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Recall: Importance of validation

Choose identification|
> method —> Validate model
and obtain model

Design Perform experiment Choose
experiment and collect data model structure

f model not good:
return to a previous step

Model validation is a crucial step: the model must be good enough
(for its intended usage).

If validation is unsuccessful, previous steps in the workflow must be
redone, for instance:

@ Rerun the identification algorithm with different parameters (e.g.
0 in recursive methods).

@ Change the model structure: e.g. orders of polynomials na, nb in
ARX, or even the model type entirely, e.g. IV instead of ARX

@ Design and run a new experiment (e.g. more data, different input
signal)
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Motivation

So far, we validated and selected models mostly informally, by
examining plots or comparing errors — using common sense.

Measured Output and Simulated Model Output
25

kg

0 10 20 30 40 50
Time

Measured Output
model Fit: 97.77%

Next, some mathematically well-founded tests will be given.

However, common sense remains indispensable — mathematical tests
work under assumptions that may not always be satisfied.
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Focus: Prediction error methods

We focus on single-output models obtained by prediction error
methods.

Some of the tests can be extended to other settings.
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Whiteness: Intuition

Recall general PEM model structure:
y(k) = G(g~")u(k) + H(q")e(k)

where e(k) is assumed to be zero-mean white noise.

PEM are derived so that the prediction error

e(k) = y(k) — y(k) = e(k). If the system satisfies the model structure
(so the white-noise assumption holds), and moreover if the model is
accurate, then (k) is also zero-mean white noise.

Whiteness hypothesis
(W) The prediction errors (k) are zero-mean white noise.
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Independence of past inputs: Intuition

y(k) = G(q "u(k) + v(k)

If the model G is accurate, it entirely explains the influence of inputs
u(k) on current and future outputs y(k + 7). Therefore, the errors
e(k +7) = y(k + 1) — y(k + 7) are only influenced by the
disturbances v, and are independent of inputs u(k). This holds
regardless of whether the whiteness hypothesis is true or not.

Independence hypothesis 1

(I1) The prediction errors £(k + 7) are independent of inputs u(k) for
7 > 0 (i.e., current and future errors are independent of current
inputs).

I y, €
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Independence of all inputs: Intuition

y(k) = G(g "u(k) + v(k)

If the experiment is closed-loop, u(k) depends on past outputs and
this will lead to a correlation of past errors e(k + 7), 7 < 0 with u(k)
(note the independence for = > 0 is not affected). If open-loop, then
e(k + 1), < 0 is also independent from u(k).

| |
I | y, €
K- k+t

Independence hypothesis 2

(12) The prediction errors e(k + 7) are independent of u(k) for any T
(i.e., all the errors are independent of all the inputs).




All hypotheses

(W) The prediction errors (k) are zero-mean white noise.

(I1) The prediction errors ¢(k + 7) are independent of u(k) for = > 0
(current and future errors are independent of current inputs).

(I2) The prediction errors ¢(k + 7) are independent of u(k) for any r
(all the errors are independent of all the inputs).

We will develop tests that allow to either accept or reject these
hypotheses for a given model, and therefore validate or reject the
model.
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Interpretation

@ If W holds, then the entire

model (G and H) is correct. — W
Otherwise: v ~ x
@ If 11 holds, then Giis correct G/, H/ e
but H is incorrect v ~_ X

@ If [1 fails, then G is incorrect GV, HX GxX

and there is not much else
that we can conclude TN

@ If 11 holds but 12 fails, there is v 7 X
feedback in the data. If I2 also teedback codback
holds then there is no @ @
feedback
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Whiteness: Correlations

Recall the correlation function (equal to the covariance in zero-mean
case):
r-(t) = E{e(k + 7)e(k)}

If (k) is zero-mean white noise:

@ The correlation function is zero, r.(7) = 0 for any nonzero 7.
@ At zero, r.(0) is the variance o2 of the white noise.
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Whiteness: Correlations from data

Correlations are estimated from data, and then normalized by the
(estimated) variance:

N 1 =T

r.(r) = N Z e(k + 1)e(k)
(1)

x(1) = 7(0)

Normalization helps since we can think of the normalized magnitudes
independently from any system details, whereas the unnormalized
magnitudes depend of the nature of the system and signal (mV, cells
per milliliter, m, km all lead to different numbers).
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Whiteness test

In practice, x(7) will never be zero for finite data, so instead we check

if it is small for nonzero 7. For statistical reasons, we impose a cutoff

1.96
at 7y

Whiteness test

If |x(7)| < 1% for all 7 # 0 supported by the data, then the whiteness

hypothesis (W) is accepted. Otherwise, (W) is rejected.
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Independence: Correlations & computation from data

To verify independence of ¢ from u, use cross-correlation function:
r.u(t) = E{e(k + 1)u(k)}
@ If (I1) is true, then r.y(7) = 0 for 7 > 0.
Q If (12) is true, then r.,(7) = 0 for any 7.

Estimation from data and normalization:

N—7
¥ S e(k+T)u(k) if7>0
A k=1

ﬁl: e(k+r)u(k) ifr<0
k=1—71
Teu(7)
X = o)

=




Model validation
00000000008

Independence test at 7

Independence tests

If |x(7)| < 1%, ¥r > 0 supported by the data, then the independence

hypothesis (I1) is accepted.
If the condition holds Vr supported by the data (including negative 7),
then (I2) is also accepted.

If the model is accurate (I1 holds), then checking the condition at
7 < 0 (12) verifies the presence of feedback.



Model validation
©00000

Table of contents

o Model validation with correlation tests

@ Matlab example



Model validation
0®0000

Matlab example: Experimental data

The real system is in output-error form:

—1
V(K = =) u(k) + ek

and has order n = 3.
plot (id); and plot (val);

Y yi

1A —
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Matlab: ARX model

First, we try an ARX model:

mARX

arx (id,

(3, 3, 11);

Simulating on the validation data shows that the model is poor:

y1

y1. (sim)

val; measured
—— MARX;fit: 79.47% |
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Matlab: ARX model correlation tests

To investigate further, we run correlation tests:
resid (mARX, id);

Correlation function of residuals. Output y1

0.5
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The whiteness test (W) fails, and the model is rejected. This is
because the system is not within the model class.

As I1 holds, we conclude that the input-output model G is good, but
the noise model H is wrong and we should work to improve that part.



Matlab: OE model

mOE = oe (id, [3, 3, 1])
Simulating on the validation data shows the model has good quality:

y1. (sim)

\ ’ ' ! val; measured
‘l — mOE; fit: 97.35%

© & N b b A b M L o
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Matlab: OE model correlation tests

resid (mOE, id);

Correlation function of residuals. Output y1

lag

OE model passes all the tests — as expected because the OE model
class contains the real system. Thus, both G and H are validated.

Important note: The Matlab functions impose a smaller cutoff for the
correlations, so they are less likely to reject a correct model.
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Structure selection in workflow

Choose identification|
> method —> Validate model
and obtain model

Design Perform experiment Choose
experiment and collect data model structure

f model not good:
return to a previous step

While we nearly always tuned the model structure (e.g. type, orders,
length), the criteria for doing so were often informal.

Next, we discuss structure selection in a formal way.
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Structure selection: Model complexity

Consider we are given several model structures M1, Mo, ..., M,.
Example: ARX structures of increasing order.

How to choose among them?
First idea: choose M; leading to the smallest mean squared error:

V() = 1N > e(ky?

N
k=1

This ignores the complexity of the model, which is related to:

@ the computational effort for identification and simulation
@ the amount of data needed for identification
@ the risk of overfitting

We explore other options that do consider model complexity (without
going into their derivation).



Akaike’s information criterion (AIC)

~ ~ 2
Waic = Nlog V(8) + 2p, or equivalently: log V(8) + Wp

where N is the number of data points and p the number of
parameters (e.g., na+ nb in ARX).

Choice: Model with smallest Wijc.
Intuition:
@ The term 2p penalizes the complexity of the model (humber of
parameters).

@ Division by the number N of data points in 2p/N takes into
account that more data allows more parameters to be identified.

@ Taking the logarithm of the MSE allows to better differentiate
between small values of the MSE.
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Final prediction error (FPE)

a1 +p/N
Wepg = V(H)1 ~p/N
Choice: Model with smallest Wgpg.
Intuition: When N is large:
A1EP/N _ s 2p/N 3 Va1 4 2P

and the term 2—,\’,’ works like before, but now it leads to a correction
proportional to the MSE rather than getting added directly.
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Matlab example

An OE system with n = 2.

y1 y1
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Time Time
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Matlab: selstruc with AIC

Recall arxstruc:

Na = 1:15; Nb = 1:15; Nk = 1:5;
NN = struc(Na, Nb, Nk); V = arxstruc(id, wval, NN);

@ struc generates all combinations of orders in Na, Nb, Nk.

@ arxstruc identifies for each combination an ARX model on the
data id, simulates it on the data val, and returns information
about the MSEs, model orders etc. in v.
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Matlab: selstruc with AIC (continued)

To choose the structure with the Akaike’s information criterion:
N = selstruc(V, 'aic’);
For our data, N= [8, 8, 1].

Alternatively, graphical selection also allows using AIC:
N = selstruc(V, ’'plot’);

Hodel Misfitvs number of pars

Blue: MDL Choice
Blue: AIC Choice

Red: Best Fit

e (in %)

Unexplained output varian

ssssssssssssssssssssssssssssssssssss

Note that the best-AlC model is not (always) the same as the best-fit
model!
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Matlab: Results

y1. (sim)

model; measured
val; fit: 96.4%

y1
S
=3
e
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Remarks

AIC, FPE also work if the system is not in the model class.

Matlab offers functions aic, fpe that compute these criteria for a list
of models with any structure.
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Motivation

Consider a case where the real system obeys the ARMAX structure:
Ao(q~")y(k) = Bo(q~")u(k) + Co(q~")e(k)

where subscript 0 indicates quantities related to the real system.
This is equivalent to any model:

W(g ")Ad(q y(k) = W(g ")Bo(q ")u(k) + W(q ") Co(a ")e(k)

with W(g~") some polynomial of order nw.

So, using ARMAX identification with na = nag + nw, nb = nby + nw,
nc = ncy + nw can produce an accurate model. This model is
however too complicated (overparametrized), and will have some
nearly common factors W(q~") in all polynomials (only “nearly”
because of the approximate nature of the identification).
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Pole-zero cancellations

This type of situation can be identified by checking if some poles and
zeros of the model (approximately) cancel each other out.

We exemplify using Matlab function pzmap, which shows the poles
and zeros of G in the generic model:

y(k) = G(q "u(k) + v(k)

For the ARMAX example, G(q~") = jie=)2(@_J), 50 the roots of W

are both poles and zeros and (approximately) cancel each other out.
This idea extends to other model types besides ARMAX.
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Matlab: overparameterized OE model

On the same data as for correlation tests (recall system has order
n=3):

mOE = oe(id, [5, 5, 11);
Looking at the validation data, the model is accurate:

y1. (sim)

val; measured
“ ——— mOE; fit: 97.36%
|

\
|
\

|

y1

© b N &5 &b A b W 4 o
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Matlab: testing for pole-zero cancellations

pzmap (mOE, ’'sd’, nsd);

Arguments ' sd’, nsd specify a statistical confidence region around
the poles and zeros. Here we take nsd=1.96, for statistical reasons.

1 e
08 / \
06 / \
DA/ o\
02|f \
- x
o |
Lo x
02 /
\ /
04} \ ©/
06 \ / 1
08 N / |
4 A = J
X 05 0 05 1

Two pairs of poles and zeros have overlapping confidence regions =
likely they are canceling each other. This indicates that identification
should be rerun with the true system order 3 (we already did this in
our earlier OE results).
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Drifts

Sometimes, the data will contain spurious slow signals called drifts,
coming e.g. from slow disturbances (as opposed to the fast noise or

disturbance, which we know how to handle)
Yy

Idea: Treat the drifts as time series, fit them with linear regression,
and remove them
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Estimating drifts

@ Treat the input and output as separate time series (no longer a
dynamical system identification problem), write drift models:

u*(K) = 04 + 05k + 05Kk? + ... + 04k
yi(k) =0 + 05k + 05Kk* + ...+ 05Kk

@ Find the parameter vectors 6, §” by linear regression on
u(k), y(k) and compute the corresponding drifts u*(k), y*(k)

© Subtract the drifts from the data:
(k) = u(k) — u(k), y(k) =y(k)—y (k)
© Identify as usual, but with “detrended” signals u, y

Notes: Matlab function det rend available; Removing zero-order
drifts = removing the means
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Time delays
y(k) 4

u(k)h Nk

\E

>

k

Read the delay on the graph. Set nk appropriately in Matlab, or
otherwise add nk leading zeros to the polynomial B(g~") in the
model:

Note: Taking nk too small is safe (possibly requiring an increase of
nb); too large and it breaks the model!
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Local minima
V(0)

1* 'e

o b-=====

I

@ lterative optimization (needed for methods that cannot be solved
as linear regression, such as ARMAX and OE) may get stuck in
local minima

@ E.g. if initialized to 64, Newton’s method likely converges to the
local minimum 6,. But from 6, it finds the global optimum 6*!

= If result is bad and local minima suspected, restart the
optimization from another initial parameter vector

Note: ARMAX usually converges to the global optimum; OE often to
local optima except when u is white noise
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Ouitliers
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@ Sometimes, a few measurements will be wildly incorrect, due to
e.g. transient malfunctions. These are called outliers

@ Best tested via the prediction error ¢, after finding an initial model:
if (k) is anomalously large at some step k, an outlier is likely

@ Solution 1: Fill in the data using e.g. the average of y(k — 1) and
y(k 4+ 1) (shown in the figure), or the model prediction y(k)

@ Solution 2: Cap the prediction error at a reasonable maximum
Emax, S0 V(0) = SN min{e2(k), emax}



Conclusion
°

Role of system identification

System theory:

analysis
Data S
ystem
identification [ Model l
Prior knowledge Process Gray-box model Control engineering
—_—— . |
Insight modeling > Model-based

White-box model (entirely math modeling) control design

Model found can be used to e.g.:

@ Analyze system behavior (e.g. stability, etc.)
@ Predict future behavior.

@ Simulate system behavior in new scenarios.
@ Design a controller for the system.
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