System Identification

Control Engineering EN, 3™ year B.Sc.
Technical University of Cluj-Napoca
Romania

Lecturer: Lucian Busoniu

b

Part VII

Prediction error methods

Table of contents

o Model structures

e General prediction error methods
e Solving the optimization problem

e Theoretical guarantees

Classification

Recall taxonomy of models from Part I:
By number of parameters:
@ Parametric models: have a fixed form (mathematical formula),
with a known, often small number of parameters

@ Nonparametric models: cannot be described by a fixed, small
number of parameters
Often represented as graphs or tables

By amount of prior knowledge (“color”):

@ First-principles, white-box models: fully known in advance
@ Black-box models: entirely unknown
© Gray-box models: partially known

Like ARX, general prediction error methods (PEM) produce
black-box, parametric (polynomial) models.

Model structures

Table of contents

0 Model structures

Model structures
©00000000000000

Motivation

General PEM can be seen as an extension of ARX to significantly
more general model structures, and are therefore able to identify
more classes of systems.

To clarify, we first introduce the general class of models to which PEM
can be applied.

Model structures
0@0000000000000

General model structure

y(k) = G(q "u(k) + H(a ")e(k)

where G and H are discrete-time transfer functions — fractions of
polynomials. Signal e(t) is zero-mean white noise.

@ G is the input-output transfer function.
@ H is the disturbance transfer function.

Model structures
00@000000000000

General model structure: Explicit form

By making the fractions explicit and placing the common factors of the
denominators of G and H in A(g~'), we get the more detailed form:

B C) cla)
SR O RNV G oMY
1 1
A) = k) + g elk)

where A, B, C, D, F are all polynomials, of orders na, nb, nc, nd, nf:
Ag)=1+aq ' +...+a.qg ™

Blg")=big ' +...+bpg ™ FlgY=14+fqg "' +...+fyqg ™
Cla=14+cig ' +...4+¢ceqg ™ D(@"Y=1+0dig"+...+ dg ™

Model structures
000@00000000000

General model structure: Graphical form

_ B(q™! C(qg!
AV = Fa=ulh) + B elk)
e(k)
|
C(q’)
D(q")
w0 [Egy] WK 1 y(K)
F(q") + A@q")

Very general form, all other linear forms are special cases of this. Not
for practical use, but to describe algorithms in a generic way. In
practice, we use one of the special cases, as exemplified next.

Model structures
0000@0000000000

ARMAX model structure

Setting F = D = 1 (i.e. orders nf = nd = 0), we get:

A(q "y(k) = B(q "u(k) + C(q~")e(k)

Name: AutoRegressive (dependence on previous outputs), Moving
Average (referring to noise model) with eXogenous input
(dependence on u)

Model structures
00000@000000000

Recall ARX graphical form with delayed signals

Model structures
000000@00000000

ARMAX graphical form

Compact form:

u(k)

1/A(q)

e(k)l

Cq)

v(k){&

e\

y(K)

Model structures
000000080000000

ARMAX: explicit form

A(q ")y(k) = B(q ")u (k)+ C(g "e(k)
Ag=1+aqg"+...+anuqg ™
Blg)=big'+...+ banfnb
Clgy=1+cg ' +...+Cq™ ™

y(k)+ary(k—1)+ ...+ anay(k — na)
:b1u(k—1)+...+bnbu(k—nb)
+e(k)+cie(k—1)+...+ crce(k — nc)

with parameter vector:

T b
9:[31,...,ana,b17...,bnb,ch..wcnc] 6Rna+n +nc

Model structures
000000008000000

Running example: 1st order ARMAX

Take na = nb = nc = 1. This leads to the 1st order ARMAX model:

(1+aq ")y(k) = bg~"u(k) + (1 + cqg ")e(k)
y(k)=—ay(k—1)+ bu(k — 1)+ ce(k — 1) + e(k)

where we skipped the indices in a, b, ¢ since there is a single
parameter in each polynomial.

We will be using this as a running example throughout this part.

Model structures
000000000e00000

Special case of ARMAX: ARX

Setting C = 1 in ARMAX (nc = 0), we get:
A(q~")y(k) = B(q ")u(k) + e(k)

precisely the ARX model we worked with before.

Compared to ARX, ARMAX can model more intricate disturbances
(C(g~")e(k) instead of e(k), which is often assumed to be
zero-mean white-noise).

Recall: FIR special case of ARX

Further setting A =1 (na = 0) in ARX, we get:

nb
y(k) = B(q~")u(k) + e(k) = _ bu(k — j) + e(k)
j=1

=) h)ulk —j) + e(k)

<

—.
Il
o

the FIR model.

Recall however also that FIR and ARX are fundamentally different

(nonparametric impulse response versus parametric transfer
function).

Model structures
000000000008000

Output error

Output Error, OE:

B(g™")
F(g=)

obtainedforna=nc=nd =0,i.e. A=C=D =1.

y(k) = u(k) + e(k)

This corresponds to simple, additive measurement noise on the
output (the “output error”).

Model structures
000000000000800

OE graphical form

k
u(k) et

1/F(q™)

Compact form:

u(k) B(q")
F(q")

Model structures
0000000000000e80

Summary and overall relationship between models

@ General form of models used in PEM
@ Specific structures, including some we already saw
@ Relationship:

" General form ™_

. /N \)
)/

@ ARMAX vs. ARX vs. OE: different disturbance.
@ ARX vs. FIR: models of different nature.

Model structures
00000000000000e

Exercises

@ What is the explicit form (with delayed-signal equations) of the
OE model?

@ Draw the graphical form of the FIR and of the general-case
structure.

@ Search the literature for the Box-Jenkins model structure, and
write its explicit and graphical form. What is the relationship of
this structure with those discussed above?

General prediction error methods
€000

Table of contents

Q General prediction error methods
@ Stepping stone: ARX revisited
@ General case
@ Example: 1st order ARMAX
@ Matlab example

ARX reinterpreted as a PEM

@ Compute predictions at each step, y(k) = ¢ ' (k)0

given parameters 6.
@ Compute prediction errors at each step, ¢(k) = y(k) — y(k).
© Find a parameter vector minimizing criterion

V(0) = & Shq €2 (K).

The procedure above is just a reinterpretation, equivalent to the
algorithm discussed in the ARX lecture.

Prediction error methods are obtained by extending this procedure to
general model structures.

General prediction error methods
00@0

ARX reinterpreted as a PEM (continued)

Remarks:

@ For ARX, we already know how to minimize the MSE (from linear
regression); for more general models new methods will be
introduced.

@ ARX predictor y(k) is chosen to achieve the error (k) = e(k),
equal to the noise. We will aim to achieve the same error in the
general PEM, intuitively because we cannot do better.

Note different meanings of (k) (prediction error) and e(k)
(noise)

@ The prediction error is just a rearrangement of the equation
y(k) = ¢ (k)0 + e(k) = y(k) + (k).

General prediction error methods
0ooe

Checklist

For each model structure, we will have to run through the three steps:
prediction, prediction error, and minimization of the MSE.

We keep a running checklist:

ARX | General PEM | 1st order ARMAX
prediction y (k) v
prediction error (k) v
minimization of V() |

General prediction error methods
©00000

Table of contents

9 General prediction error methods

@ General case

General prediction error methods
000000

Recall: General model structure

y(k) = G(g~"u(k) + H(g" ")e(k)
where G and H are discrete-time transfer functions:

B(q Clg
9= A Fia %)+ Ay)

In the sequel, we skip argument g~ to make the equations readable,
and implicitly understand that each capital letter is a transfer function
or polynomial of g~ .

General prediction error methods
[e]e] Yelole}

Prediction error

We start by deriving e(k).

y(k) = Gu(k) + He(k)
= e(k) = H™'(y(k) — Gu(k))

where H—' = 42 s the inverse of polynomial fraction H.

The predictor will be derived so that the prediction error
e(k) = y(k) — Y(k) = e(k). So, the same formula can also be used to
compute e(k):

e(k) = H™'(y(k) — Gu(k))

This is a dynamical system that can be simulated to compute ¢(k).

General prediction error methods
000000

Predictor

To achieve error e(k), the predictor dynamics must be:
y(K) = y(k) - e(k)

y(k) + H ' (y(k) — Gu(k))

=|(1 = H Y)y(k) + H 'Gu(k)

Remark: In order to have a causal predictor, that only depends on
past values of the output and input, we require G(0) = 0 and
H(0) = 1. This is true because B(0) = 0, A(0) = C(0) = D(0) = 1.

General prediction error methods
000000

Preview: Finding the parameters & using the model

Finding the parameters: Once the procedure to compute the errors is
available, the parameters 6 are found by minimizing criterion

V(9) = 1 23, €2(k). This will usually require multiple evaluations of
error signal e(k), for multiple values of the parameters 6.

We do not yet go into specific computational methods to solve the
error minimization problem. We will study them in detail in the next
section.

Using the model: Once an estimate 6 of the optimum is found, the
predictor formula is applied to compute the model outputs j(k). The
model can also be adapted to run in simulation mode.

General prediction error methods
00000@

Checklist

ARX | General PEM | 1st order ARMAX
prediction y(k) v v
prediction error (k) v v
minimization of V() | Vv ?

General prediction error methods
©0000

Table of contents

9 General prediction error methods

@ Example: 1st order ARMAX

General prediction error methods
0@000

Running example: 1st order ARMAX

Recall ARMAX:
Ay(k) = Bu(k) + Ce(k)

Placing it in the standard form, we get:

yK) = 2 + S elk)

= Gu(k) + He(k)

Foristorder: A=1+4+aq~',B=bg~",C=1+cq".

General prediction error methods
00®00

1st order ARMAX: Prediction error

Recall general error formula:

For our case, since G= £, H=&:

(0 = g (v - Fuh)
Ce(k) = Ay(k) — Bu(k)
(1+cq "e(k) = (1+aq ")y(k) — bg~ " u(k)
e(k)+ce(k—1)=y(k)+ay(k—1)—bu(k—1)
e(k)=—ce(k—1)+y(k)+ay(k—1)— bu(k — 1)

This is a dynamical, recursive formula which needs to be simulated
over time! Requires initialization of £(0), usually taken 0.

General prediction error methods
000@0

1st order ARMAX: Predictor

Recall general predictor formula:

y(k)= (1= H ")y(k)+H ' Gu(k)

For our case, since G = %, H= %:
700 = (1) ¥k + 5 20k
Cy(k)=(C)Y(k) + Bu(k)
(1+cq My(k) = (7/+ cq ' =1 —aq ")y(k)+ bg 'u(k)
y(k) +cy(k —1)=(c—a)y(k - 1)+ bu(k — 1)
y(k) = —cy(k —1)+(c—a)y(k —1) + bu(k — 1)

Again, a dynamical, recursive formula. Requires initialization at y(0),
usually taken 0.

General prediction error methods
0000e

Checklist

ARX | General PEM | 1st order ARMAX
prediction y(k) v v v
prediction error (k) v v v
minimization of V(0) | v ? ?

General prediction error methods
©00000000

Table of contents

9 General prediction error methods

@ Matlab example

General prediction error methods
0®0000000

Experimental data

Consider again the experimental data on which ARX was applied.
plot (id); and plot (val);

i y1
2 3
15 ~
/ 2t ——
/
; ’,/ \\v/—// N N~ S - o
b~
05 / /
(= d ot/
05 4
o 5 10 15 20 0 10 20 30 40 50
Time Time
u ut
25 25
2 2
15
| 15
os=Jull U LILIU JUU il 1
0 5 10 15 20 0 10 20 30 40 50

Time Time

General prediction error methods

Recall: ARX result

Assuming the system is second-order and without time delay, we take
na=2,nb=2nk=1.

y1. (sim)

model; measured
val; fit: 91.16%

16

14

12

y1

0.8

0.6

0.4

0.2

Results are quite bad.

General prediction error methods
[e]e]e] Yolelelele]

Identifying an ARMAX model

mARMAX = armax(id, [na, nb, nc, nkl]);

Arguments:

@ Identification data.
@ Array containing the orders of A, B, C and the delay nk.

Like for ARX, structure includes the explicit minimum delay nk
between inputs and outputs.
y(k) +ay(k — 1)+ ay(k —2) + ...+ anay(k — na)
= biu(k — nk) + bou(k —nk — 1) + ... + bppu(k —nk —nb+1)
+e(k)+cie(k—1)+ coe(k —2)+ ...+ cpce(k — nc)

Al@ My(k) = B(g~"u (k — nk) + C(q*1)e(k), where:
A) =(+aiq ' +aq2+...+auqg ™)
B(g™") = (b1 + bzq + bn Cf"b“)
ClaH=(1+c1g ' +cq? 4 Cneq ™)

Remark: As for ARX, the theoretical structure is obtained by setting
nk =1 (and to represent nk > 1 in the theoretical structure, change
B like in the ARX Matlab example).

General prediction error methods
0000@0000

ARMAX model

Considering the system is 2nd order with no time delay, take na = 2,
nb =2, nc =2, nk =1. Validation: compare (val, mARMAX) ;
Measured Output and Simulated Model Output
25

Measured Qutput
—— mARMAKX Fit: 97.66%

Jw

0.5

-0.5
0 10 20 30 40 50

Time

In contrast to ARX, results are good. Flexible noise model pays off.

General prediction error methods
000000000

Identifying an OE model

Recall OE model structure:

B —1
V() = o) u(k) + ek
e(k)
u(k) B(q") ALy
F(q") +

General prediction error methods
000000@00

Identifying an OE model (continued)
mOE = oe(id, [nb, nf, nkl]);
Arguments:

@ Identification data.
@ Array containing the orders of B, F, and the delay nk.

B —1

B(q™") = (b1 + boq " + bpg ™*T)
Flg")=(1+(qg"+hqg2+...+ g™

u(k — nk) + e(k), where:

Explicit formula:
y(k)+ fiy(k—1)+ hy(k—2)+ ...+ fyry(k — nf)
=byiu(k — nk) + bou(k —nk — 1) + ... + bypu(k — nk —nb+ 1)
+e(k)+ fie(k — 1)+ be(k —2) +... + fre(k — nf)

Remark: Like before, can transform into theoretical structure by
setting nk = 1 (or changing B if nk > 1).

General prediction error methods
000000080

OE model

Considering the system is second-order with no time delay, we take
nb =2 nf =2 nk =1. Validation: compare (val, mOE);
Measured Output and Simulated Model Output

Measured Output

mOE Fit: 97.65%
2
1.5
= 1
05
0
05

0 10 20 30 40 50

Time

Results as good as ARMAX. System turns out to obey both model
structures. Question: What is the true structure then?

General prediction error methods
000000008

Summary so far

@ ARX reinterpreted as a PEM, isolating the predictor and
prediction error

@ Derived PEM in the general-model case: prediction error,
predictor

@ Example application to first-order ARMAX: prediction error,
predictor

@ Double-checked predictor and error formulas for ARX
@ Matlab example illustrating ARX, ARMAX, and OE identification
@ Error-minimization method remains open

Solving the optimization problem
©000000000000000

Table of contents

e Solving the optimization problem

Solving the optimization problem
O@00000000000000

Checklist
ARX | General PEM | 1st order ARMAX
prediction y(k) v v v
prediction error (k) v v v
minimization of V(0) | v ? ?

Solving the optimization problem
00@0000000000000

Optimization problem

Objective of identification procedure: Minimize mean squared error

V(9) = 1N > e(k)?

N
k=1

where ¢(k) are the prediction errors. In the general case:
e(k) = H (g ")(y(k) — G(g~")u(k))
Solution: 6 = argmin V(6)
6
So far we took this solution for granted and investigated its properties.

While in ARX linear regression could be applied to find 6, in general
this does not work. Main implementation question:

How to solve the optimization problem?

Minimization via derivative root

Consider first the scalar case, 0 € R.

A0)
Idea: at any minimum, the derivative
f(0) = 9¢ is zero. So, find a root of ().

Remarks:

@ Care must be taken to find a
minimum and not a maximum or 1(0)
inflexion. This can be checked with

. . 2
the second derivative, &% = & > 0.

@ We may also find a local minimum
which is larger (worse) than the 0
global one.

Solving the optimization problem
0O000@00000000000

Newton’s method for root finding
/0)

@ Start from some initial point 6.
@ Atiteration ¢, next point 6,1 is the intersection between abscissa
and tangent at f in current point 6,. By geometry arguments:

f(o
Orr1 =00 — 7(,5(9[3
a6

Remarks:

@ Notation df((”) means the value of derlvatlve at point 6,.

@ The slope of the tangent is #L0)

@ 0,1 is the “best guess” for root given current point 6,.

Solving the optimization problem
0O0000@0000000000

Newton’s method for optimization

Replace f(6) by % to get back to optimization problem:

av(6,)

Orr1 =00 — vy 5?&)

d6?

Solving the optimization problem
000000800000 0000

Gradient and Hessian

To extend from the scalar case to 6 € R", we need first and
second-order derivatives of V(#), taking into account that
V:R" — R. Then:

oV 8%V 8V 8%V
T 962 90100, " 0010,
a2 a2 92
dv s 2V 52V A
| 982 | 20200, 002 9020,
do DT de? : :
oy P2V 2V v
n 96,00, 00,6, "' 862

. . . 2 .
Gradient 3¢ is an n-vector, and Hessian % an n x n-matrix.

Solving the optimization problem
0000000 @00000000

Newton’s method for optimization — general case

Start from scalar-case formula:
dv(o,)

_ a6
Opr1 =0 — BV
@V(0;)

do
and extend to use the gradient vector and Hessian matrix:

V(0,)] " av(o,)
do2 do

Opp1 = 0p — [

Add a step size oy > 0. Final formula:

A2V (6,)]" dV(6)
de? do

Opr1 =00 — {

Remark:

@ The stepsize helps with the convergence of the method, by
keeping updates in the local area where the function is
approximately quadratic.

Solving the optimization problem
000000008000 0000

Stopping criterion

Algorithm can be stopped:

@ When the difference between consecutive parameter vectors is
small, e.g. max?_, |0; 11 — 0; (| smaller than some preset
threshold.

or
@ When the number of iterations ¢ exceeds a preset maximum.
Remark: Nothing so far in Newton’s method was specific to system

identification. The method works in general for any optimization
problem! Next, we return to system identification.

Solving the optimization problem
000000000 e000000

Computing the derivatives

1 N
=y (k)

k=1

Keeping in mind that (k) depends on 6, from matrix calculus:

av _2 EN: de(k)
o~ N & do
@V 2 XLde(k) [de(k)]T 2 L dRe(k)
e NZ [i] H 20 g

where:

o %0 is the vector derivative and £ the Hessian of (k).

o %l ")[ds(k)] is an n x n matrix.

Solving the optimization problem
0000000000 e00000

Gauss-Newton

Ignore the second term in the Hessian of V and just use the first term:

XN: k) T
~N 9
k=1
leading to the Gauss-Newton algorithm:
%
o1 =0y — ayH™ av(o:)

do

Motivation:

@ Quadratic form of H gives better algorithm behavior.
@ Simpler computation.

The details of how to compute depend on the model structure
chosen.

Solving the optimization problem
00000000000 e0000

Checklist
ARX | General PEM | 1st order ARMAX
prediction y (k) v v v
prediction error (k) v v v
minimization of V(0) | v v ?

Solving the optimization problem
000000000000 e000

Example: 1st order ARMAX

Recall model and prediction error for 1st order ARMAX:

y(k)=—ay(k—1)+bu(k—1)+ce(k — 1)+ e(k)
e(k)=—ce(k—1)+y(k)+ay(k—1)—bu(k —1)

; ; T
We need %20 — [2e(k) "9e00) "0=lk)) © | pfferentiating second equation:

Os(k) Oe(k—1)

94 =—C 93 +y(k—1)
Os(k) Oe(k—1)

b =-C b —u(k—1)
Os(k) Oe(k—1)

96 =—-C 5c —elk—1)

So, 220 9=tk) 2:(k) 5re dynamical signals! They can be computed

using the recursions above, starting e.g. from 0 initial values.

Solving the optimization problem
000000000000 0e00

General predlctlon error method

initialize 6, iteration counter ¢/ = 0

repeat
given current vaIue of parameter vector 6,,
de ,k=1,.. N
plug 20 & H:

N
aVv 2 de(k
a6 = sz(k)

) T
N de { do }
apply Gauss-Newton update to find 0y 1:

1 Av(6)

Opr1 = 0p — a0

increment counter: ¢ = /¢ + 1
until ||0,+1 — 6,|| is small enough, or maximum ¢ was reached

Solving the optimization problem
000000000000 00e0

Checklist
ARX | General PEM | 1st order ARMAX
prediction y (k) v v v
prediction error (k) v v v
minimization of V(0) | v v v

Solving the optimization problem
0000000000000 00e

Summary for optimization

@ Need for nonlinear regression
@ Newton’s method for root finding, scalar case
@ Newton’s method for optimization, scalar case

@ Generalization to n dimensions; computing the gradient and
Hessian

@ Gauss-Newton optimization

@ Example on first-order ARMAX, with complete formulas and
algorithm

Theoretical guarantees

Table of contents

e Theoretical guarantees

olving the optimiz roblernr Theoretical guarantees

@00

Assumptlons

Assumptions

@ The true system satisfies the model structure chosen, i.e., there
exists at least one 6y so that for any input u(k) and the
corresponding output y(k) of the true system, we have:

y(k) = G(q"; o)u(k) + H(q™": bo)e(k)

with e(k) white noise.
@ Signals u(k) and y(k) are stationary stochastic processes.

@ The input signal u(k) has a sufficiently high order of persistent
excitation and is independent from the noise e(k) (the
experiment is performed in open loop).

© The Hessian d is nonsingular at the minimum points of V.

Theoretical guarantees
(o] 1]

Hessian discussion

© The Hessian % is nonsingular at the minimum points of V.

Recall V(6) = ‘N Z,’L £2(k), the MSE. This assumption ensures V is
not “flat” around minima.

7(0)4

Theoretical guarantees
ooe

Guarantee

Theorem

Under Assumptions 1-4, §Converges to a true parameter vector 6y as
N — .

Remark: Consistency guarantee.

	Model structures
	Model structures

	General prediction error methods
	Stepping stone: ARX revisited
	General case
	Example: 1st order ARMAX
	Matlab example

	Solving the optimization problem
	Solving the optimization problem

	Theoretical guarantees
	Theoretical guarantees

