Problem & motivation	DOO	SOO	Application

Optimistic Optimization

Lucian Buşoniu

26 May 2014

Problem & motivation	DOO	SOO	Application

2 DOO: Deterministic optimistic optimization

- 3 SOO: Simultaneous optimistic optimization
- 4 Application: Multiagent consensus

Problem & motivation	DOO	SOO	Application
●○○	0000000000	0000	
References			

These methods were published in:

- Rémi Munos, Optimistic optimization of deterministic functions without the knowledge of its smoothness, Advances in Neural Information Processing Systems 2011.
- Rémi Munos, The optimistic principle applied to games, optimization and planning: Towards foundations of Monte-Carlo Tree Search, Foundations and Trends in Machine Learning 7, 2014, pp. 1–130.

1 is original reference, 2 is an extensive survey including applications to control

Problem & motivation	DOO 00000000000	SOO 0000	Application
Optimization proble	m		

 $\max_{x\in X} f(x)$

Assumption 1

Function $f : X \to \mathbb{R}$ is Lipschitz-continuous with respect to a semimetric ℓ :

$$|f(x)-f(x')| \leq \ell(x,x')$$

Definition (Semimetric)

A function $\ell : X \times X \rightarrow \mathbb{R}$ satisfying:

•
$$\ell(x,x') \geq 0$$

•
$$\ell(x, x') = \ell(x', x)$$

•
$$\ell(x, x') = 0$$
 if and only if $x = x'$

Intuitively: a notion of distance

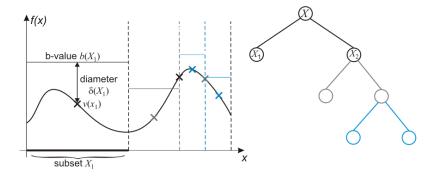
Problem & motivation	DOO 0000000000	SOO 0000	Application
Motivation			

No method with guaranteed performance for any function

Especially when the metric ℓ is unknown

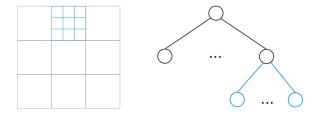
Problem & motivation	DOO •000000000	SOO 0000	Application
DOO idea			

- Explore the space *X* iteratively
- Always expand **optimistic** set, with largest upper bound: $b(X_i) = f(x_i) + \delta(X_i)$, diam. $\delta(X_i) = \sup_{x,x' \in X_i} \ell(x, x')$
- Until *n* expansions exhausted



Problem & motivation	DOO ⊙●○○○○○○○○	SOO 0000	Application
Partitioning			

- In general, a hierarchical partitioning rule must be defined
- Set $X_{0,1} = X$ at depth 0 split into $X_{1,1}, \ldots, X_{1,K}$ at depth 1
- Each set $X_{d,i}$ at depth d split into K subsets at depth d + 1



Problem & motivation	DOO	SOO	Application
	0000000000		

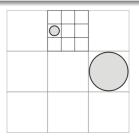
Partitioning requirements

Assumption 2

The sets $X_{d,i}$ in the hierarchical partitioning must:

- a) Shrink with the depth: $\delta(X_{d,i}) \le \delta_d$ for any set *i* at *d*; δ_d decreases with d
- b) Be well-shaped:

each $\delta(X_{d,i})$ contains a ball in the semimetric ℓ having radius proportional to δ_d , $B(x_{d,i}, \nu \delta_d)$



Problem & motivation	DOO ०००●००००००	SOO 0000	Application
DOO algorithm			

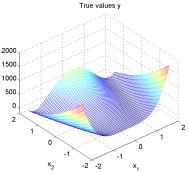
initialize tree with root
$$X_{0,1} = X$$

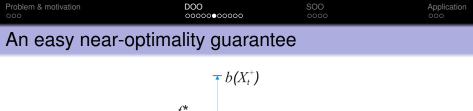
for $t = 1$ to n do
 $X_{d,i}^{\dagger} \leftarrow \arg \max_{X_{d,i} \in \text{ leaves }} b(X_{d,i})$
expand $X_{d,i}^{\dagger}$ (partition the set), adding children to tree
end for
output best sample $\hat{x}^* = \arg \max_{x_{d,i} \in \text{tree}} f(x_{d,i})$

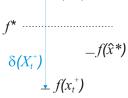
(Munos, 2011)

Problem & motivation	DOO ००००●००००००	SOO 0000	Application
Examples			

- Quadratic function
- Rosenbrock banana function







- Denote the expanded set at iteration t by X_t^{\dagger}
- $b(X_t^{\dagger}) \ge f^*$, otherwise it wouldn't have been selected
- $f(x_t^{\dagger}) \leq f^*$ by definition
- $f(\widehat{x}^*) \ge f(x_t^{\dagger})$ because \widehat{x}^* maximizes f on the tree
- So $f^* f(\hat{x}^*) \le \delta(X_t^{\dagger})$ at any *t*, and therefore $\le \delta_{d^*}$, where d^* the deepest expanded depth

Problem & motivation	DOO 00000000000	SOO 0000	Application

Near-optimality dimension

Definition (Near-optimality dimension)

Smallest β so that the near-optimal sets:

$$X_{\varepsilon} = \{x \in X \mid f^* - f(x) \leq \varepsilon\}$$

can be covered by (on the order of) $\varepsilon^{-\beta}$ balls of radius ε in the semimetric ℓ

 β measures how closely ℓ captures the smoothness of f

Problem & motivation	DOO	SOO	Application
	000000000000		

DOO near-optimality

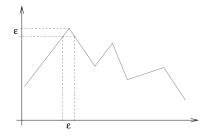
Theorem

Consider a partition with exponentially decreasing sets, $\delta_d = \gamma^d$, $\gamma < 1$. Then the solution returned by DOO satisfies:

$$f^* - f(\widehat{x}^*) \approx \begin{cases} n^{-1/\beta} & \text{if } \beta > 0 \\ \gamma^{cn} & \text{if } \beta = 0 \end{cases}$$

e ,			
Problem & motivation	DOO ∞∞∞∞∞∞∞∞∞∞∞∞	SOO 0000	Application

Example: zero dimension

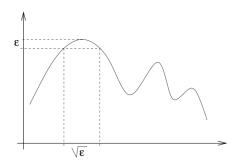


- Take $f(x^*) f(x) \approx |x^* x|$ and $\ell(x, x') = |x x'|$
- X_{ε} = an interval of length ε , which is also an ℓ -ball of size ε
- So it takes a constant = ε^0 number of balls to cover X_{ε} , and $\beta = 0$

(taken from Munos)

Problem &	motivation	DOO ०००००००००	SOO 0000	Application
_		 		

Example: positive dimension



- If $f(x^*) f(x) \approx |x^* x|^2$, X_{ε} is an interval of length $\sqrt{\varepsilon}$
- When $\ell(x, x') = |x x'|^2$, a ℓ -ball of size ε is also an interval of length $\sqrt{\varepsilon}$, and $\beta = 0$
- When ℓ(x, x') = |x x'|, a ℓ-ball of size ε is an interval of length ε, so it takes ε/√(ε) = ε^{-1/2} balls to cover X_ε, and β = 1/2

(taken from Munos)

Problem & motivation	DOO	SOO	Application
	000000000		

Example: semimetric mismatch

Influence of semimetric (mis)match for a quadratic function

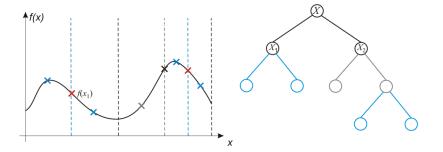
2 DOO: Deterministic optimistic optimization

SOO: Simultaneous optimistic optimization

Application: Multiagent consensus

Problem & motivation	DOO 0000000000	SOO ●000	Application
SOO idea			

- What if ℓ / δ unknown? (i.e., smoothness of *f* unknown)
- Expand all potentially optimistic sets $X_{d,i}$, for which: $f(x_{d,i}) \ge f(x_{d',j})$ for all leaves *j* at smaller depths $d' \le d$



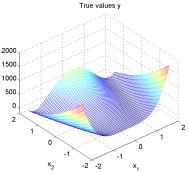
Problem & motivation	DOO 0000000000	SOO ○●○○	Application
SOO algorithm			

initialize tree with root $X_{0,1} = X$ **repeat**at each iteration $t = 1, 2, \ldots$ for $d = 0, ..., min\{current tree depth, d_{max}(t)\}$ do $X_{d,i}^{\dagger} \leftarrow \operatorname{arg} \max_{X_{d,i} \in \text{ leaves at } d} f(x_{d,i})$ if $f(x_{d',i}^{\dagger}) \ge f(x_{d',i}) \forall$ leaves *j* at $d' \le d$ then expand X_{di}^{\dagger} end if end for **until** *n* expansions performed **output** best sample $\hat{x}^* = \arg \max_{x_{d,i} \in \text{tree}} f(x_{d,i})$

(Munos, 2011)

Problem & motivation	DOO 0000000000	SOO ००●०	Application
Examples			

- Quadratic function
- Rosenbrock banana function



Problem & motivation	DOO 0000000000	SOO 000●	Application

SOO near-optimality

Theorem

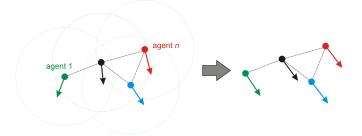
Consider a partition with exponentially decreasing sets, $\delta_d = \gamma^d$, $\gamma < 1$. Take $d_{\max}(t) = \sqrt{t}$, then the solution returned by SOO satisfies:

$$f^* - f(\widehat{x}^*) pprox \begin{cases} n^{-rac{1}{2eta}} & ext{if } eta > 0 \ \gamma^{c'n} & ext{if } eta = 0 \end{cases}$$

Problem & motivation	DOO	SOO	Application

- 2 DOO: Deterministic optimistic optimization
- 3 SOO: Simultaneous optimistic optimization
- 4 Application: Multiagent consensus

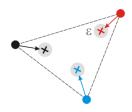
Consensus in nonlinear multiagent systems



- Agents with nonlinear dynamics $x_{i,k+1} = f_i(x_{i,k}, u_{i,k})$
- Consensus problem: agents must reach agreement on (some) state variables
- Communication on an incomplete graph
- Challenge: No solution for general f

001			
Problem & motivation	DOO	SOO	Application
	0000000000	0000	oeo

OO for consensus



- Design target states with a classical consensus method
- 2 Use DOO or SOO to optimize action sequences in order to reach within ε of target states
 - Consensus guaranteed under conditions on f
 - Tradeoff: length of action sequence must be known and small

Problem & motivation	DOO	SOO	Application
			000

Consensus of multiple robot arms

