System Identification

Control Engineering EN, 3™ year B.Sc.
Technical University of Cluj-Napoca
Romania

Lecturer: Lucian Busoniu

b

Part IX

Recursive identification methods

Intro & motivation

Table of contents

0 Introduction and motivation

e Recursive least-squares and ARX

Q Recursive instrumental variables

Intro & motivation

@000

Recursive identification: Idea

Recursive
identifier
System
u(k)

y(k)

Recursive methods can work online, while the system is running.

~

At each step k, compute a new parameter estimate 6(k)

-~

(= a new model), based on the previous estimate §(k — 1) and newly

available data u(k), y(k).

Remark: To contrast them with recursive identification, the previous
methods, which used the whole data set at once, will be called batch

identification.

Intro & motivation
[e] le]e]

Motivation

Recursive methods:

@ Require less memory, and less computation for each update,
than the whole batch algorithm.

= Easier to apply in real-time.
(total computation, after the entire dataset, may be larger)

@ When properly modified, can deal with systems that change over
time (time-varying).

Intro & motivation
[e]e] o]

Motivation (continued)

@ If model is used to tune a controller, we obtain adaptive control:

Recursive
/ identifier
Controller System
utk) y(k)

/

Sketch of adaptive control based on recursive identification

initialize model and controller

loop at every step k =1,2,...
apply u(k) with current controller, measure y(k)
update model using latest sample u(k), y(k)
adapt/redesign controller using new model

end loop

Intro & motivation
[e]e]e]]

Disadvantage

Recursive methods are usually approximations of batch techniques
= guarantees more difficult to obtain.

Intro & motivation
@00

Motivating example: Estimating a scalar

Recall scalar estimation. Model:
y(k)=b+e(k) =1 b+ e(k) = o(k)0 + e(k)

where ¢(k) = 1Vk, 6 = b.
For the data points up to and including k:

y()=¢(1)0=1-b
y(k) = @(k)d =1-b
After calculation, the solution of this system is:

9K) = (1) + ...+ y(K)]

(estimate is the average of all measurements, filtering out the noise).

Intro & motivation
(o] o}

Estimating a scalar: Recursive formulation

Rewrite the formula:

0(K) = 1 1Y(1) ..+ y(K)
= k= 1) 1)+ y(k 1) + (K]

1 ~
= LIk = 1)8(k = 1)+ y(k)]
(already a recursive formula, but we go on to gain more intuition)

+y(k) = 0(k = 1)]

~

[y(k) = 0(k —1)]

1 -

~

=0k —1)+

x| = =

Intro & motivation
ooe

Estimating a scalar: Insight

(k) = Bk — 1)+ L Ly(K) — (K — 1)

weight

y(k) Bk-1)—— > B(k)

y(k)
(k)

Method has many of the features of general recursive techniques:

~

@ Recursive formula: new estimate 6(k) computed based on

o~

previous estimate (k — 1) and new data y(k).

@ [y(k)— §(k —1)] is a prediction error ¢(k), since

0(k — 1) = b = y(k), a one-step-ahead prediction of the output.
@ Update applies a correction proportional to (k), weighted by %:
e When the error (k) is large (or small), a large (or small)

adjustment is made.
e The weight 1; decreases with time k, so adjustments get smaller as

6 becomes better.

Recursive least-squares and ARX

Table of contents

e Recursive least-squares and ARX
@ General recursive least-squares
@ Recursive ARX
@ Matlab example

Recursive least-squares and ARX
©000000

Recall: Least-squares regression

Model:
y(k) =" (k)0 + e(k)

Dataset up to k gives a linear system of equations:

After some linear algebra and calculus, the least-squares solution can
be written:

k -1 k
0(k) = {Z w(j)vT(j)} {Z 99(/)}/(/)]
j=1

Jj=1

Least-squares: Recursive formula

With notation P(k) = 2%, ()¢ (j):

[«
=P~ '(k) Zw(/)ﬂ/)]

=

k—1
=P7(k) | eUly() + <P(k)}’(k)]
=

~

1K) [Pl =)0k = 1) + e(k)y (k)]

K) [IP(K) — (k)T (K)IBCK = 1) + p(K)y (K)|
(k= 1)+ P~ (k) [~ (k)T (k)K= 1) + 2 (K)y (k)]
(k= 1)+ P (K)o(k) [y (k) = " (R)Alk = 1)]

I I
> TV U

I
)

Recursive least-squares and ARX
[e]e] Yelolele}

Least-squares: Insight

weight

0) k) Blk-1)———>8(k)

(k)

o~

@ Recursive formula: new estimate 6(k) computed based on

~

previous estimate 6(k — 1) and new data y(k).

° [y(k) — T (K)(k — 1)} is a prediction error (k), since
<,9T(k)§(k — 1) = y(k) is the one-step-ahead prediction using the
previous parameter vector.

e W(k) = P~'(k)p(k) is a weighting vector: elements of P grow
large for large k, therefore W(k) decreases.

Recursive least-squares and ARX
[ee]eY Yolele}

Recursive matrix inversion

The previous formula requires matrix inverse P~'(k), which is
computationally costly.

For P, an easy recursion exists: P(k) = P(k — 1) + (k)¢ (k), but
this does not help; the matrix must still be inverted.

The Sherman-Morrison formula gives a recursion for the inverse P~':

P~ (k= V)o(k)e" (k)P (k —1)

S R Fee () e B)

Exercise: Prove the Sherman-Morrison formula! (linear algebra)

Recursive least-: squares and ARX

Overall algorithm

Recursive least-squares (RLS)

initialize 6(0), P~'(0)

loop at every step k =1,2,.
measure y(k), form regressor vector go(k)
find prediction error e(k) = y(k) — ¢ ' (k)5 —1)
update inverse P~1(k) = P~ (k — 1) k- Dellger (r_thot)
compute weights W(k) = P~ (k)y(k)
update parameters 6(k) = 8(k — 1) + W(k)z(k)

end loop

Each new model can then be used for some purpose, e.g. function
approximation or adaptive control

Recursive least-squares and ARX
0000000

Initialization

-~

The RLS algorithm requires initial parameter 6(0), and initial inverse
P=1(0).

Typical choices without prior knowledge:

@ A(0)=10,...,0]" -a vector of n zeros.

@ P~1(0) = 4/, with § a large number such as 103.
(An equivalent initial value of P would be P(0) = 11.)

Intuition: P~'(0) large means that initially the weights W(k) are large
and large updates are applied to 0, to learn fast from the samples.

Conversely, if good prior parameters 9 are available, 5(0) can be
initialized to them, and ¢ correspondingly decreased so that the
updates start smaller.

Sanity check: Recovering the scalar case

y(k) = b+ e(k) = (k)0 + e(k), where p(k) = 1,0 = b

Take 6(0) = 0, P~'(0) — co. We have with Sherman-Morrison:

- - (P"(k—1)? P '(k-1)
P =P k=) = i) 1 Pk 1)
P~'(1) =1
P*‘(Z):%
P~'(k) %

P~1(k) = £, leading to:

(k= 1)+ W(k)e(k) = O(k — 1) + 1E[y(k) —0(k —1)]

= formula for the scalar case was recovered.

Recursive least-squares and ARX
€000

Table of contents

e Recursive least-squares and ARX

@ Recursive ARX

Recursive least-squares and ARX
0®00

Recall: ARX model

A(@")y(k) = B(g~")u(k) + e(k)

e(k:L
u(k) . { 1 y(K)
> B(q") T/ A(q’1) >

Linear regression representation:

y(k) =—aiy(k—1)—ay(k—2) —... — anay(k — na)
biu(k — 1)+ bou(k — 2) + ... + bppu(k — nb) + e(k)
=[-y(k—=1) -+ —y(k—na) utk—1) --- u(k—nb)]
.[a1 cev 8na by - bnb}T_i_e(k)

=" (k)0 + e(k)

Regressor vector: ¢ € R™t™ previous output and input values.

Parameter vector: § € R"+ polynomial coefficients a1, a, . . ., an
and by, bo, ..., bpp.

a

Recursive least-: squares and ARX

Recurswe ARX

With the linear regression representation, recursive ARX is just an
instantiation of RLS template.

Recursive ARX
initialize 6(0), P~"(0)
loop at every step k =1,2,...

generate and apply u(k), measure y(k)
form regressor vector

(k) = [=y(k = 1), -+ ,—y(k — na), u(k
find prediction error 5()=y(k)— ' (k
update inverse P~ (k) = P~"(k —
compute weights W(k) = P!
0

update parameters A(k) = 6(k — 1) + W(k)e(k)
end loop

). s u(k = b))

(ke ()P (k1)
T+7 T (MNP h=T)o(k)

N—r
| D) |
x =
|
V—L
SN—r

Remark: Outputs more than na steps ago, and inputs more than nb
steps ago, are not used so they can be forgotten, reducing memory
usage.

Recursive least-squares and ARX
0ooe

Guarantees idea

With §(0) = 0, P~1(0) = 6/ and § — oo, recursive ARX at step k is
equivalent to running batch ARX on the dataset
u(1),y(1),..., u(k), y(K).

= the same guarantees as batch ARX:

Theorem

Under appropriate assumptions (including the existence of true
parameters), ARX identification is consistent: the estimated
parameters 0 tend to the true parameters 6y as k — oc.

The condition on P is to ensure the inverses are the same as in the
offline case.

Recursive least-squares and ARX
©000000

Table of contents

e Recursive least-squares and ARX

@ Matlab example

Recursive least-squares and ARX
0®00000

System
To illustrate recursive ARX, we take a known system:

y(k)+ay(k—1)=buk—1)+e(k), a=-09,b=1

system = idpoly ([1 -0.91, [0 11);

Identification data obtained:

sim(system, u, ’'noise’);
Input-Output Data
yi

15
|
10) 1 Ay [
A oo
VL ‘I‘ AV K i
l) V h | ! AT i
5 'W,‘ | "\M | \‘ “»\ “M Norry "W)”,v“ n
0 i VoW q
8 5
2
E‘ ul
) ‘
) | | || ‘ H “ H|

100 200 300 400 500 600 700 800 900 1000
Time (seconds)

Recursive least-squares and ARX
00®0000

Recursive ARX

model = rarx(id, [na, nb, nk], "ff’, 1, th0, PinvO0);

Arguments:

@ Identification data.

@ Array containing the orders of A and B and the delay nk.

© ' ff’, 1 selects the algorithm variant presented in this lecture.
© tho is the initial parameter value.

@ Prinvo is the initial inverse P~1(0).

Recursive least-squares and ARX
[e]e]e] Yolele}

Results

@ na=nb=nk =1
@ For all the experiments: P~'(0) = 6/ with § = 1000, and
6o = [0,0] "

3

25}

[ZEENY

Parameters

0.5
0 l truea
estimated a
05 true b
estimated b

0 100 200 300 400 500 600 700 800 900 1000
k

Conclusion: Algorithm converges to true parameter values

Recursive least-squares and ARX
0000800

System outside model class

Take now an output-error system (so it is not ARX with white noise):

=2)+ e(k), f--09.b-1
Y=g TETESEE

system = idpoly([], [0 1], [I1, [], [1 —-.91);
Identification data:

Input- Outpu! Data

“ JM ikl “14,'§|va)\|“ Mw y "r i \ﬁ \N‘IH W M

1 i ul ‘
0

100 200 300 400 500 600 700 800 900 1000
Time (seconds)

Amplitude

Recursive least-squares and ARX
0000000

Results

nf = nb = nk = 1, so we attempt the ARX model:
y(k)+ fy(k—1) = bu(k — 1) + e(k)

Recursive ARX for OE system

5} I,
|
E AP -
s 4 H
o w
true b
0 I estimated b| |
true f
estimated f
qt T T T T T T
0 100 200 300 400 500 600 700 800 900 1000

k

Conclusion: Convergence to the true values is not attained! — due to
colored noise (system not in model class). Just as in the IV lecture,
the algorithm is inconsistent.

Recursive least-squares and ARX
000000@

Other recursive PEM algorithms

Other recursive PEM methods available in Matlab, e.g.:

@ ARMAX, rarmax
@ output-error, roe
@ generic prediction error method, rpem

Recursive instrumental variables

Table of contents

e Recursive instrumental variables
@ Recursive IV method
@ Matlab example

Recursive instrumental variables
©0000

Recall: Instrumental variable method

We’ll start from the following formula to compute the IV-method
parameter vector:

-1

R 1N . 1N
I=|na2we k) Iy ;Z(k)y(k)]

Regressor vector:

p(k) = [-y(k=1),---,—y(k —na),u(k = 1), ,u(k = nb)] ",

instrument vector usually:

Z(k) = [-x(k =1),--- ,—x(k — na),u(k —1),--- ,u(k — nb)] ".

Since instrument vector Z(k) uncorrelated with the noise,
IV methods can handle colored noise.

Recursive formulation (1)

Averaging by the number of data points can be removed, leading to:
R N “Trw
0 = [Z Z(k)cpT(k)] lZ Z(k)y(k)]
k=1 k=1

Averaging was needed in batch IV since summations over many data
points could grow very large, leading to numerical problems.
Recursive IV will, in the end, add terms one by one, and will therefore
be numerically more stable.

Rewrite the equation for the recursive case:

~

0(k) = P~"(k)

k
> Z (/)Y(/)]
j=1

where P(k) = 31 Z(j)¢ " (j)-

Recursive formulation (2)

With this definition of P, the recursive update is found similarly to
RLS:

[«
0(k) = P~ (k) ZZU)y(j)}
j=1

k—1
=Pk | > ZU)y () + Z(k)y(k)}
j=1

Recursive instrumental variables
[e]e]e] le}

Recursive formulation (3)

Final formula:

~

O(k) = 0(k = 1)+ P~ '(K)Z(K) [y(k) — @' (K)0(k - 1)

(k) = 0(k — 1) + W(k)z(k)

with the Sherman-Morrison update of the inverse:

P=1(k —1)Z(k) " (k)P~1(k — 1)

Pk =Pk = 1) = TP Tk~ DZ(K)

weight

YR YK B(k-1)———>B(k)
[——

£(k)

Recursive instrumental variables

O000@0000

Recursive IV: Overall algorithm

Recursive IV

initialize 6(0), P~'(0)

loop at every step k =1,2,...
generate and apply u(k), measure y(k)
form regressor vector ¢(k) and instrument vector:
Z(k) = [-x(k—1),--- ,—x(k — na),u(k — 1), --- ,u(k — nb)] "
find prediction error e(k) = y(k) — ¢ (k)d(k — 1)
update inverse P~'(k) = P~'(k — 1) — qui;ﬁ)g(()'ﬁﬁ:,(f_)g;((kk)q)
compute weights W(k) = P~"(k)Z(k)
update parameters A(k) = 6(k — 1) + W(k)e(k)

end loop

Recursive instrumental variables
[Jelele)

Table of contents

e Recursive instrumental variables

@ Matlab example

Recursive instrumental variables
[e] lele)

OE system

Take the same OE system we used in the ARX example:

bg~!

with the same dataset:
Input-Outpu! Data

F‘wm i '41\40'\"‘?')” M"{ \ﬁ WM “lw W‘

1 i ul ‘
0 |

100 200 300 400 500 600 700 800 900 1000
Time (seconds)

10

Amplitude

Recursive instrumental variables
[e]e] o)

Results with recursive IV

We use the IV model with colored noise v(k):
y(k)+ fy(k —1) = bu(k — 1) + v(k)

Instrument vector: Z(k) = [u(k — 2), u(k — 1)].

Recursive IV for OE system

Parameters
o

true b

Pyt estimated b | |
true f
estimated f

-3

0 100 200 300 400 500 600 700 800 900 1000
k

Conclusion: Better than recursive ARX, parameters converge to their
true values.

Recursive instrumental variables
oooe

Summary

o~

@ Learn parameters incrementally, online: 6(k) from §(k —1) and
new data u(k), y(k)

@ Produce a model early, easier to apply in real-time

@ Motivating example: estimating a scalar from noisy
measurements

@ General linear regression, recursive variant:

~

B(k) = 8(k — 1) + P~ (k)o(K) |y (k) — ¢ (K)B(k — 1)

@ Tuning knob: initial size ¢ of the inverse
@ Application to ARX is immediate, leading to recursive ARX

@ For IV some equations need to be revisited but the line is the
same

@ Matlab examples for both recursive ARX and recursive IV

	Introduction and motivation
	Idea and overall motivation
	Motivating example: Estimating a scalar

	Recursive least-squares and ARX
	General recursive least-squares
	Recursive ARX
	Matlab example

	Recursive instrumental variables
	Recursive IV method
	Matlab example

