function example

Discount factor γ = 0.5
Policy h(x) = 1, always move right

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Optimal solution

Optimal Q-function:

Q∗ = max
h

Qh

⇒ “Greedy” policy in Q∗:

h∗(x) = arg max
u

Q∗(x , u)

is optimal (achieves maximal returns)
(if multiple actions maximize, break ties arbitrarily)

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Bellman optimality equation

Q∗(x0, u0) = max
h

Qh(x0, u0)

= max
u1,u2,...

[
ρ(x0, u0) + γρ(x1, u1) + γ2ρ(x2, u2) + . . .

]
= ρ(x0, u0) + γ max

u1,u2,...
[ρ(x1, u1) + γρ(x2, u2) + . . .]

= ρ(x0, u0) + γ max
u1

{
ρ(x1, u1) + γ max

u2,...
[ρ(x2, u2) + . . .]

}
= ρ(x0, u0) + γ max

u1
Q∗(x1, u1)

Recall x1 = f (x0, u0)

Bellman optimality equation (for Q∗)

Q∗(x , u) = ρ(x , u) + γ max
u′

Q∗(f (x , u), u′)

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Cleaning robot: Optimal Q-function

Discount factor γ = 0.5

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

A small detour: Familiar linear case

xk+1 = Axk + Buk =: f (xk , uk)

min J(x0) = min
∞∑

k=0

γk (x>k Qxk + u>k Ruk)

= max
∞∑

k=0

γk (−x>k Qxk − u>k Ruk)

=: max
∞∑

k=0

γkρ(xk , uk)

Usually, γ = 1 taken in control, whereas we need γ < 1
Note x and u are continuous during this detour

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Linear case solution

Bellman optimality equation turns into the Riccati equation:

Y = A>(γY − γ2YB(γB>YB + R)−1B>Y)A + Q

with optimal Q-function:

Q∗(x , u) = −x>Qx − u>Ru − γ(Ax + Bu)>Y (Ax + Bu)

Intuition: optimal cost J(x) = x>Yx
Optimal control policy h∗(x) = −γ(γB>YB + R)−1B>YAx

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Up next:

Algorithms to find the optimal solution

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Algorithm landscape

By model usage:
Model-based: f , ρ known
Model-free: f , ρ unknown (reinforcement learning)

By interaction level:
Offline: algorithm runs in advance
Online: algorithm runs with the system

Exact vs. approximate:
Exact: x , u small number of discrete values
Approximate: x , u continuous (or many discrete values)

First: Dynamic programming in the discrete case

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

1 Introduction

2 Problem definition

3 Dynamic programming, DP
Value iteration
Policy iteration
DP analysis

4 Monte Carlo, MC

5 Temporal differences, TD

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Value iteration idea

We use Q-functions⇒ specific algorithm “Q-iteration”
(there are others)

1: find optimal Q-function Q∗

2: compute h∗, greedy in Q∗

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Q-iteration

Transforms Bellman optimality equation:

Q∗(x , u) = ρ(x , u) + γ max
u′

Q∗(f (x , u), u′)

into an iterative procedure:

Q-iteration
repeat at each iteration `

for all x , u do
Q`+1(x , u)← ρ(x , u) + γ maxu′ Q`(f (x , u), u′)

end for
until convergence to Q∗

Once Q∗ available: h∗(x) = arg maxu Q∗(x , u)

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Cleaning robot: Q-iteration demo

Discount factor: γ = 0.5

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Cleaning robot: Q-iteration

Q`+1(x , u)← ρ(x , u) + γ max
u′

Q`(f (x , u), u′)

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5
Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 0 ; 0 1 ; 0 0 ; 0 0 ; 0 0 ; 5 0 ; 0
Q2 0 ; 0 1 ; 0 0.5 ; 0 0 ; 2.5 0 ; 5 0 ; 0
Q3 0 ; 0 1 ; 0.25 0.5 ; 1.25 0.25 ; 2.5 1.25 ; 5 0 ; 0
Q4 0 ; 0 1 ; 0.625 0.5 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0
Q5 0 ; 0 1 ; 0.625 0.5 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0
h∗ ∗ −1 1 1 1 ∗

h∗(x) = arg max
u

Q∗(x , u)

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

1 Introduction

2 Problem definition

3 Dynamic programming, DP
Value iteration
Policy iteration
DP analysis

4 Monte Carlo, MC

5 Temporal differences, TD

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Policy iteration

Policy iteration
initialize policy h0
repeat at each iteration `

1: policy evaluation: find Qh`

2: policy improvement:
h`+1(x)← arg maxu Qh`(x , u)

until convergence to h∗

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Policy evaluation

Similarly to Q-iteration:
Transforms Bellman equation for Qh:

Qh(x , u) = ρ(x , u) + γQh(f (x , u), h(f (x , u)))

into an iterative procedure:

Policy evaluation
repeat at each iteration τ

for all x , u do
Qτ+1(x , u)← ρ(x , u) + γQτ (f (x , u), h(f (x , u)))

end for
until convergence to Qh

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Cleaning robot: Policy iteration demo

Initial policy: always move left

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Cleaning robot: Policy iteration

Qτ+1(x , u)← ρ(x , u) + γQτ (f (x , u), h(f (x , u)))

h`+1(x)← arg max
u

Qh`(x , u)

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5
h0 * −1 −1 −1 −1 *
Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 0 ; 0 1 ; 0 0 ; 0 0 ; 0 0 ; 5 0 ; 0
Q2 0 ; 0 1 ; 0 0.5 ; 0 0 ; 0 0 ; 5 0 ; 0
Q3 0 ; 0 1 ; 0.25 0.5 ; 0 0.25 ; 0 0 ; 5 0 ; 0
Q4 0 ; 0 1 ; 0.25 0.5 ; 0.125 0.25 ; 0 0.125 ; 5 0 ; 0
Q5 0 ; 0 1 ; 0.25 0.5 ; 0.125 0.25 ; 0.0625 0.125 ; 5 0 ; 0
Q6 0 ; 0 1 ; 0.25 0.5 ; 0.125 0.25 ; 0.0625 0.125 ; 5 0 ; 0
h1 * −1 −1 −1 1 *

...algorithm continues...

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Cleaning robot: Policy iteration (cont’d)

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5
h1 * −1 −1 −1 1 *
Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
· ·
Q5 0 ; 0 1 ; 0.25 0.5 ; 0.125 0.25 ; 2.5 0.125 ; 5 0 ; 0
h2 * −1 −1 1 1 *
Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
· ·
Q4 0 ; 0 1 ; 0.25 0.5 ; 1.25 0.25 ; 2.5 1.25 ; 5 0 ; 0
h3 * −1 1 1 1 *
Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
· ·
Q5 0 ; 0 1 ; 0.625 0.5 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0
h4 * −1 1 1 1 *

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

1 Introduction

2 Problem definition

3 Dynamic programming, DP
Value iteration
Policy iteration
DP analysis

4 Monte Carlo, MC

5 Temporal differences, TD

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Convergence of Q-iteration

Each iteration is a contraction with factor γ:

‖Q`+1 −Q∗‖∞ ≤ γ ‖Q` −Q∗‖∞
⇒ Q-iteration monotonically converges to Q∗,

with convergence rate γ ⇒ γ helps convergence

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Stopping condition

Convergence to Q∗ only guaranteed asymptotically,
as `→∞

In practice, algorithm can be stopped when:

‖Q`+1 −Q`‖∞ ≤ εqiter

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Convergence of policy iteration

Policy evaluation component – like Q-iteration:
Policy evaluation is a contraction with factor γ

⇒ monotonic convergence to Qh, with rate γ

Complete policy iteration algorithm:
Policy is either improved or already optimal
But the maximum number of improvements is finite! (|U||X |)

⇒ convergence to h∗ in a finite number of iterations

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Stopping conditions

In practice:
Policy evaluation can be stopped when:

‖Qτ+1 −Qτ‖ ≤ εpeval

Policy iteration can be stopped when:

‖h`+1 − h`‖ ≤ εpiter

Note: εpiter can be taken 0!

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Q-iteration vs. policy iteration

Number of iterations to convergence
Q-iteration > policy iteration

Complexity
one iteration of Q-iteration
> one iteration of policy evaluation
complete Q-iteration ??? complete policy iteration

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

1 Introduction

2 Problem definition

3 Dynamic programming, DP

4 Monte Carlo, MC

5 Temporal differences, TD

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Algorithm landscape

By model usage:
Model-based: f , ρ known
Model-free: f , ρ unknown (reinforcement learning)

By interaction level:
Offline: algorithm runs in advance
Online: algorithm runs with the system

Exact vs. approximate:
Exact: x , u small number of discrete values
Approximate: x , u continuous (or many discrete values)

Next: Online RL, still in the discrete case

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Policy evaluation change

To find Qh:
So far: model-based policy evaluation
Reinforcement learning: model not available!
Learn Qh from data or by
online interaction with the system

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Monte Carlo policy evaluation

Recall: Qh(x0, u0) = ρ(x0, u0) + γRh(x1)

Trial (trajectory) from (x0, u0) to terminal xK
using u1 = h(x1), u2 = h(x2) etc.

⇒ Qh(x0, u0) = return along trajectory:

Qh(x0, u0) =
∑K−1

j=0
γ j rj+1

Furthermore, at each step:

Qh(xk , uk) =
∑K−1

j=k
γ j−k rj+1

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Stochastic case idea

Average return samples over multiple trajectories

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Monte Carlo policy iteration

Monte Carlo policy iteration
for each iteration ` do

run N trials applying h`

reset accumulator A(x , u), counter C(x , u) to 0
for each step k of each trial i do

A(xk , uk)← A(xk , uk) +
∑Ki−1

j=k γ j−k ri,j+1 (return)
C(xk , uk)← C(xk , uk) + 1

end for
Qh`(x , u)← A(x , u)/C(x , u)
h`+1(x)← arg maxu Qh`(x , u)

end for

Note: must ensure a terminal state is always reached!

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Cleaning robot: Monte Carlo demo

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Need for exploration

Qh(x , u)← A(x , u)/C(x, u)

How to ensure C(x , u) > 0 – information about each (x , u)?

1 Select representative initial states x0

2 Actions:
u0 representative, sometimes different from h(x0)

and in addition, perhaps:
uk representative, sometime different from h(xk)

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Exploration-exploitation

Exploration needed:
actions different from the current policy
Exploitation of current knowledge also needed:
current policy must be applied

Exploration-exploitation dilemma
– essential in all RL algorithms

(not just in MC)

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Exploration-exploitation: ε-greedy strategy

Simple solution: ε-greedy

uk =

{
h(xk)= arg maxu Q(xk , u) with probability (1− εk)

a random action w.p. εk

Exploration probability εk ∈ (0, 1)
usually decreased over time

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Optimistic policy improvement

Policy unchanged for N trials
⇒ Algorithm learns slowly

Policy improvement after each trial = optimistic

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Optimistic Monte Carlo

Optimistic Monte Carlo method

init accumulator A(x , u), counter C(x , u) to 0
for each trial do

execute trial, e.g. applying ε-greedy:

uk =

{
arg maxu Q(xk , u) w.p. (1− εk)

random w.p. εk
for each step k do

A(xk , uk)← A(xk , uk) +
∑K−1

j=k γ j−k rj+1
C(xk , uk)← C(xk , uk) + 1

end for
Q(x , u)← A(x , u)/C(x , u)

end for

h implicit, greedy in Q
Q updated⇒ implicit improvement of policy h

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Cleaning robot: Optimistic Monte Carlo demo

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

1 Introduction

2 Problem definition

3 Dynamic programming, DP

4 Monte Carlo, MC

5 Temporal differences, TD
Introduction
SARSA
Q-learning

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

DP perspective

1 Start from policy evaluation:
Qτ+1(x , u)← ρ(x , u) + γQτ (f (x , u), h(f (x , u)))

2 Instead of model, use the transition at each step k
(xk , uk , xk+1, rk+1, uk+1):

Q(xk , uk)← rk+1 + γQ(xk+1, uk+1)
Note: xk+1 = f (xk , uk), rk+1 = ρ(xk , uk), uk+1 ∼ h(xk+1)

3 Turn into incremental update:
Q(xk , uk)←Q(xk , uk) + αk ·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk)]
αk ∈ (0, 1] learning rate

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Intermediate algorithm

Temporal differences for policy h evaluation
for each trial do

init x0, choose initial action u0
repeat at each step k

apply uk , measure xk+1, receive rk+1
choose next action uk+1 ∼ h(xk+1)
Q(xk , uk)← Q(xk , uk) + αk ·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk)]
until trial finished

end for

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

MC perspective

Temporal differences for policy h evaluation
for each trial do

...
repeat each step k

apply uk , measure xk+1, receive rk+1
Q(xk , uk)← ...Q...

until trial finished
end for

Monte Carlo
for each trial do

execute trial
...
Q(x , u)← A(x , u)/C(x , u)

end for

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

MC and DP perspectives

Learn from online interaction: like MC, unlike DP

Update after each transition, using previous Q-values:
like DP, unlike MC

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Exploration-exploitation

choose next action uk+1 ∼ h(xk+1)

Information about (x , u) 6= (x , h(x)) needed
⇒ exploration
h must be followed
⇒ exploitation

E.g. ε-greedy:

uk+1 =

{
h(xk+1) w.p. (1− εk+1)

random w.p. εk+1

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

1 Introduction

2 Problem definition

3 Dynamic programming, DP

4 Monte Carlo, MC

5 Temporal differences, TD
Introduction
SARSA
Q-learning

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Policy improvement

Previous algorithm: h fixed

Improving h: simplest, after each transition
⇒ interpretation: policy iteration

optimistic at the transition level

h implicit, greedy in Q
(update Q ⇒ implicitly improve h)

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

SARSA

SARSA with ε-greedy exploration
for each trial do

init x0

u0 =

{
arg maxu Q(x0, u) w.p. (1− ε0)

random w.p. ε0
repeat at each step k

apply uk , measure xk+1, receive rk+1

uk+1 =

{
arg maxu Q(xk+1, u) w.p. (1− εk+1)

random w.p. εk+1

Q(xk , uk)← Q(xk , uk) + αk ·
[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk)]

until trial finished
end for

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Origin of the name SARSA

(xk , uk , rk+1, xk+1, uk+1) =
(State, Action, Reward, State, Action) = SARSA

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Cleaning robot: SARSA demo

Parameters: α = 0.2, ε = 0.3 (constant)
x0 = 2 or 3 (random)

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

1 Introduction

2 Problem definition

3 Dynamic programming, DP

4 Monte Carlo, MC

5 Temporal differences, TD
Introduction
SARSA
Q-learning

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Q-learning

1 Similarly to SARSA, start from Q-iteration:
Q`+1(x , u)← ρ(x , u) + γ maxu′ Q`(f (x , u), u′)

2 Instead of model, use at each step k the transition
(xk , uk , xk+1, rk+1):

Q(xk , uk)← rk+1 + γ maxu′ Q(xk+1, u′)
Note: xk+1 = f (xk , uk), rk+1 = ρ(xk , uk)

3 Turn into incremental update:
Q(xk , uk)←Q(xk , uk) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk)]

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Q-learning

Q-learning with ε-greedy exploration
for each trial do

init x0
repeat at each step k

uk =

{
arg maxu Q(xk , u) w.p. (1− εk)

random w.p. εk
apply uk , measure xk+1, receive rk+1
Q(xk , uk)← Q(xk , uk) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk)]

until trial finished
end for

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Cleaning robot: Q-learning demo

Parameters – like in SARSA: α = 0.2, ε = 0.3 (constant)
x0 = 2 or 3 (random)

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Convergence

Conditions for convergence to Q∗

in both SARSA and Q-learning:
1 All pairs (x , u) continue to be updated:

requires exploration, e.g. ε-greedy
2 Technical conditions on αk (goes to 0,

∑∞
k=0 α2

k = finite,
but not too fast,

∑∞
k=0 αk →∞)

In addition, for SARSA:
3 Policy must become greedy asymptotically

e.g. for ε-greedy, limk→∞ εk = 0

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Discussion

SARSA on-policy
Always updates towards the Q-function
of the current policy

Q-learning off-policy
No matter what the current policy,
always updates towards optimal Q-function

Both algorithms remain valid for stochastic problems

Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Discussion (cont’d)

Advantages of temporal differences
Easy to understand and implement
Low complexity⇒ fast execution

SARSA vs. Q-learning
SARSA complexity smaller than Q-learning
(no max in the update)
Performance: better algo depends on the problem

αk , εk sequences greatly influence performance

Main disadvantage: TD require large number of data
Two possible solutions:

Eligibility traces
Experience replay

Appendix

References for Part I

Bertsekas, Dynamic Programming and Optimal Control,
vol. 2, 4th ed., 2012.
Sutton & Barto, Reinforcement Learning: An Introduction,
1998.
Szepesvári, Algorithms for Reinforcement Learning, 2010.
Buşoniu, Babuška, De Schutter, & Ernst, Reinforcement
Learning and Dynamic Programming Using Function
Approximators, 2010.

	Introduction
	Introduction

	Problem definition
	Markov decision process
	Control policy and objective
	Optimal solution

	Dynamic programming, DP
	Value iteration
	Policy iteration
	DP analysis

	Monte Carlo, MC
	Monte Carlo

	Temporal differences, TD
	Introduction
	SARSA
	Q-learning

	Appendix

