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Intro & motivare
€000

Identificarea recursiva: ldee

Identificare
recursiva

u(k)

Sistem

y(k)

Metodele recursive pot functiona online, in paralel cu sistemul.

o~

La fiecare pas k, calculeaza o noua estimare a parametrilor (k) (=
un nou model), folosind estimarea anterioara 6(k — 1) si noile date

disponibile u(k), y (k).

Observatie: Pentru a le diferentia de identificarea recursiva, vom
numi metodele precedente, care folosesc intregul set de date

deodata, metode offline.
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Motivare

Metodele recursive:
@ Necesita mai putina memorie, si mai putin timp de calcul pentru
fiecare actualizare, decat algoritmul offline.

= Mai usor de aplicat in timp real.
(timpul total, dupa setul complet de date, poate fi mai mare)

@ Cu modificarile potrivite, pot trata sistemele variabile in timp.
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Motivare (continuare)

@ Daca modelul este folosit pentru a proiecta un regulator, obtinem
o schema de control adaptiv:

Identificare
recursiva

Controler Sistem

u(k) y(K)
/

Control adaptiv bazat pe identificarea recursiva

initializeaza modelul si controllerul

loop la fiecare pas k = 1,2, ...
aplica u(k) folosind controllerul curent, masoara y(k)
actualizeaza modelul folosind ultimul esantion u(k), y(k)
adapteaza/reproiecteaza controllerul folosind modelul actualizat

end loop
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Dezavantaj

Metodele recursive sunt in general o aproximare a metodelor offline
= garantiile de performanta sunt mai greu de obfinut.
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Exemplu motivant: Estimarea unui scalar

Model:
y(k)=b+e(k) =1 b+ e(k) = o(k)0 + e(k)

unde ¢(k) = 1¥k, 0 = b.

Pentru masuratorile pana la (inclusiv) k:

Dupa cateva calcule, solutia este:

(k) = 1 y(1) + ..+ y(K)

(estimarea este media masuratorilor, filtrand zgomotul).
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Estimarea unui scalar: Formulare recursiva

Rescriem formula:

0(K) = V(1) + ..+ y(K)

1 1
= Ll = 1) (1) + o y(k = 1)+ y ()]

= (k= 10k~ 1) + y(K)]

(deja o formula recursiva, dar continuam pentru a intelege mai mult)

-~

= Kk~ 1)+ y(K) Gk — 1)

~

=0k —1)+

~

[y(k) = 0(k —1)]

x| = =



Estimarea unui scalar: Proprietati

~

(k) = Bk — 1)+ L Ly(K) — (K 1)

weight

Y — k) Bk-1)——— > 8(K)
L ———1

(k)

Metoda are multe din proprietatile tehnicilor recursive generale:

o~

@ Formula recursiva: noua estimare 6(k) calculata folosind
estimarea anterioara 6(k — 1) si noua masuratoare y(k).
@ [y(k)— §(k —1)] este o eroare de predictie =(k), fiindca
Ok —1) = b= y(k), predictia cu un pas inainte a iesirii.
@ Actualizarea aplica o corectie proportionald cu eroarea (k),
ponderata de ;:
e Cand eroarea (k) este mare (sau mica), se efectueaza o corectie
mare (sau mica).
e Ponderea ; descreste cu pasul k, ducand la corectii mai mici pe
masura ce estimarea 6 se imbunititeste.
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Metodele CMMP si ARX recursive
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Reamintim: Regresie liniara CMMP

Model:
y(k) =" (k)0 + e(k)

Setul de date pana la k duce la un sistem liniar de ecuatii:



Metodele CMMP si ARX recursive
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CMMP: Formula recursiva
Cu notatia P(k) = 35, o(j)¢ " (j):

k
0(k) = P~"(k) Zw(/)ﬂ/)]

=

k—1
=P7(k) | eUly() + <P(k)}’(k)]
=

~

1K) [Pl = )0k = 1) + e(k)y (k)]

K) [IP(K) — (k)T (K)IBCK = 1) + p(K)y (K)|
(k= 1)+ P~ (k) [~ (k)T (k)K= 1) + 2 (K)y (k)]
(k= 1)+ P (K)o(k) [y (k) = " (R)Alk = 1)]

I I
> TV U

I
)



Metodele CMMP si ARX recursive
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CMMP: Proprietati

k) = Bk = 1)+ P~ (K)p(k) [y (K) = T (k)a(k — 1)]

weight

y(k)  B(k-1)—— > B(k)

y(k)
£(k)
@ Formula recursiva: noua estimare §(k) calculata pornind de la
estimarea anterioara 6(k — 1) si noua masuratoare y(k).

° [y(k) — 0T (K)b(k — 1)} este o eroare de predictie ¢(k), fiindca
@T(k)g(k — 1) = y(k) este predictia cu un pas inainte folosind
vectorul anterior de parametri.

@ W(k) = P~'(k)p(k) este un vector de ponderi: elementele lui P
cresc pe masura ce pasul k creste, asadar W(k) descreste.
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Calculul recursiv al matricii inverse

Formula anterioara necesita inversarea unei matrici, P~'(k), o
operatie costisitoare.

Matricea P se scrie usor recursiv: P(k) = P(k — 1) + (k)¢ " (k), dar
aceasta forma nu ne ajuta direct; matricea inca trebuie inversata.
Formula Sherman-Morrison actualizeaza recursiv direct inversa P—1:
P~k —1)e(K)e (k)P '(k—1)

S s Fe (A e B )

Exercitiu: Demonstrati formula Sherman-Morrison! (algebra liniara)
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Algoritm

Metoda CMMP recursiva

initializeaza 6(0), P~1(0)

loop la fiecare pas k = 1,2, ...
masoara y(k), formeaza vectorul de regresori (k)
calculeaza eroarea de predictie (k) = y(k) — <pT(k)§(k -1)
actualizeaza P~ (k) = P~"(k — 1) — 2= Dellge, (OB ()
calculeaza ponderile W (k) = P~"(k)p(k)
actualizeaza parametrii 6(k) = 6(k — 1) + W(k)e(k)

end loop

Fiecare model actualizat poate fi folosit in diverse scopuri, de ex.
aproximare sau control adaptiv
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Initializare

~

Metoda necesita vectorul initial de parametri 6(0),
si inversa initiala P~'(0).
Valori tipice fara cunostinte a priori:

~

@ 6(0)=1[0,...,0]" - un vector de n zerouri.
o

~1(0) = §/, cu § un numar mare, de ex. 10°.
(Valoarea initiala corespunzatoare a lui P este P(0) = %I.)

Intuitie: P~'(0) mare duce initial la ponderi W(k) mari, implicand
corectii mari ale parametrilor 8 pentru a folosi eficient esantioanele.

Pe de alta parte, daca sunt disponibile a priori valori bune pentru 0,

~

ele se pot folosi la initializarea 6(0), si 6 poate fi micsorat
corespunzator, ducand la coreciii mai mici.
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Verificare: Recuperarea cazului scalar

y(k) = b+ e(k) = (k)0 + e(k), unde p(k) =1,0 = b

Luam 6(0) = 0, P~'(0) — occ. Folosind Sherman-Morrison, avem:

i pe (P'(k—1)2 P (k—1)
P1(k)_P1(k_1)_1+P—1(k—1)_1+P—1(k—1)

~

Avem (k) = y(k) — 0(k — 1) si W(k) = P~"(k) = 4, ducand la:

~

)
6(k) = B(k = 1) + W(K)e(k) = B(k — 1) + %[y(k) — Bk —1)]

= a fost recuperata formula din cazul scalar.
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@ Metoda ARX recursiva



Reamintim: Model ARX

A(q ")y (k) = B(g"")u(k) + e(k)

e(k/)/L
u(k) . N 1 y(K)
— B(g") T\ A T

ARX ca regresie liniara:

yk)=—aiy(k—1)—ay(k—2)—... — any(k — na)
biu(k — 1)+ bau(k —2) + ... + bppu(k — nb) + e(k)
=[-y(k—=1) -+ —y(k—na) utk—1) --- u(k—nb)]
far o am by - bnb}—r.i_e(k)

=" (k)0 + e(k)

Vector de regresori: ¢ € R™t jegirile si intrérile precedente.
Vector de parametri: § € R+ coeficientii polinoamelor
a,a,...,an, §| b1ab27"'7bnb'
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ARX recursiv

Instantiem metoda CMMP recursiva din cazul general, pentru forma
de regresie liniara a modelului ARX.
ARX recursiv
initializeaza 6(0), P~1(0)
loop lafiecare pas k = 1,2, ...
calculeaza si aplica u(k), masoara y(k)
formeaza vectorul de regresori
(k) = [-y(k=1),---,—y(k — na),u(k —1),--- ,u(k — nb)]"
calculeaza eroarea de predictie (k) = y(k) — ¢ (k)8(k — 1)

i 5 p—1 _ p-1(k _ 1) — Pl k=D)e(K)e " (k)P (k—1)
actualizeaza P~'(k) =P '(k—1) T (P TTh=T)7 ()
calculeaza ponderile W(k) = P~'(k)p(k)
actualizeaza parametrii 6(k) = 0(k — 1) + W(k)e(k)

end loop

Observatie: legirile mai vechi de na pasi, si intrarile mai vechi de nb
pasi, nu sunt folosite si pot fi “uitate”, reducand necesarul de memorie
al algoritmului.
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Garantie de performanta: ldee

Cu 6(0) =0, P~'(0) = 6/ si § — oo, ARX recursiv la pasul k este
echivalent cu ARX offline pe setul de date u(1),y(1),..., u(k), y(k).

= aceeasi garantie ca ARX offline:

Teorema

Date fiind ipotezele potrivite (incluzand existenta parametrilor corecti

o), identificarea ARX este consistenta: parametrii estimati 6 converg
la cei corecti Hp cand k — oc.

Initializarea lui P~ in acest fel asigura egalitatea inverselor cu cele
calculate Tn cazul offline.
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Continut
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@ Exemplu Matlab
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Sistem

Pentru a ilustra metoda ARX recursiva, luam un sistem cunoscut:

y(k)+ay(k—1)=buk—1)+e(k), a=-09,b=1

system = idpoly ([1 -0.91, [0 11);

Datele de identificare sunt obtinute in simulare:

sim(system, u, ’'noise’);
Input-Output Data
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ARX recursiv

model = rarx(id, [na, nb, nk], "ff’, 1, th0, PinvO0);

Argumente:

@ Datele de identificare.

@ Vector continand ordinele polinoamelor A si B si intarzierea nk.
© ' ff’, 1 selecteaza varianta de algoritm prezentata in curs.
© tho este vectorul initial de parametri.

@ Prinvo0 este inversa initialda P~1(0).
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Rezultate

@na=nb=nk=1
o in toate experimentele, 6y = [0,0]" si P~'(0) = 6/, cu é = 103

3

25
2
o 15
2
Q
g 1
o
©
o 05 1
0 ‘ ——tea 1
‘ estimated a
05 true b
| estimated b

0 100 200 300 400 500 600 700 800 900 1000
k

Concluzie: Metoda converge la valorile corecte ale parametrilor
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Perturbatie colorata

Luam acum un sistem in forma eroare de iegire (care nu satisface
asadar structura ARX cu zgomot alb):

bg~!

system = idpoly((], [0 1], T[], [], [1 -.9]);

Date de identificare:

Input-Output Data
y1

10
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Rezultate

nf = nb = nk = 1, deci incercam un ARX de ordinul 1:
y(k)+ fy(k—1) = bu(k — 1) + e(k)

Recursive ARX for OE system

5} I,
|
E AP -
s 4 H
o w
true b
0 I estimated b| |
true f
estimated f
qt T T T T T T
0 100 200 300 400 500 600 700 800 900 1000

k

Concluzie: Nu converge la valorile corecte! — datorita perturbatiei
colorate (sistemul nu este in clasa de modele considerata). La fel ca
la cursul de VI, algoritmul nu este consistent.
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Alti algoritmi de tip MEP recursivi

In Matlab sunt disponibile si alte variante recursive de MEP, de ex.:

@ ARMAX, rarmax
@ eroare de iesire, roe

@ modele in forma generala de la minimizarea erorii de predictie,
rpem
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Q Metoda recursiva a variabilelor instrumentale
@ Metoda VI recursiva
@ Exemplu Matlab
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Reamintim: Metoda variabilelor instrumentale

Vom porni de la urmatoarea formula pentru calcului parametrilor in
metoda VI:

Vectorul de regresori:

o(k)=[-y(k—1),---,—y(k — na),u(k — 1), ,u(k — nb)] ",
iar vectorul VI este de obicei:
Z(k) = [-x(k =1),--,—x(k — na),u(k —1),--- ,u(k — nb)] "

Cum vectorul VI Z(k) este necorelat cu perturbatia,
metoda VI functioneaza pentru perturbatii colorate.
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Formulare recursiva (1)

Putem elimina impartirea cu numarul N de puncte din setul de date,
obtinand:

N -1rn
0= [Z Z(k)soT(k)] [Z Z(k)y(k)
k=1 k=1

Impartirea era necesara pentru obtinerea mediilor in VI offline, fiindc&
sumele ar fi fost foarte mari pentru multe date, ducand la probleme
numerice. Metoda VI recursiva va aduna termenii unul cate unul si va
fi asadar mai stabila d.p.d.v. numeric.

Rescriem ecuatia pentru cazul recursiv:

k
> Z (j)y(j)]

=1

~

(k) = P~'(k)

unde P(k) = >4 Z(j)e" ().



Formulare recursiva (2)

Cu aceasta definitie P, formula recursiva se gaseste ca si pentru
CMMP:

[«
0(k) = P~ (k) ZZU)y(j)}
j=1

k—1
=Pk | > ZU)y () + Z(k)y(k)}
j=1
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Formulare recursiva (3)

Formula finala:

~

O(k) = 0(k = 1)+ P~ '(K)Z(K) [y(k) — @' (K)0(k = 1)

(k) = 0(k — 1) + W(k)z(k)

cu Sherman-Morrison pentru actualizarea inversei:

P (k= 1)Z(K)p " (k)P "(k —1)

Pk =Pk = 1)~ TP Tk~ DZ(K)

weight

Yk ——— iy Bk-1)—— > B(k)
—

(k)
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goritm

Intro & motivare Metodele CMMP si

Metoda VI recursiva: Al

VI recursiv

initializeaza 6(0), P~1(0)
loop la fiecare pas k =1,2,...
calculeaza si aplica u(k), masoara y(k)
formeaza (k) si vectorul VI
Z(k) = [-x(k—1),--- ,—x(k — na),u(k —1),--- ,u(k — nb)] "
calculeaza eroarea de predictie (k) = y(k) — ¢ (k)(k — 1)

. = — (g T A
actualizeaza P~'(k) = P~ '(k—1) - £ 1(¢¢1T)(Zk()l2f1(;(<k_)f)z((kk) 1)

calculeaza ponderile W (k) = P~"(k)Z(k)

actualizeaza parametrii (k) = 0(k — 1) + W(k)e(k)
end loop
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@ Exemplu Matlab
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Sistem OE

Consideram acelasi sistem OE pe care |-am folosit Tn exemplul ARX:

bg~!

y(k)

cu acelasi set de date:

Input-Output Data
y1

10
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Rezultat cu metoda VI recursiva

Folosim modelul VI cu perturbatie colorata v(k):
y(k)+ fy(k —1) = bu(k — 1) + v(k)
Vector de VI: Z(k) = [u(k — 2), u(k — 1)].

Recursive IV for OE system

Parameters
o

true b
Pyt estimated b | |
true f

estimated f

-3

0 100 200 300 400 500 600 700 800 900 1000
k

Concluzie: Mai bun decat ARX recursiv, parametrii converg la valorile
corecte.
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Rezumat

~ ~

@ Gaseste parametrii incremental, online: (k) din 6(k — 1) si noile
date u(k), y(k)

Produce un model repede, mai ugor de aplicat in timp real
Exemplu: estimarea unui scalar din masuratori cu zgomot
Regresie liniara generala, varianta recursiva:

o~

0(k) = 0(k — 1) + P~ (k)o(k) |y (k) — ¢ (k)0(k — 1)

@ Valoare de acordat: marimea initiala § a inversei

@ Aplicatia la ARX este imediata, rezultd ARX recursiv

@ Pentru VI ecuatiile trebuie revizitate dar linia este aceeasi
@ Exemple Matlab pentru ARX si VI recursive
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