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Reamintim: Importanta validarii

Executa Alege Alege metoda
> experimentul |—» > deidentificare [— Valideazd modelul
si colecteaza date structura modelului si obtine modelul

Proiecteaza
experimentul

Daca modelul nu este bun:
revenire la un pas anterior

Validarea modelului este un pas esential: modelul trebuie sa fie
suficient de bun (pentru scopurile stabilite).

Daca validarea esueaza, unii dintre pasii precedenti din fluxul de
lucru trebuie refacuti, de exemplu:

@ Rerulam algoritmul de identificare cu parametri diferifi (de ex. ¢
in metodele recursive).

@ Schimbam structura modelului: de ex. ordinele polinoamelor
na, nb in ARX, sau chiar tipul de model, de ex. IV in loc de ARX

@ Proiectam si executam un nou experiment (de ex. mai multe
esantioane, alt semnal de intrare)
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Motivare

Pana acum, am validat si selectat modelele informal, examinand
graficele iesirii sau comparand erori — folosind bunul simt.

Measured Output and Simulated Model Output
25

~

Measured Output
model Fit: 97.77%

10 20 30 40
Time

in cele ce urmeaza, vom introduce o serie de teste fundamentate

matematic.

Bunul simt ramane insa indispensabil — testele matematice
functioneaza date fiind ipoteze ce pot fi invalidate in practica.
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Focus: Metodele de minimizare a erorii de predictie

Ne vom concentra pe modele cu o singura intrare si iesire, obtinute
prin minimizarea erorii de predicfie.

Anumite teste se pot extinde si la alte cazuri.
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Continut

o Validarea modelelor cu teste de corelatie

@ Teste de corelatie
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Zgomot alb: Intuitie

Reamintim structura generala de modelul folosita in MEP:
y(k) = G(g~")u(k) + H(g ")e(k)

unde se presupune ca e(k) este zgomot alb.

MEP sunt dezvoltate in asa fel incat eroarea de predictie

e(k) = y(k) — Y(k) sa fie egala cu e(k). Daca sistemul satisface
structura de model aleasa (pentru a satisface ipoteza de zgomot alb),
si daca in plus modelul este corect, atunci (k) este si ea zgomot alb.

Ipoteza de zgomot alb
(A) Erorile de predictie (k) sunt zgomot alb de medie zero.
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Independenta de intrari anterioare: Intuitie

y(k) = G(q"")u(k) + v(k)

Daca modelul G este corect, el explica in intregime influenta intrarii
u(k) asupra iesirilor curente si viitoare y(k + 7). In consecinta, erorile
e(k +7) = y(k + 1) — y(k + 7) sunt influentate doar de perturbatia v,
fiind independente de intrarea u(k). Acest rationament functioneaza
independent de valabilitatea ipotezei de zgomot alb.

Ipoteza de independenta 1

(I1) Erorile de predictie e(k + 7) sunt independente de intrarea u(k)
pentru = > 0 (erorile curente si viitoare sunt independente de
intrarea curenta).

| Yy, €
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Independenta de toate intrarile: Intuitie

y(k) = G(q "u(k) + v(k)

Daca experimentul este in bucla inchisa, u(k) depinde de iesirile
precedente si acest lucru va duce la o corelatie a erorilor
precedentes(k + 7), 7 < 0 cu u(k) (de notat ca independenta nu este
afectata pentru 7 > 0). Daca experimentul este in bucla deschisa,
atunci e(k + 1), 7 < 0 sunt si ele independente de u(k).

k

I u
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Ipoteza de independenta 2

(12) Erorile de predictie e(k + 7) sunt independente de u(k) pentru
oricare T (toate erorile sunt independente de toate intrarile).
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Toate ipotezele

(A) Erorile de predictie (k) sunt zgomot alb de medie zero.

(I1) Erorile de predictie e(k + 7) sunt independente de intrarea u(k)
pentru 7 > 0 (erorile curente si viitoare sunt independente de
intrarea curenta).

(12) Erorile de predictie e(k + 7) sunt independente de u(k) pentru
oricare T (toate erorile sunt independente de toate intrarile).

Vom dezvolta teste implementabile care fie accepta, fie resping
aceste ipoteze pentru un model dat, si ca atare accepta sau resping
modelul.
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Interpretare

@ Daca A este valida, atunci
intregul model (G si H) este
corect. Altfel:

@ Daca 1 este valida, atunci G
este corect dar H este
incorect

@ Daca I1 este respinsa, atunci
G este incorect si nu se mai
pot trage alte concluzii

@ Daca I1 este valida si 12
respinsa, exista feedback in
setul de date. Daca 12 este si
ea valida atunci nu exista
feedback

v

no feedback

feedback
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Zgomot alb: Corelatii

Reamintim functia de corelatie (egala cu covarianta cand mediile sunt
Zero):
r-(t) = E{e(k + 7)e(k)}

Daca ¢(k) este zgomot alb de medie zero:

@ Functia de corelatie este zero, r.(7) = 0, pentru orice T nenul.
@ Pentru 7 nul, r.(0) este varianta ¢ a zgomotului alb.
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Zgomot alb: Corelatii din date

Corelatiile se estimeaza din date, si se normalizeaza cu variania

(estimata):
~ 1<
(7)) = ; e(k +7)e(k)
_ (1)
=70y

Normalizarea ajutd deoarece ne putem gandi la valorile normalizate
independent de detaliile despre sistem, in timp ce marimile
nenormalizate depind de natura sistemului si a semnalului (mV,
celule per mililitru, m, km, etc. duc la numere diferite).
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Test de zgomot alb

In practica, functia x(7) nu va fi niciodata zero pentru seturi finite de
date, vom verifica asadar daca este mica pentru = nenul. Din motive

statistice, impunem un prag la ‘j’@

Test de zgomot alb

Daci |x(7)| < 128 % pentru toate valorile 7 # 0 suportate de date,

atunci ipoteza de zgomot alb (A) este acceptata. Altfel, (A) este
respinsa.




Independenta: Corelatii si calculul lor din date

Pentru a verifica independenta erorilor £ de u, vom folosi functia de

corelatie intre intrari si erori:
r.u(t) = E{e(k + T)u(k)}

@ Daca (I1) este adevarata, atunci r.,(7) = 0 pentru = > 0.
@ Daca (12) este adevarata, atunci r.,(7) = 0 pentru orice 7.

Estimare din date si normalizare:
LS e(k+7)u(k)  ifr>0
rsu(T) = k:[:/
¥ X elk+r)uk) ifr<o0
k=1—1




Validarea modelelor
00000000008

Teste de independenta

Teste de independenta

Daca |x(7)| < %, V7 > 0 suportate de date, atunci ipoteza de
independenta (I1) este acceptata.

Daca aceeasi conditie este adevarata pentru Vr suportate de date
(inclusiv T negativ), atunci (I12) este si ea acceptata.

Daca modelul este corect (11 valida), atunci verificarea conditiei
pentru 7 < 0 (I12) testeaza prezenta feedback-ului (buclei de reactie
inchise).
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Continut

o Validarea modelelor cu teste de corelatie

@ Exemplu Matlab
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Exemplu Matlab: Date experimentale

Sistemul real este in forma eroare de iesire, OE:

1
V(K = o) ulk) + ek

si are ordinul n = 3.
plot (id); siplot (val);

y1 y1
5 oy
\
LN 5\
\
s\ -10}
10 15 -
0 7 2 4 6 8 10 12 14 16
Time
ul

-2




Matlab: Model ARX

Incercam intai un model ARX:
mARX = arx(id, I[3, 3, 11);
Simularea pe datele de validare arata ca modelul este incorect:

y1. (sim)

val; measured
— MARKX; fit: 79.47%
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Matlab: Model ARX — teste de corelatie

Pentru a investiga cauzele, rulam testele de corelatie:
resid (mARX, id);

Correlation function of residuals. Output y1

— 3 -
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T o 5O o 56 ©

5 10 15 20 25

Cross corr. function between input u1 and residuals from output y1
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]

58

-30 -20 -10 0 10 20 30
lag

Testul de zgomot alb (A) esueaza, si modelul este respins. Motivul
este ca sistemul nu este in clasa de modele considerata.

Cum 1 este acceptata, modelul de intrare-iesire G este bun, dar
modelul perturbatiei H este incorect si trebuie Tmbunatatit.



Matlab: Model OE

mOE = oe(id, [3, 3, 11);
Simularea modelului pe datele de validare arata performante bune:

y1. (sim)

\ ' ' ! val; measured
‘l — mOE; fit: 97.35%

y1
© & N & &b A b N s o
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Matlab: Model OE — teste de corelatie

resid (mOE, id);

Correlation function of residuals. Output y1

5 10 15 20 25

lag
Cross corr. function between input u1 and residuals from output y1

@ 10 Y0 00 O - cPOR L
U N R G e R e A G S

-30 -20 -10 0 10 20 30
lag

Modelul OE trece toate testele — dupa cum era de asteptat, sistemul
fiind n clasa de modele OE. Asadar, atat G cat si H sunt corecte.

Observatie importanta: Functia Matlab impune un prag mai mic
pentru corelatii, deci are o probabilitate mai mica de a respinge un
model corect.
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Continut

e Selectia structurii si evitarea supraparametrizarii
@ Selectia structurii

@ Evitarea supraparametrizararii
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Selectia structurii in fluxul de lucru

. = Executa Alege metoda
eF;r;:%eeanzlﬂ‘ . experimentul  — struclu}rialer?lgdelului > deidentificare 3 Valideaza modelul
si colecteaza date si obtine modelul

Daca modelul nu este bun:
revenire la un pas anterior

Chiar daca in majoritatea cazurilor am selectat atent structura

modelului (de ex. tip, ordine, lungime), criteriile folosite au fost de
obicei informale.

in cele ce urmeaza, discutam selectia structurii intr-un mod mai
precis.
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Selectia structurii: Complexitatea modelului

Consideram ca se dau mai multe structuri de modele
M1,M2,-~-7Ml’,-
Exemplu: Structuri ARX de mai ordin variabil.

Cum alegem intre ele?
O prima idee: alegem M, cu eroarea medie patratica minima:

N

V(@) = 1N S (k)2

k=1
Nu tine cont de complexitatea modelului, ignorand asadar:

@ efortul de calcul necesar identificare si simulare
@ cantitatea datelor necesara pentru identificare
@ riscul de supraantrenare

Exploram alte optiuni care tin cont de complexitatea modelului (fara a
intra in derivarea lor matematica).
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Criteriul informatiei al lui Akaike (AIC)

~ . ~ 2
Waic = Nlog V(9) + 2p, sau echivalent: log V() + Wp

unde N este numarul de puncte si p numarul de parametri (de ex.
na+ nb in ARX).

Selectie: Modelul cu valoarea Wxic minima.
Intuitie:
@ Termenul 2p penalizeaza complexitatea modelului (numarul de
parametri).

o Impartirea la numérul de date N din 2p/N tine cont de faptul ca
un numar mai mare de date permite identificarea mai multor
parametri.

@ Aplicarea logaritmului asupra MSE permite o diferentiere mai
buna intre valori mici ale MSE.
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Criteriul erorii finale de predictie (FPE)

1+ p/N
Wire: = V(6) —ZN

Selectie: Modelul cu valoarea Wgpg minima.

Intuitie: Cand N este mare:

V), +z;x — V@)1 + 12‘727,\,) ~ V(@) (1 + D)

N
si termenul ZWP functioneaza ca si Tnainte, dar acum aplica o corectie
proportionala cu eroarea, mai degraba decat sa i se adune direct
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Exemplu Matlab

Un sistem OE cu n = 2.

& supraparametrizarea

y1
005 . . . . . 04
o 005}
0.05 - /\ /
AN ~ y
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0 1 2 3 4 5 7 8
Time
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-1 04f
15 06}
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Time
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Time
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Time
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Matlab: selstruc cu AlC

Reamintim arxstruc:

Na = 1:15; Nb = 1:15; Nk = 1:5;
NN struc(Na, Nb, Nk); V = arxstruc(id, wval, NN);

@ struc genereaza toate combinatiile de ordine in Na, Nb, Nk.
@ arxstruc identifica pentru fiecare combinatie un model ARX pe
datele id, 1l simuleaza pe datele val, si returneaza informatii

despre MSE, ordine etc. in v.
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Matlab: selstruc cu AlIC (continuare)

Pentru a alege structura cu cea mai mica valoare a criteriului Akaike:
N = selstruc(V, "aic’);
Pentru datele noastre, N= [8, 8, 1].

Alternativ, selectia grafica permite si ea folosirea AIC:
N = selstruc(V, ’"plot’);

. Hodel Misfitvs number of pars S

Blue: MDL Choice

Blue: AIC Choice

Red: Best Fit Vsft= a0

e (in %)

- 10

Unexplained output varian

- )

Inspect models by clicking bars or press SELECT.

De notat ca modelul cu cel mai bun AIC nu este (intotdeauna) acelasi
cu modelul cu MSE minimal!



0000000 e0
Matlab: Rezultate

y1. (sim)

0.01 model; measured
‘ val; fit: 96.4%
0 | W -

y
o
°
g
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Observatii

AIC, FPE functioneaza si daca sistemul nu este in clasa de modele
considerata.

Matlab ofera functiile aic, fpe care calculeaza aceste criterii pentru
o lista de modele cu orice structura.
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Continut

e Selectia structurii si evitarea supraparametrizarii

@ Evitarea supraparametrizararii
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Motivare

Consideram un caz in care sistemul real se supune structurii ARMAX:
Ao(q")y(k) = Bo(q~")u(k) + Co(q~")e(k)

unde indicele 0 evideniiaza variabilele legate de sistemul real.
Aceasta dinamica este echivalenta cu orice model:

W(g ")Ad(q y(k) = W(g ")Bo(q ")u(k) + W(q ")Co(a ")e(k)

unde W(g~") este un polinom de gradul nw.

Asadar, metoda ARMAX cu na = nag + nw, nb = nby + nw,

nc = ncy + nw poate sa produca un model precis. Acest model este
insa prea complicat (supraparametrizat), si va avea factori aproape
comuni W(g~") in toate polinoamele (doar “aproape” comuni datorita
naturii aproximative a identificarii).
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Poli si zerouri comune

Acest tip de situatie se poate identifica verificand daca exista poli si
zerouri care se simplifica (aproximativ).

Exemplificam folosind functia Matlab pzmap, care arata polii si
zerourile functiei de transfer G din modelul general:

y(k) = G(q"")u(k) + v(k)

in exemplul ARMAX, G(qg~ ') = % deci radacinile lui W

sunt atat poli cat si zerouri, simplificAndu-se aproximativ.
Aceasta idee se aplica si altor tipuri de modele in afara de ARMAX.



Matlab: Model OE supraparametrizat

Pe datele folosite anterior pentru testele de corelatie (in care sistemul
real are ordinul n = 3):

mOE = oe(id, [5, 5, 11);
Examinand datele de validare, modelul este precis:

y1. (sim)

val; measured
| — mOE; fit: 97.36%

y1
© & N & & A b N L o
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Matlab: Test pentru simplificari intre poli si zerouri

pzmap (mOE, ’"sd’, nsd);

Argumentele ' sd’, nsd impun o regiune de incredere statistica in
jurul polilor si zerourilor. Aici alegem nsd=1.96, din motive statistice.

From u1

— 5
08 / ]
06 / 1
04 z

/ @\
02 \

E 0 /}
02|\ Ji
oaf\ o/
06 \ 1

AN
0.8 \ {
1 —
1 05 0 05 1

Doua perechi de poli si zerouri au regiuni de incredere suprapuse =
probabil se simplifica. Acest lucru indica faptul ca identificarea ar
trebui rerulata cu ordinul real al sistemului, 3 (am facut deja acest
lucru in rezultatele anterioare cu OE).



Alte probleme practice

Continut

e Alte probleme practice
@ Devieri
@ Timp mort
@ Minime locale

@ Valori aberante



Alte probleme practice
[ I}

Devieri

Uneori, datele vor contine semnale parazite lente numite devieri,
provenind de exemplu din perturbatii lente (spre deosebire de

perturbatiile sau zgomotul rapid, pe care stim cum sa le tratam)
A

-k

Idee: Tratam devierea ca o serie temporald, o identificam cu regresia
liniara, si o indepartam



Estimarea devierii

@ Tratam intrarea si iesirea ca doua serii temporale separate
(asadar, nu mai avem o problema de identificare a unui sistem
dinamic); scriem modelele devierilor:

u*(K) = 04 + 05Kk + 05K% + ...+ 04k"
yi(k) =0y + 05k + 05Kk> + ...+ 05K

@ Gasim vectorii de parametri 6¥, ¢ prin regresie liniara asupra
u(k), y(k) si calculam devierile corespunzatoare u*(k), y*(k)
© Scadem devierile din date:

(k) = u(k) — u*(k), y(k)=y(k)—y*(k)
© Identificdam ca de obicei, dar pe datele “nedeviate” U, y

Observatii: Exista functia Matlab det rend; Eliminarea devierii de
ordinul zero = eliminarea mediei
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Timp mort

e——>»
u(k)h Nk

T

y(k)

k

»

k

Se citeste pe grafic, si se seteaza nk corespunzator in Matlab. Altfel,
se adauga nk zerouri initiale in B(g~—") din model:

..y(k):@u(kH...

Observatie: Subestimarea nk nu este grava (posibil sa fie nevoie de
marirea nb); dar supraestimarea invalideaza modelul!
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Minime locale
()

|

|

| | > e
o, 0,0, 0

@ Optimizarea iterativa (necesara pentru metodele care nu pot fi
rezolvate folosind regresia liniara, cum ar fi ARMAX si OE) se
poate bloca in minime locale

@ De ex. metoda Newton converge probabil la minimul local 6,
daca este initializata in 61. Dar din 6, gaseste optimul global 6*!

= Daca rezultatele sunt proaste si se suspecteaza minime locale,
restartam optimizarea dintr-un alt vector inifial de parametri

Observatie: ARMAX converge de obicei la minimul global; OE
converge de multe ori la minime locale, cu exceptia cazului in care u
este zgomot alb
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Valori aberante
YV

@ Cateodata, anumite masuratori vor avea erori foarte mari, de ex.
datorita defectelor tranzitorii. Aceste masuratori se numesc
aberante

@ Se testeaza via eroarea de predictie ¢, dupa gasirea unui model
initial: daca e(k) este anormal de mare la un anumit pas k,
masuratoarea respectiva este probabil aberanta

@ Solutia 1: Inlocuim masuratoarea folosind de ex. media intre
y(k —1)si y(k + 1) (cain figurd), sau predictia modelului y(k)

@ Solutia 2: Limitam erorile de predictie la un maximum rezonabil
emax, agadar V(0) = S8, min{e2(Kk), emax}



Concluzie
°

Rolul identificarii sistemelor

Teoria sisemelor:

analiza
Date Identificarea Model
R —— -
sistemelor ode l
Cunostinte Modelarea Model cutie gri Ing. (eglérii automate:
a priori proceselor »| Proiectare controlere

Model cutie albd bazata pe model

Modelul gasit poate fi folosit de ex. pentru:

@ Analiza comportamentului sistemului (stabilitate, etc.)
@ Predictia comportamentului viitor.

@ Simularea comportamentului in scenarii noi.

@ Proiectarea unui controller pentru sistem.
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