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Part I

Problem definition. Discrete case
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Main idea

Find a control law
to optimize cumulative performance

for a general system

Reinforcement learning: system unknown, learn from data
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RL principle

Interact with system: measure states, apply actions
Performance feedback in the form of rewards
Inspired by human and animal learning
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Example: Domestic robot

A domestic robot ensures light switches are off
Abstractization to high-level control (physical actions
implemented by low-level controllers)

States: grid coordinates, switch states
Actions: movements NSEW, toggling switch
Rewards: when switches toggled on→off
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Example: Robot arm

Low-level control
States: link angles and angular velocities
Actions: motor voltages
Rewards: e.g. to reach a desired configuration,
give larger rewards as robot gets closer to it
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Many other applications

Artificial intelligence, medicine, multiagent systems, economics
etc.
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Why learning?

Learning finds solution that:
1 cannot be designed in advance

– problem incompletely known
(e.g. robotic space exploration)

– problem too complex
(e.g. controlling strongly nonlinear systems)

2 continually improve
3 adapt to time-varying environments
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Model-based methods

We will also focus on model-based methods, because they:
form the basis of RL (e.g. dynamic programming)
are inspired by RL (e.g. optimistic planning)
are useful separately from RL, when a model is known,
since they can address complex (nonlinear) problems
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High-level course structure

Problem definition. Discrete-variable exact methods
Continuous-variable, approximation-based methods
Optimistic planning
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1 Introduction

2 Problem definition
Markov decision process
Control policy and objective
Optimal solution

3 Dynamic programming, DP

4 Monte Carlo, MC

5 Temporal differences, TD
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Simple example: Cleaning robot

Cleaning robot in a 1-D world
Collects trash (reward +5) or power pack (reward +1)
Once either trash of power pack collected, episode ends
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State & action

Robot is in a certain state x (cell)
and applies an action u (e.g. moves right)

State space X = {0, 1, 2, 3, 4, 5}
Action space U = {−1, 1} = {left, right}
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Transitions and rewards

Robot reaches a new state x ′

and receives a reward r = quality of transition
(here, +5 for collecting the trash)
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Transition and reward functions

Transition function (system behavior):

x ′ = f (x , u) =

{
x if x terminal (0 sau 5)
x + u otherwise

Reward function (immediate performance):

r = ρ(x , u) =


1 if x = 1 and u = −1 (power pack)
5 if x = 4 and u = 1 (trash)
0 otherwise

Note: Terminal states cannot be exited & are not rewarded!



Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Markov decision process

Markov decision process (MDP)
Consists of:

1 State space X
2 Action space U
3 Transition function x ′ = f (x , u), f : X × U → X
4 Reward function r = ρ(x , u), ρ : X × U → R
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1 Introduction
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Control policy

Control policy h: maps x to u (state feedback)
Encodes the behavior of the controller

Example: h(0) = ∗ (terminal state, action is irrelevant),
h(1) = −1, h(2) = 1, h(3) = 1, h(4) = 1, h(5) = ∗
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Return

Take policy h that always moves right

Rh(2) = γ0r1 + γ1r2 + γ2r3 + γ30 + γ40 + . . .

= γ2 · 5

Since x3 is terminal, all later rewards are 0
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Control objective

Find h that maximizes the return:
Rh(x0) =

∞∑
k=0

γk rk+1 =
∞∑

k=0
γkρ(xk , h(xk ))

from any x0

Discount factor γ ∈ [0, 1):
represents an increasing uncertainty about the future
bounds the infinite sum (if rewards bounded)
induces a “pseudo-horizon” for the optimal control
helps the convergence of algorithms

Note: There are also other types of return!
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Choosing the discount factor

To choose γ, trade-off between:
1 Long-term quality of the solution (large γ)
2 “Simplicity” of the problem (small γ)

In practice, γ should be sufficiently large so as not to ignore
important rewards along the system trajectories
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Example: Choosing γ for a simple system

Step response of a first-order linear system:

What should γ be so that the rewards upon entering steady
state are visible from the initial state?



Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Solution: Choosing γ for a simple system

For k ≈ 60, γk should not be too small, e.g.

γ60 ≥ 0.05

γ ≥ 0.051/60 ≈ 0.9513

γk for γ = 0.96:
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Stochastic case outline

In response to u in x , system no longer reacts deterministically
– it can reach one of several states with different probabilities

Stochastic MDP
1 State and action spaces X , U have the same meaning
2 Transition function gives probabilities f̃ (x , u, x ′),

f̃ : X × U × X → [0, 1]

3 Reward function of the whole transition ρ̃(x , u, x ′),
ρ̃ : X × U × X → R

Revised objective
Find h to maximize the expected return:

Rh(x0) = E
{ ∞∑

k=0
γk ρ̃(xk , h(xk ), xk+1)

}
from any x0
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Back to deterministic objective

Find optimal policy h∗ that maximizes return

Rh(x0) =
∞∑

k=0

γk rk+1 =
∞∑

k=0

γkρ(xk , h(xk))

from any x0

We will characterize the optimal solution
Before that, characterize any policy
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Q-value function

Q-function of a policy h
measures the quality of state-action pairs:

Qh(x0, u0) = ρ(x0, u0) + γRh(x1)

(return achieved by executing u0 in x0 and then following h)
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Q-function details

First action u0 free; remaining actions chosen with h

Explicit formula using return:

Qh(x0, u0) =
∞∑

k=0

γkρ(xk , uk ) = ρ(x0, u0) +
∞∑

k=1

γkρ(xk , h(xk ))

= ρ(x0, u0) + γ

∞∑
k=0

γkρ(xk+1, h(xk+1))

= ρ(x0, u0) + γRh(x1)
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Bellman equation

Go one step further in the equation:

Qh(x0, u0) = ρ(x0, u0) + γRh(x1)

= ρ(x0, u0) + γ[ρ(x1, h(x1)) + γRh(x2)]

= ρ(x0, u0) + γQh(x1, h(x1))

Recall that x1 = f (x0, u0)

⇒ Bellman equation for Qh

Qh(x , u) = ρ(x , u) + γQh(f (x , u), h(f (x , u)))
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Cleaning robot: Q-function example

Discount factor γ = 0.5
Policy h(x) = 1, always move right
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Optimal solution

Optimal Q-function:

Q∗ = max
h

Qh

⇒ “Greedy” policy in Q∗:

h∗(x) = arg max
u

Q∗(x , u)

is optimal (achieves maximal returns)
(if multiple actions maximize, break ties arbitrarily)
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Bellman optimality equation

Q∗(x0, u0) = max
h

Qh(x0, u0)

= max
u1,u2,...

[
ρ(x0, u0) + γρ(x1, u1) + γ2ρ(x2, u2) + . . .

]
= ρ(x0, u0) + γ max

u1,u2,...
[ρ(x1, u1) + γρ(x2, u2) + . . . ]

= ρ(x0, u0) + γ max
u1

{
ρ(x1, u1) + γ max

u2,...
[ρ(x2, u2) + . . . ]

}
= ρ(x0, u0) + γ max

u1
Q∗(x1, u1)

Recall x1 = f (x0, u0)

Bellman optimality equation (for Q∗)

Q∗(x , u) = ρ(x , u) + γ max
u′

Q∗(f (x , u), u′)
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Cleaning robot: Optimal Q-function

Discount factor γ = 0.5
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A small detour: Familiar linear case

xk+1 = Axk + Buk =: f (xk , uk )

min J(x0) = min
∞∑

k=0

γk (x>k Qxk + u>k Ruk )

= max
∞∑

k=0

γk (−x>k Qxk − u>k Ruk )

=: max
∞∑

k=0

γkρ(xk , uk )

Usually, γ = 1 taken in control, whereas we need γ < 1
Note x and u are continuous during this detour
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Linear case solution

Bellman optimality equation turns into the Riccati equation:

Y = A>(γY − γ2YB(γB>YB + R)−1B>Y )A + Q

with optimal Q-function:

Q∗(x , u) = −x>Qx − u>Ru − γ(Ax + Bu)>Y (Ax + Bu)

Intuition: optimal cost J(x) = x>Yx
Optimal control policy h∗(x) = −γ(γB>YB + R)−1B>YAx
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Up next:

Algorithms to find the optimal solution
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Algorithm landscape

By model usage:
Model-based: f , ρ known
Model-free: f , ρ unknown (reinforcement learning)

By interaction level:
Offline: algorithm runs in advance
Online: algorithm runs with the system

Exact vs. approximate:
Exact: x , u small number of discrete values
Approximate: x , u continuous (or many discrete values)

First: Dynamic programming in the discrete case
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1 Introduction

2 Problem definition

3 Dynamic programming, DP
Value iteration
Policy iteration
DP analysis

4 Monte Carlo, MC

5 Temporal differences, TD
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Value iteration idea

We use Q-functions⇒ specific algorithm “Q-iteration”
(there are others)

1: find optimal Q-function Q∗

2: compute h∗, greedy in Q∗
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Q-iteration

Transforms Bellman optimality equation:

Q∗(x , u) = ρ(x , u) + γ max
u′

Q∗(f (x , u), u′)

into an iterative procedure:

Q-iteration
repeat at each iteration `

for all x , u do
Q`+1(x , u)← ρ(x , u) + γ maxu′ Q`(f (x , u), u′)

end for
until convergence to Q∗

Once Q∗ available: h∗(x) = arg maxu Q∗(x , u)
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Cleaning robot: Q-iteration demo

Discount factor: γ = 0.5
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Cleaning robot: Q-iteration

Q`+1(x , u)← ρ(x , u) + γ max
u′

Q`(f (x , u), u′)

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5
Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 0 ; 0 1 ; 0 0 ; 0 0 ; 0 0 ; 5 0 ; 0
Q2 0 ; 0 1 ; 0 0.5 ; 0 0 ; 2.5 0 ; 5 0 ; 0
Q3 0 ; 0 1 ; 0.25 0.5 ; 1.25 0.25 ; 2.5 1.25 ; 5 0 ; 0
Q4 0 ; 0 1 ; 0.625 0.5 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0
Q5 0 ; 0 1 ; 0.625 0.5 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0
h∗ ∗ −1 1 1 1 ∗

h∗(x) = arg max
u

Q∗(x , u)
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Policy iteration

Policy iteration
initialize policy h0
repeat at each iteration `

1: policy evaluation: find Qh`

2: policy improvement:
h`+1(x)← arg maxu Qh`(x , u)

until convergence to h∗
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Policy evaluation

Similarly to Q-iteration:
Transforms Bellman equation for Qh:

Qh(x , u) = ρ(x , u) + γQh(f (x , u), h(f (x , u)))

into an iterative procedure:

Policy evaluation
repeat at each iteration τ

for all x , u do
Qτ+1(x , u)← ρ(x , u) + γQτ (f (x , u), h(f (x , u)))

end for
until convergence to Qh
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Cleaning robot: Policy iteration demo

Initial policy: always move left
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Cleaning robot: Policy iteration

Qτ+1(x , u)← ρ(x , u) + γQτ (f (x , u), h(f (x , u)))

h`+1(x)← arg max
u

Qh`(x , u)

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5
h0 * −1 −1 −1 −1 *
Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 0 ; 0 1 ; 0 0 ; 0 0 ; 0 0 ; 5 0 ; 0
Q2 0 ; 0 1 ; 0 0.5 ; 0 0 ; 0 0 ; 5 0 ; 0
Q3 0 ; 0 1 ; 0.25 0.5 ; 0 0.25 ; 0 0 ; 5 0 ; 0
Q4 0 ; 0 1 ; 0.25 0.5 ; 0.125 0.25 ; 0 0.125 ; 5 0 ; 0
Q5 0 ; 0 1 ; 0.25 0.5 ; 0.125 0.25 ; 0.0625 0.125 ; 5 0 ; 0
Q6 0 ; 0 1 ; 0.25 0.5 ; 0.125 0.25 ; 0.0625 0.125 ; 5 0 ; 0
h1 * −1 −1 −1 1 *

...algorithm continues...
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Cleaning robot: Policy iteration (cont’d)

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5
h1 * −1 −1 −1 1 *
Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
· · · · · · · · · · · · · · · · · · · · ·
Q5 0 ; 0 1 ; 0.25 0.5 ; 0.125 0.25 ; 2.5 0.125 ; 5 0 ; 0
h2 * −1 −1 1 1 *
Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
· · · · · · · · · · · · · · · · · · · · ·
Q4 0 ; 0 1 ; 0.25 0.5 ; 1.25 0.25 ; 2.5 1.25 ; 5 0 ; 0
h3 * −1 1 1 1 *
Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
· · · · · · · · · · · · · · · · · · · · ·
Q5 0 ; 0 1 ; 0.625 0.5 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0
h4 * −1 1 1 1 *



Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

1 Introduction

2 Problem definition

3 Dynamic programming, DP
Value iteration
Policy iteration
DP analysis

4 Monte Carlo, MC

5 Temporal differences, TD



Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Convergence of Q-iteration

Each iteration is a contraction with factor γ:

‖Q`+1 −Q∗‖∞ ≤ γ ‖Q` −Q∗‖∞
⇒ Q-iteration monotonically converges to Q∗,

with convergence rate γ ⇒ γ helps convergence
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Stopping condition

Convergence to Q∗ only guaranteed asymptotically,
as `→∞

In practice, algorithm can be stopped when:

‖Q`+1 −Q`‖∞ ≤ εqiter
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Convergence of policy iteration

Policy evaluation component – like Q-iteration:
Policy evaluation is a contraction with factor γ

⇒ monotonic convergence to Qh, with rate γ

Complete policy iteration algorithm:
Policy is either improved or already optimal
But the maximum number of improvements is finite! (|U||X |)

⇒ convergence to h∗ in a finite number of iterations
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Stopping conditions

In practice:
Policy evaluation can be stopped when:

‖Qτ+1 −Qτ‖ ≤ εpeval

Policy iteration can be stopped when:

‖h`+1 − h`‖ ≤ εpiter

Note: εpiter can be taken 0!
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Q-iteration vs. policy iteration

Number of iterations to convergence
Q-iteration > policy iteration

Complexity
one iteration of Q-iteration
> one iteration of policy evaluation
complete Q-iteration ??? complete policy iteration
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Algorithm landscape

By model usage:
Model-based: f , ρ known
Model-free: f , ρ unknown (reinforcement learning)

By interaction level:
Offline: algorithm runs in advance
Online: algorithm runs with the system

Exact vs. approximate:
Exact: x , u small number of discrete values
Approximate: x , u continuous (or many discrete values)

Next: Online RL, still in the discrete case
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Policy evaluation change

To find Qh:
So far: model-based policy evaluation
Reinforcement learning: model not available!
Learn Qh from data or by
online interaction with the system
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Monte Carlo policy evaluation

Recall: Qh(x0, u0) = ρ(x0, u0) + γRh(x1)

Trial (trajectory) from (x0, u0) to terminal xK
using u1 = h(x1), u2 = h(x2) etc.

⇒ Qh(x0, u0) = return along trajectory:

Qh(x0, u0) =
∑K−1

j=0
γ j rj+1

Furthermore, at each step:

Qh(xk , uk ) =
∑K−1

j=k
γ j−k rj+1
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Stochastic case idea

Average return samples over multiple trajectories
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Monte Carlo policy iteration

Monte Carlo policy iteration
for each iteration ` do

run N trials applying h`

reset accumulator A(x , u), counter C(x , u) to 0
for each step k of each trial i do

A(xk , uk )← A(xk , uk ) +
∑Ki−1

j=k γ j−k ri,j+1 (return)
C(xk , uk )← C(xk , uk ) + 1

end for
Qh`(x , u)← A(x , u)/C(x , u)
h`+1(x)← arg maxu Qh`(x , u)

end for

Note: must ensure a terminal state is always reached!
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Cleaning robot: Monte Carlo demo
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Need for exploration

Qh(x , u)← A(x , u)/C(x, u)

How to ensure C(x , u) > 0 – information about each (x , u)?

1 Select representative initial states x0

2 Actions:
u0 representative, sometimes different from h(x0)

and in addition, perhaps:
uk representative, sometime different from h(xk )



Introduction Problem definition Dynamic programming Monte Carlo Temporal differences

Exploration-exploitation

Exploration needed:
actions different from the current policy
Exploitation of current knowledge also needed:
current policy must be applied

Exploration-exploitation dilemma
– essential in all RL algorithms

(not just in MC)
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Exploration-exploitation: ε-greedy strategy

Simple solution: ε-greedy

uk =

{
h(xk )= arg maxu Q(xk , u) with probability (1− εk )

a random action w.p. εk

Exploration probability εk ∈ (0, 1)
usually decreased over time
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Optimistic policy improvement

Policy unchanged for N trials
⇒ Algorithm learns slowly

Policy improvement after each trial = optimistic
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Optimistic Monte Carlo

Optimistic Monte Carlo method

init accumulator A(x , u), counter C(x , u) to 0
for each trial do

execute trial, e.g. applying ε-greedy:

uk =

{
arg maxu Q(xk , u) w.p. (1− εk )

random w.p. εk
for each step k do

A(xk , uk )← A(xk , uk ) +
∑K−1

j=k γ j−k rj+1
C(xk , uk )← C(xk , uk ) + 1

end for
Q(x , u)← A(x , u)/C(x , u)

end for

h implicit, greedy in Q
Q updated⇒ implicit improvement of policy h
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Cleaning robot: Optimistic Monte Carlo demo
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DP perspective

1 Start from policy evaluation:
Qτ+1(x , u)← ρ(x , u) + γQτ (f (x , u), h(f (x , u)))

2 Instead of model, use the transition at each step k
(xk , uk , xk+1, rk+1, uk+1):

Q(xk , uk )← rk+1 + γQ(xk+1, uk+1)
Note: xk+1 = f (xk , uk ), rk+1 = ρ(xk , uk ), uk+1 ∼ h(xk+1)

3 Turn into incremental update:
Q(xk , uk )←Q(xk , uk ) + αk ·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )]
αk ∈ (0, 1] learning rate
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Intermediate algorithm

Temporal differences for policy h evaluation
for each trial do

init x0, choose initial action u0
repeat at each step k

apply uk , measure xk+1, receive rk+1
choose next action uk+1 ∼ h(xk+1)
Q(xk , uk )← Q(xk , uk ) + αk ·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )]
until trial finished

end for
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MC perspective

Temporal differences for policy h evaluation
for each trial do

...
repeat each step k

apply uk , measure xk+1, receive rk+1
Q(xk , uk )← ...Q...

until trial finished
end for

Monte Carlo
for each trial do

execute trial
...
Q(x , u)← A(x , u)/C(x , u)

end for
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MC and DP perspectives

Learn from online interaction: like MC, unlike DP

Update after each transition, using previous Q-values:
like DP, unlike MC
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Exploration-exploitation

choose next action uk+1 ∼ h(xk+1)

Information about (x , u) 6= (x , h(x)) needed
⇒ exploration
h must be followed
⇒ exploitation

E.g. ε-greedy:

uk+1 =

{
h(xk+1) w.p. (1− εk+1)

random w.p. εk+1
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Policy improvement

Previous algorithm: h fixed

Improving h: simplest, after each transition
⇒ interpretation: policy iteration

optimistic at the transition level

h implicit, greedy in Q
(update Q ⇒ implicitly improve h)
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SARSA

SARSA with ε-greedy exploration
for each trial do

init x0

u0 =

{
arg maxu Q(x0, u) w.p. (1− ε0)

random w.p. ε0
repeat at each step k

apply uk , measure xk+1, receive rk+1

uk+1 =

{
arg maxu Q(xk+1, u) w.p. (1− εk+1)

random w.p. εk+1

Q(xk , uk )← Q(xk , uk ) + αk ·
[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )]

until trial finished
end for
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Origin of the name SARSA

(xk , uk , rk+1, xk+1, uk+1) =
(State, Action, Reward, State, Action) = SARSA
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Cleaning robot: SARSA demo

Parameters: α = 0.2, ε = 0.3 (constant)
x0 = 2 or 3 (random)
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Q-learning

1 Similarly to SARSA, start from Q-iteration:
Q`+1(x , u)← ρ(x , u) + γ maxu′ Q`(f (x , u), u′)

2 Instead of model, use at each step k the transition
(xk , uk , xk+1, rk+1):

Q(xk , uk )← rk+1 + γ maxu′ Q(xk+1, u′)
Note: xk+1 = f (xk , uk ), rk+1 = ρ(xk , uk )

3 Turn into incremental update:
Q(xk , uk )←Q(xk , uk ) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )]
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Q-learning

Q-learning with ε-greedy exploration
for each trial do

init x0
repeat at each step k

uk =

{
arg maxu Q(xk , u) w.p. (1− εk )

random w.p. εk
apply uk , measure xk+1, receive rk+1
Q(xk , uk )← Q(xk , uk ) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )]

until trial finished
end for
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Cleaning robot: Q-learning demo

Parameters – like in SARSA: α = 0.2, ε = 0.3 (constant)
x0 = 2 or 3 (random)
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Convergence

Conditions for convergence to Q∗

in both SARSA and Q-learning:
1 All pairs (x , u) continue to be updated:

requires exploration, e.g. ε-greedy
2 Technical conditions on αk (goes to 0,

∑∞
k=0 α2

k = finite,
but not too fast,

∑∞
k=0 αk →∞)

In addition, for SARSA:
3 Policy must become greedy asymptotically

e.g. for ε-greedy, limk→∞ εk = 0
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Discussion

SARSA on-policy
Always updates towards the Q-function
of the current policy

Q-learning off-policy
No matter what the current policy,
always updates towards optimal Q-function

Both algorithms remain valid for stochastic problems
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Discussion (cont’d)

Advantages of temporal differences
Easy to understand and implement
Low complexity⇒ fast execution

SARSA vs. Q-learning
SARSA complexity smaller than Q-learning
(no max in the update)
Performance: better algo depends on the problem

αk , εk sequences greatly influence performance

Main disadvantage: TD require large number of data
Two possible solutions:

Eligibility traces
Experience replay



Appendix

References for Part I
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Sutton & Barto, Reinforcement Learning: An Introduction,
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Szepesvári, Algorithms for Reinforcement Learning, 2010.
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