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Derivare analitica a metodei VI

Clasificare

Reamintim taxonomia modelelor din Partea I:

Dupa numarul de parametri:

@ Modele parametrice: au forma fixa (formuld matematica), numar
cunoscut si de obicei mic de parametri

@ Modele neparametrice: nu pot fi descrise cu un numar fix, mic de
parametri
Adesea reprezentate prin grafice sau tabele

Dupa cunostintele disponibile in avans (“culoare”):
@ Modele din principii de baza, cutie alba: complet cunoscute in
avans
© Modele cutie neagra: complet necunoscute n avans
© Modele cutie gri: partial cunoscute
Ca si metoda minimizarii erorii de predictie, metoda variabilelor

instrumentale produce modele cutie neagra, parametrice,
polinomiale.
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Motivare

@ Metoda ARX este simpla (regresie liniara),
dar functioneaza doar pentru clase limitate de perturbatii

@ MEP functioneaza pentru orice perturbatie (rezonabila),
dar este relativ complicata d.p.d.v. numeric

Putem gasi o metoda care combina ambele avantaje?

rezervat) Da! Metoda variabilelor instrumentale
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Continut

o Derivare analiticd a metodei variabilelor instrumentale
@ Punct de start: ARX
@ Metoda variabilelor instrumentale

@ Comparatie: VI versus MEP
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Reamintim: modelul ARX

A(q "y(k) = B(g "u(k) + e(k)
(1+a1g~" + -+ anq ")y(k) =
(big™" + - + bwg "™)u(k) + e(k)

e(k/)/L
(k) N
u o) W

+ A(q")
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ARX: Forma explicita si diagrama detaliata

In forma explicita:

y(k)=—aiy(k —1) —ay(k—2) — ... — anay(k — na)
biu(k — 1)+ bou(k — 2) + ... + bppu(k — nb) + e(k)

unde parametrii modelului sunt: ay, a, ..., an, Si b1, b2, ..., bpp.

(k) e(k)




Derivare analitica a metodei VI
[e]e] Yololele}

Reprezentare pentru regresie liniara

y(k)y=[-y(k—=1) -+ —y(k—na) u(k—1) --- u(k— nb)]
. [31 ©rc dna by .- bnb} ! + e(k)
=0T (k)6 + e(k)
Vector de regresori: ¢ € R™*™ valori precedente ale iesirii si intrérii.
Vector de parametri: 6 € R"+™_ coeficientii.
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Problema de identificare si solutia

Dat fiind un set de date u(k), y(k), k =1,..., N, trebuie gasit vectorul
6 care obtine erori (k) minime in ecuatia:

y(k) = ¢ " (k)0 + (k)

Obiectiv matematic: minimizarea erorii medii patratice:
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Erorile parametrilor

Reamintim ca pentru garantii, trebuie sa existe un vector corect de
parametri 6, astfel incat:

Analizam erorile din valorile parametrilor

6

— b

y(K) =

—1

—

u

¢ (k)00 + v(k)

n vector de n elemente):
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Conditii de consistenta

Dorim ca algoritmul sa fie consistent: erorile parametrilor trebuie sa

devina 0 la limita (si sa fie bine definite), cand numarul de date tinde
la infinit.

Cand N — oc:

> (k) (k) = E{p(k)e" (k)}

1

=z =

N
k=

N
6D k) v(K) — B (k) v(K))

Pentru ca eroarea sa fie (1) bine definita si (2) egala cu zero, trebuie
ca:

@ E {¢(k)p' (k)} inversabila.
Q E {p(k)v(k)} zero.
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Motivare: ARX necesita zgomot alb

@ Avem E {¢(k)v(k)} = 0 daca elementele ¢(k) sunt necorelate
cu v(k) (presupunem ca v(k) este de medie zero).

@ Dar ¢(k) include y(k —1),y(k — 2),..., care depind de
vik—1),v(k—2),...]

@ Deci singura alternativa: v(k) necorelat cu v(k —1),v(k —2),...
= v(k) trebuie sa fie zgomot alb.

Variabilele instrumentale elimina aceasta necesitate de zgomot alb.
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Continut

o Derivare analiticd a metodei variabilelor instrumentale

@ Metoda variabilelor instrumentale
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Intuitie

-1

~ 1< 1<
60— 0o = [N Z @(k)QQT(k)] [N k; @(k)v(k)]

k=1
Idee: Ce ar fi sa includem un alt vector decat ¢(k) in produsul cu
v(k)?
1 Ty
0 _ T
600 = [N > Z(k)e (k)] [N szv(k)]
k=1 k=1
unde elementele lui Z(k) sunt necorelate cu v(k). Atunci
E {Z(k)v(k)} = 0 si eroarea poate fi zero.
Vectorul Z(k) are n elemente, numite instrumente.
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Metoda variabilelor instrumentale

Pentru a avea:

N
N Zz(k)}’(k)l (8.3)

Constructia si rezolvarea acestui sistem duce la metoda de baza a
variabilelor instrumentale (VI).
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Metoda variabilelor instrumentale: Forma alternativa

Forma alternativa a sistemului de ecuatii:

N
NZ K)o —y(K)]| =0 (8.4)

dintre cele doua forme implica (8.2), si ca la randul ei (8.2) implica

Exercitiu: Aratati ca sistemul (8.3) este echivalent cu (8.4), ca oricare
(8.1). J
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VI simple

Pana acum nu am discutat inca VI Z(k). Ele sunt create de obicei
folosind intrarile (fiindca includerea iesirilor ar duce la corelare cu v si
ar elimina avantajul metodei VI).

O posibilitate simpla: includem intrari precedente aditionale pana
obtinem un vector de dimensiunea corecta, n = na+ nb:

Z(k) =[u(k —nb—1),...u(k — na—nb),u(k —1),...,u(k — nb)] "

in comparatie cu vectorul original:

o(k) =[-y(k —1),...,~y(k — na),u(k —1),...,u(k — nb)] "

Intrebare: De ce nu includem u(k — 1),..., u(k — na)? )
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Generalizare

Luam na valori anterioare ale unei variabile instrumentale x arbitrare:
Z(k) = [-x(k —1),....—x(k — na),u(k —1),...,u(k — nb)] "

preluate de la iesirea unei functii de transfer cu intrarea u:

C(q ")x(k) = D(q")u(k)

Observatie: C(g~"), D(g~") au semnificatie diferitd de cea din MEP.
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ARX: Forma explicita si diagrama detaliata

Forma explicita:

(14cig '+ + g ™)x(k) =
(hg ™"+ + dngq ") u(k)
x(k)=—cix(k—1) — cox(k—2) — ... — CacX(k — NC)
diu(k — 1)+ dbu(k —2) + ... + dpgu(k — nd)
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VI simple = caz special al VI generalizate

Pentru a obtine:
Z(k) = [u(k —nb—1),...u(k — na— nb),u(k —1),...,u(k — nb)]"
alegem C=1,D = —q~".

Exercitiu: Verificafi ca VI dorite sunt intr-adevar obtinute. J
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VI generalizate: Model initial

VI generalizate:

Z(k) = [-x(k —1),...,—x(k — na),u(k — 1), u(k — 2),...,u(k — nb)]"

in comparatie cu vectorul original:

(k) =[-y(k—1),....,—y(k — na),u(k —1),...,u(k — nb)] "

Idee: Luam functia de transfer generatoare a VI egala cu un model
initial, C(q~") = A(g~"), D(g~") = B(q~"). Acest model poate
proveni de ex. dintr-o identificare ARX.
VI sunt o aproximare a iesirii y:

Z(k)=[-y(k—1),...— y(k — na),u(k = 1),...,u(k — nb)] "
dar care este necorelata cu zgomotul. Important: y este iegirea
simulatd a modelului!
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Rezumat aI metodel VI

Metoda IV
1: for fiecare pas k =1,2,...,N do
2: formeaza vectorul de regresori:
(P(k) = [7y(k71)a vfy(kina)au(ki-l)v"' ,U(k*ﬂb)]—r
3: formeaza vectorul de VI:
Z(k) = [-x(k—1),---,—x(k—na),u(k—1),--- ,u(k—nb)] T
4: simuleaza generatorul VI:

x(k) = ZT(k)[Cc1,- -, Cne, O, -+, ng]
end for
gaseste ¢ = x Zfﬂ Z(k)p T (k), o matrice (na + nb) x (na+ nb)
gaseste ¥ = 1 >N | Z(k)y(k), un vector na+ nb
rezolvd &0 = Y
return 0 = [a,...,ana,b1,. .., bpp] "

e R 2@

Semnalele la pasi k zero si negativi sunt 0, ca de obicei.
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Continut

o Derivare analiticd a metodei variabilelor instrumentale

@ Comparatie: VI versus MEP
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Comparatie

Atat metoda MEP cét si cea VI sunt extensii ale metodei ARX:
A(q")y(k) = B(q")u(k) + e(k)
la perturbatii v(k) diferite de zgomot alb e(k).

v(k) J
3 1 y(k

k,
B ey O— e

@ Metoda MEP include explicit modelul perturbatiei in structura, de
ex. in ARMAX v(k) = C(q~")e(k), ducand la
A(q")y(k) = B(g~")u(k) + C(q~")e(k).

@ Metoda IV nu modeleaza perturbatia explicit, dar este proiectata
pentru a fi robusta la perturbatii care nu sunt zgomot alb —
perturbatii “colorate”, folosind variabile instrumentale Z(k)
necorelate cu aceste perturbatii.
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Comparatie (continuare)

Avantaj VI: Structura de model simpla, identificarea consta din
rezolvarea unui sistem de ecuatii liniare. In contrast, MEP necesita
rezolvarea unei probleme de optimizare mai complicate (de ex. cu
metoda Newton), vulnerabild la minime locale, etc.

Dezavantaj VI: (motivul pentru care am raspuns “da” rezervat la
inceput) In practica, pentru un numar finit N de date, calitatea
modelului depinde mult de VI alese Z(k). in plus, modelul rezultant
are un risc mai mare de a fi instabil (chiar daca sistemul real este
stabil).

Exista si metode de a alege VI Z(k) optime intr-un anumit sens matematic,
dar nu le vom discuta aici.
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Continut
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Date experimentale

Seturi de date separate de identificare si validare:
plot (id); and plot (val);

T

Time Time

Se stie in avans ca sistemul are ordinul 2 si ca perturbatia este
colorata (nu satisface structura ARX).

Observatii: Intrarea de identificare este un SPAB, iar intrarea de
validare este 0 secventa de trepte.
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|dentificare cu generator arbitrar de VI

Definim VI prin functia de transfer generatoare, folosind polinoame
C(g~")siD(g™").
model = iv(id, [na, nb, nk], C, D);

Argumente:

@ Datele de identificare.

@ Vector continand gradele polinoamelor A si B si intarzierea nk
(ca pentru ARX).

© Polinoamele C si D, reprezentate ca vectori de coeficienti in
ordinea crescdtoare a puterilor lui g~ .
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Rezultat cu VI simple

Luam C(g~ ") =1, D(g"") = —g~", ducénd la
Z(k) = [u(k —nb—1),...u(k—na—nb),u(k —1),...,u(k — nb)] .
Comparam cu ARX.

y1. (sim)

val; measured
mARX; fit: 92.11%
miVsimple; fit: -110.7%

y1

=

2 4 6 8 10 12

Concluzii:

@ Model instabil, = VI trebuie aplicate cu atentie fiindca modelele
nu sunt intotdeauna stabile! (reamintim comparatia cu MEP)

@ Rezultatele sunt foarte proaste cu aceasta alegere simpla de VI.



Exemplu Matlab
000080

Rezultat cu VI din modelul ARX

C(g7")=A(g "), D(g~") = B(g~ ") din ARX, ducand la
Z(k)=[-p(k—=1),...— §(k — na),u(k —1),...,u(k — nb)] .

y1. (sim)
16 7
A /\ val, measured
14 {\ [ Nty mARX; fit: 92.11%
Al mIVinitARX; fit: 97.66%
121 ™
\/ |
10 | |
| \fFH |
|
= 8y | A
6l W
| v
4
2
0

2 4 6 8 10 12

Concluzii: VI obtine rezultate bune, in particular mai bune decat ARX.
Motivul este perturbatia colorata, care este tratata eficient de catre VI
(in timp ce ARX nu o poate lua in considerare — dar furnizeaza totusi
un punct de pornire bun pentru VI).
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Rezultat cu VI automate

model = iv4 (id, [na, nb, nk]);

Implementeaza un algoritm care genereaza VI aproape-optimale.

y1. (sim)

» A o
1[4 /\”’ T

val; measured
mARYX; fit: 92.11%
miV4; fit: 97.87%

121

y1

I Vs 1

Concluzie: Performanta este in esenta aceeasi cu VI din ARX.
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Continut

9 Garantii de performanta
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Ipoteze

Ipoteze (simplificate)

@ Perturbatia v(k) = H(g~")e(k) unde e(k) este zgomot alb de
medie zero, iar H(g~') este o functie de transfer ce satisface
anumite conditji.

@ Semnalul de intrare u(k) are un ordin de PE suficient de mare si
nu depinde de perturbatie (experimentul este in bucla deschisa).

@ Sistemul real este stabil si unic reprezentabil de catre modelul
ales: exista un singur vector 6y pentru care polinoamele
A(g~";60) si B(g~"; 6p) sunt identice cu cele ale sistemului real.

© Matricea E {Z(k)Z" (k)} este inversabila.
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Discutie ipoteze

@ Ipoteza 1 evidentiaza principalul avantaj al VI fata de MEP:
perturbatia poate fi colorata.

@ Ipotezele 2 si 3 nu sunt foarte diferite de cele impuse de catre
MEP. Pentru ca un sistem in timp discret sa fie stabil, toti polii tre-
buie sa fie in strict in interiorul cercului de raza 1 centrat in origine:

Stable, pole-zero map Unstable, pole-zero map

1 1

X
05

Imaginary Axis
o
®
Pl
Imaginary Axis

0 OXO
05 05
X
1 -1
1 0 1 -1 o} 1
Intrebare: De ce nu experimentul nu poate fi in bucla fnchisi? J

@ Data fiind o intrare cu ordin de PE suficient — Ipoteza 4 se
rezuma la o selectie juidicioasa a variabilelor instrumentale (de
ex. nu fara interdependente liniare).
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Garantie

Teorema 1
Cand numarul de date N — oo, solutia # a metodei VI converge la
vectorul corect de parametri 6.

Observatie: Garantie de consistenta, la limita cAnd numarul de date
tinde la infinit.
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Extensii posibile

@ Sisteme cu intrari si iesiri multiple (MIMO).

@ Vectorul Z al VI de dimensiune mai mare decat vectorul de
parametri 6 — cu modificari aditionale, se numesc metodele
extinse ale variabilelor instrumentale.

@ l|dentificarea sistemelor ce functioneaza in bucla inchisa
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Continut

@ !dentificarea in bucla inchisa folosind VI
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Motivare

In practica, sistemele trebuie adesea s fie controlate, findca daca ar
functiona fara control, in bucla deschisa:

@ Ar fi instabile

@ Semnalele nu ar satisface limite impuse din motive de de
siguranta sau economice

in acest caz, u(k) se calculeaza cu reactie de la iesirea y(k):
sistemul functioneaza in bucla inchisa
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Identificarea in bucla inchisa

Cu toate acestea, majoritatea metodelor pe care le-am studiat
presupun ca sistemul functioneaza in bucla deschisa! De exemplu,
garantia metodei VI impune (printre altele):

o ...

@ Semnalul de intrare u(k) nu depinde de perturbatie
(experimentul este n bucla deschisa).

o ...
Eliminarea acestei conditii duce la identificarea in bucla inchisa.

Mai multe metode pot fi modificate pentru a functiona in acest
context, printre care metodele MEP.

Ne vom concentra aici asupra metodei VI, mai usor de modificat.



Bucla inchisa
[e]o]e] le]ele)

Structura VI in bucla inchisa

v(k){L
uk + K
LA > 1 (g

+ Alg")

k) + Wia

A(q ")y (k) = B(g")u(k) + v(k)
u(k) = K(q~")(r(k) - y(K))

unde K(g~") este functia de transfer a regulatorului, iar r(k) este
semnalul de referinta

Asadar, u(k) depinde dinamic atat de semnalul de referinta cat si de
iegirea sistemului
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Dificultate

Conditia de bucla deschisa va fi evident invalida. Investigam mai in
profunzime problema.

Motivul fundamental pentru care am avut nevoie de bucla deschisa a
fost pentru ca erorile de parametri:
—1

N
70— ,LZZ(k)vm]
k=1

1 N
N D2k (K)
k=1

s& fie egale cu zero, ducand la un model bun. In acest scop,
necesitam:

@ E{Z(k)v(k)} zero.

@ E{Z(k)p'(k)} inversabila.

Cu alegerile uzuale de VI, calculate pe baza intrarii u (care acum
depinde de y si asadar de v), prima conditie este invalidata.
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VI in bucla inchisa: idee

Vectorul de VI Z(k) nu mai are voie sa depinda de u(k).
Idee: construim Z(k) in functie de r(k)!

Atunci:

@ E {Z(k)v(k)} vafi zero Tn mod natural, fiindca noi generam
referinta r, independent de perturbatia v

@ Matricea E {Z(k)¢ ' (k)} devine inversabila daca ne asigurdm ca
VI sunt bine alese (de ex. fara dependente liniare), si ca referinta
r are un ordin de PE suficient de mare
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Exemple de alegeri pentru VI

Cea mai simpla idee — includem in Z numarul corect de valori
precedente ale referintei:

Z(k) =[r(k—1),r(k—2),...r(k — na— nb)]"

Generalizare la combinatii liniare de aceste valori:
Z(k)=F-[r(k—1),r(k—2),...r(k —na—nb)]"

unde F este inversabilda. Cazul simplu este recuperat alegand F
matricea identitate.
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Table of contents

Q Bucla inchisa: Exemplu Matlab
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Date experimentale

Identificare n stanga, validare in dreapta:

Yy y
0.05 T
| |
| IR
0 | 1INl -0.05
| | {
0.05 ) ! L 04 . n
] 1 2 3 4 5 6 7 8 9 10 0 0.2 04 06 08 1 12 14 16 1.8 2
Time Time
u u
B} ENRNINERARNEN
m—/:a“l“J .| “f‘,c “ ;l“ 3 ‘4‘ ‘J.: ‘ N — 0 ‘
20t AL ‘ i I L S ‘
1] 1 2 3 4 5 6 7 8 9 10 [ 0.2 04 06 0.8 1 1.2 14 16 18 2
Time Time
0.05 r T !
e
| Il ‘ -0.06 |
0 . |
(8L A O N S 6 L -0.08
005 st ulliutersiis et R R
[}] 1 2 3 4 5 6 7 8 9 10 0 0.2 0.4 06 0.8 1 1.2 14 16 18 2
Time Time

Ca si in exemplul cu bucla deschisa, sistemul are ordinul 2 si
perturbatia este colorata (nu se supune formei ARX).

Diferenta este ca acum intrarea este generata de un regulator pe
baza semnalului de referin{a r, care este un SPAB.
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Rezultate
Simulated Response Comparison
0.1 T
val (y1)
miV: -883.3%
mCL: 98.12%
\
0 ‘\ 1
o) \
E _ N
2 |\ |
£ [ [
< | | J
| \ =
010 | \ f E
| |
| |
| |
|
| |
|

0.2 L . . . L. .
02 04 06 08 1 12 14 16 18 2

Time (seconds)

@ Metoda VI cu instrumente ARX: esueaza.
@ Metoda VI in bucla inchisa folosind r pentru generarea
instrumentelor: functioneaza.
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Rezumat

@ Obiectiv: combinarea simplitatii regresiei liniare din ARX cu
generalitatea perturbatiei v din MEP

@ Investigatie In motivul pentru care ARX esueaza cand v este
colorat

@ Solutie: Tnlocuirea regresorilor ¢ (in locuri bine alese din ecuatii)
cu variabilele instrumentale Z care nu depind de y

@ Cateva metode de a calcula Z doar din u
@ Calitatea solutiei depinde mult de Z, poate fi chiar instabila

@ Exemplu Matlab

@ Generalizarea aditionala a lui Z ca sa depinda doar de referinta r
permite aplicarea metodei VI in bucla inchisa

@ Exemplu Matlab pentru identificarea in bucla inchisa



	Derivare analitică a metodei variabilelor instrumentale
	Punct de start: ARX
	Metoda variabilelor instrumentale
	Comparaţie: VI versus MEP

	Exemplu Matlab
	Exemplu Matlab

	Garanţii de performanţă
	Garanţii de performanţă

	Identificarea în buclă închisă folosind VI
	Identificarea în buclă închisă folosind VI

	Buclă închisă: Exemplu Matlab
	Buclă închisă: Exemplu Matlab


