

System Identification

Control Engineering EN, 3rd year B.Sc.
Technical University of Cluj-Napoca
Romania

Lecturer: Lucian Buşoniu

Analytical development of IV methods
oooooooooooooooooooo

Matlab example
oooooo

Theoretical guarantees
ooooo

Closed-loop identification using IV
oooooooo

Closed-loop Matlab example
oooo

Part VIII

Instrumental variable methods. Closed-loop identification

Table of contents

- 1 Analytical development of instrumental variable methods
- 2 Matlab example
- 3 Theoretical guarantees
- 4 Closed-loop identification using IV
- 5 Closed-loop Matlab example

Classification

Recall **taxonomy of models** from Part I:

By number of parameters:

- ① **Parametric models**: have a fixed form (mathematical formula), with a known, often small number of parameters
- ② Nonparametric models: cannot be described by a fixed, small number of parameters
Often represented as graphs or tables

By amount of prior knowledge (“color”):

- ① First-principles, white-box models: fully known in advance
- ② **Black-box models**: entirely unknown
- ③ Gray-box models: partially known

Like prediction error methods, instrumental variable methods produce *black-box, parametric, polynomial* models.

Overall motivation

- The ARX method is simple (linear regression), but only supports limited classes of disturbance
- General PEM supports any (reasonable) disturbance, but it is relatively difficult to apply from a numerical point of view

Can we come up with a method that combines both advantages?

(qualified) **Yes! Instrumental variables**

Table of contents

1 Analytical development of instrumental variable methods

- Starting point: ARX
- Instrumental variables methods
- Comparison: IV versus PEM

2 Matlab example

3 Theoretical guarantees

4 Closed-loop identification using IV

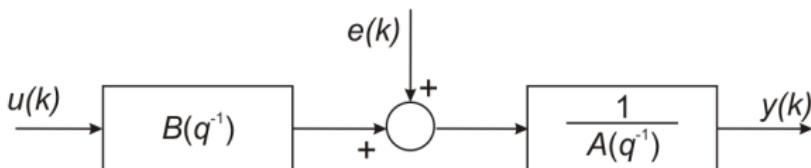
5 Closed-loop Matlab example

Recall: ARX model

$$A(q^{-1})y(k) = B(q^{-1})u(k) + e(k)$$

$$(1 + a_1 q^{-1} + \cdots + a_{na} q^{-na})y(k) =$$

$$(b_1 q^{-1} + \cdots + b_{nb} q^{-nb})u(k) + e(k)$$

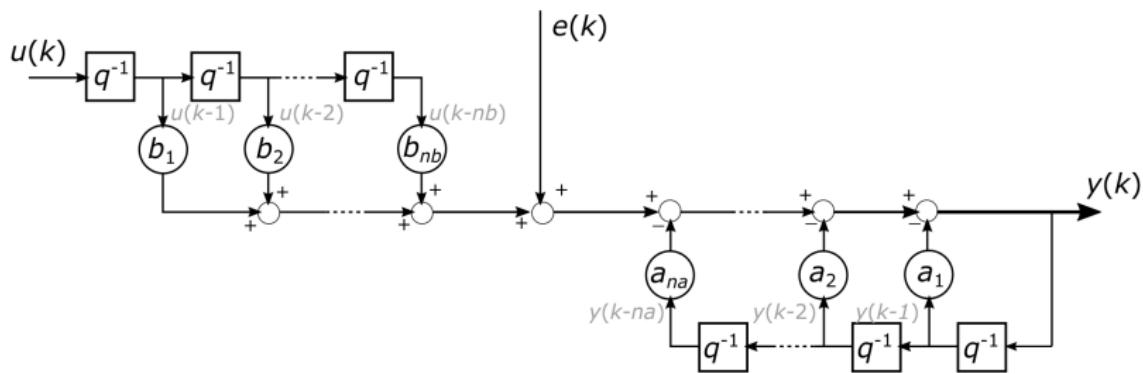


ARX model: explicit form and detailed diagram

In explicit form:

$$y(k) = -a_1 y(k-1) - a_2 y(k-2) - \dots - a_{na} y(k-na) \\ b_1 u(k-1) + b_2 u(k-2) + \dots + b_{nb} u(k-nb) + e(k)$$

where the model parameters are: a_1, a_2, \dots, a_{n_a} and b_1, b_2, \dots, b_{n_b} .



Recall: Linear regression representation

$$\begin{aligned} y(k) &= [-y(k-1) \quad \cdots \quad -y(k-na) \quad u(k-1) \quad \cdots \quad u(k-nb)] \\ &\quad \cdot [a_1 \quad \cdots \quad a_{na} \quad b_1 \quad \cdots \quad b_{nb}]^\top + e(k) \\ &=: \varphi^\top(k) \theta + e(k) \end{aligned}$$

Regressor vector: $\varphi \in \mathbb{R}^{na+nb}$, previous output and input values.

Parameter vector: $\theta \in \mathbb{R}^{na+nb}$, polynomial coefficients.

Recall: Identification problem and solution

Given dataset $u(k), y(k), k = 1, \dots, N$, find model parameters θ to achieve small errors $\varepsilon(k)$ in:

$$y(k) = \varphi^\top(k)\theta + \varepsilon(k)$$

Formal objective: minimize the mean squared error:

$$V(\theta) = \frac{1}{N} \sum_{k=1}^N \varepsilon(k)^2$$

Solution: can be written in several ways, here we use:

$$\hat{\theta} = \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) \varphi^\top(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) y(k) \right]$$

Parameter errors

Finally, recall that for the guarantees, a true parameter vector θ_0 is assumed to exist:

$$y(k) = \varphi^\top(k) \theta_0 + v(k)$$

Analyze the parameter errors (a vector of n elements):

$$\begin{aligned}
\widehat{\theta} - \theta_0 &= \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) \varphi^\top(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) \mathbf{y}(k) \right] \\
&\quad - \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) \varphi^\top(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) \varphi^\top(k) \right] \theta_0 \\
&= \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) \varphi^\top(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) [\mathbf{y}(k) - \varphi^\top(k) \theta_0] \right] \\
&= \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) \varphi^\top(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) \mathbf{v}(k) \right]
\end{aligned}$$

Consistency conditions

We wish the algorithm to be consistent: the parameter errors should become 0 in the limit of infinite data (and they should be well-defined).

As $N \rightarrow \infty$:

$$\frac{1}{N} \sum_{k=1}^N \varphi(k) \varphi^\top(k) \rightarrow \mathbb{E} \{ \varphi(k) \varphi^\top(k) \}$$

$$\frac{1}{N} \sum_{k=1}^N \varphi(k) v(k) \rightarrow \mathbb{E} \{ \varphi(k) v(k) \}$$

For the error to be (1) well-defined and (2) equal to zero, we need:

- 1 $\mathbb{E} \{ \varphi(k) \varphi^\top(k) \}$ invertible.
- 2 $\mathbb{E} \{ \varphi(k) v(k) \}$ zero.

White noise required

- We have $E \{ \varphi(k) v(k) \} = 0$ if the elements of $\varphi(k)$ are uncorrelated with $v(k)$ (note that $v(k)$ is assumed zero-mean).
- But $\varphi(k)$ includes $y(k-1), y(k-2), \dots$, which depend on $v(k-1), v(k-2), \dots$!
- So the only option is to have $v(k)$ uncorrelated with $v(k-1), v(k-2), \dots \Rightarrow v(k)$ must be *white noise*.

Instrumental variables are a solution to remove this limitation to white noise.

Table of contents

1 Analytical development of instrumental variable methods

- Starting point: ARX
- Instrumental variables methods
- Comparison: IV versus PEM

2 Matlab example

3 Theoretical guarantees

4 Closed-loop identification using IV

5 Closed-loop Matlab example

Intuition

$$\hat{\theta} - \theta_0 = \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) \varphi^\top(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) v(k) \right]$$

Idea: What if a different vector than $\varphi(k)$ could be included in the product with $v(k)$?

$$\hat{\theta} - \theta_0 = \left[\frac{1}{N} \sum_{k=1}^N Z(k) \varphi^\top(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^N Z(k) v(k) \right]$$

where the elements of $Z(k)$ are uncorrelated with $v(k)$. Then $E\{Z(k)v(k)\} = 0$ and the error can be zero.

Vector $Z(k)$ has n elements, which are called **instruments**.

Instrumental variable method

In order to have:

$$\hat{\theta} - \theta_0 = \left[\frac{1}{N} \sum_{k=1}^N Z(k) \varphi^\top(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^N Z(k) v(k) \right] \quad (8.1)$$

the estimated parameter must be:

$$\hat{\theta} = \left[\frac{1}{N} \sum_{k=1}^N Z(k) \varphi^\top(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^N Z(k) y(k) \right] \quad (8.2)$$

This $\hat{\theta}$ is the solution to the system of n equations:

$$\left[\frac{1}{N} \sum_{k=1}^N Z(k) \varphi^\top(k) \right] \theta = \left[\frac{1}{N} \sum_{k=1}^N Z(k) y(k) \right] \quad (8.3)$$

Constructing and solving this system gives the **basic instrumental variable (IV) method**.

Instrumental variable method: Alternate form

Alternate form of the system of equations::

$$\left[\frac{1}{N} \sum_{k=1}^N Z(k)[\varphi^\top(k)\theta - y(k)] \right] = 0 \quad (8.4)$$

Exercise: Show that (8.4) is equivalent to (8.3), and that they imply (8.2), which in turn implies (8.1).

Simple instruments

So far the instruments $Z(k)$ were not discussed. They are usually created based on the inputs (including outputs would lead to correlation with v and so eliminate the advantage of IV).

Simple possibility: just include additional delayed inputs to obtain a vector of the appropriate size, $n = na + nb$:

$$Z(k) = [u(k - nb - 1), \dots, u(k - na - nb), u(k - 1), \dots, u(k - nb)]^\top$$

Compare to original vector:

$$\varphi(k) = [-y(k - 1), \dots, -y(k - na), u(k - 1), \dots, u(k - nb)]^\top$$

Question: Why not just include $u(k - 1), \dots, u(k - na)$?

Generalization

Take na past values from generic instrumental variable x :

$$Z(k) = [-x(k-1), \dots, -x(k-na), u(k-1), \dots, u(k-nb)]^\top$$

which is the output of a transfer function with u at the input:

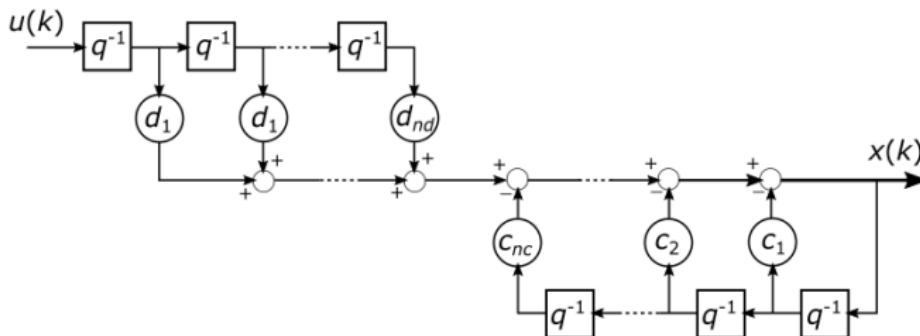
$$C(q^{-1})x(k) = D(q^{-1})u(k)$$

Remark: $C(q^{-1})$, $D(q^{-1})$ have different meanings than in PEM.

IV generator: explicit form and detailed diagram

$$(1 + c_1 q^{-1} + \dots + c_{nc} q^{-nc})x(k) = \\ (d_1 q^{-1} + \dots + d_{nd} q^{-nd})u(k)$$

$$x(k) = -c_1 x(k-1) - c_2 x(k-2) - \dots - c_{nc} x(k-nc) \\ + d_1 u(k-1) + d_2 u(k-2) + \dots + d_{nd} u(k-nd)$$



Generalized instruments: obtaining the simple case

In order to obtain:

$$Z(k) = [u(k - nb - 1), \dots, u(k - na - nb), u(k - 1), \dots, u(k - nb)]^\top$$

set $C = 1$, $D = -q^{-nb}$.

Exercise: Verify that the desired $Z(k)$ is indeed obtained.

Generalized instruments: Initial model

Generalized instruments:

$$Z(k) = [-x(k-1), \dots, -x(k-na), u(k-1), u(k-2), \dots, u(k-nb)]^\top$$

Compare to original vector:

$$\varphi(k) = [-y(k-1), \dots, -y(k-na), u(k-1), \dots, u(k-nb)]^\top$$

Idea: Take instrument generator equal to an initial model,
 $C(q^{-1}) = \hat{A}(q^{-1})$, $D(q^{-1}) = \hat{B}(q^{-1})$. This model can be obtained e.g.
with ARX estimation.

The instruments are an approximation of y :

$Z(k) = [-\hat{y}(k-1), \dots, -\hat{y}(k-na), u(k-1), \dots, u(k-nb)]^\top$
that has the crucial advantage of being *uncorrelated* with the noise.
Note here \hat{y} is the *simulated* output!

IV method summary

IV method

- 1: **for** each step $k = 1, 2, \dots, N$ **do**
- 2: form regressor vector:
$$\varphi(k) = [-y(k-1), \dots, -y(k-na), u(k-1), \dots, u(k-nb)]^\top$$
- 3: form IV vector:
$$Z(k) = [-x(k-1), \dots, -x(k-na), u(k-1), \dots, u(k-nb)]^\top$$
- 4: simulate IV generator: $x(k) = Z^\top(k)[c_1, \dots, c_{nc}, d_1, \dots, d_{nd}]^\top$
- 5: **end for**
- 6: compute $\tilde{\Phi} = \frac{1}{N} \sum_{k=1}^N Z(k)\varphi^\top(k)$, an $(na+nb) \times (na+nb)$ matrix
- 7: compute $\tilde{Y} = \frac{1}{N} \sum_{k=1}^N Z(k)y(k)$, an $na+nb$ vector
- 8: solve $\tilde{\Phi}\theta = \tilde{Y}$
- 9: **return** $\theta = [a_1, \dots, a_{na}, b_1, \dots, b_{nb}]^\top$

Negative- and zero-time signals set to 0 as usual.

Table of contents

1 Analytical development of instrumental variable methods

- Starting point: ARX
- Instrumental variables methods
- Comparison: IV versus PEM

2 Matlab example

3 Theoretical guarantees

4 Closed-loop identification using IV

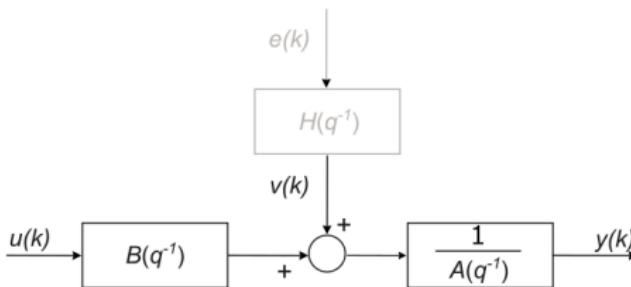
5 Closed-loop Matlab example

Comparison

Both PEM and IV can be seen as extensions of ARX:

$$A(q^{-1})y(k) = B(q^{-1})u(k) + e(k)$$

to disturbances $v(k)$ different from white noise $e(k)$.



- **PEM** explicitly include the disturbance model in the structure, e.g. in ARMAX $v(k) = C(q^{-1})e(k)$ leading to $A(q^{-1})y(k) = B(q^{-1})u(k) + C(q^{-1})e(k)$.
- **IV methods** do *not* explicitly model the disturbance, but are designed to be resilient to non-white, “colored” disturbance, by using instruments $Z(k)$ uncorrelated with it.

Comparison (continued)

Advantage of IV: Simple model structure, identification consists only of solving a system of linear equations. In contrast, PEM required solving optimization problems with e.g. Newton's method, was susceptible to local minima etc.

Disadvantage of IV (why it was only a *qualified* yes in the beginning): In practice, for finite number N of data, model quality depends heavily on the choice of instruments $Z(k)$. Moreover, the resulting model has a larger risk of being unstable (even for a stable real system).

Methods exist to choose instruments $Z(k)$ that are optimal in a certain sense, but they will not be discussed here.

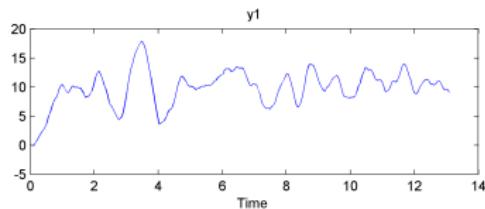
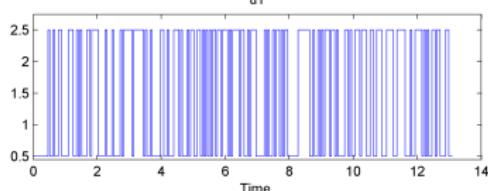
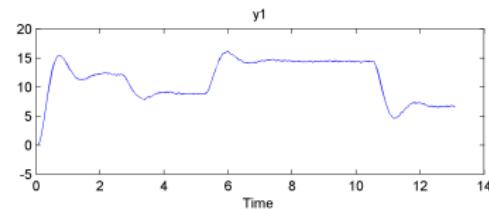
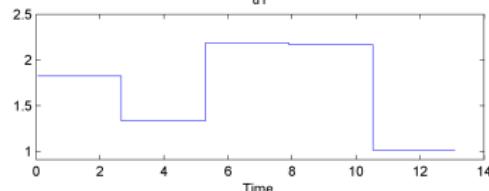
Table of contents

- 1 Analytical development of instrumental variable methods
- 2 Matlab example
- 3 Theoretical guarantees
- 4 Closed-loop identification using IV
- 5 Closed-loop Matlab example

Experimental data

Separate identification and validation data sets:

`plot(id); and plot(val);`



From prior knowledge, the system has order 2 and the disturbance is colored (does not obey the ARX model structure).

Remarks: As before, the identification input is a pseudo-random binary signal, and the validation input a sequence of steps.

IV identification with custom instruments

Define the instruments by the generating transfer function, using polynomials $C(q^{-1})$ and $D(q^{-1})$.

```
model = iv(id, [na, nb, nk], C, D);
```

Arguments:

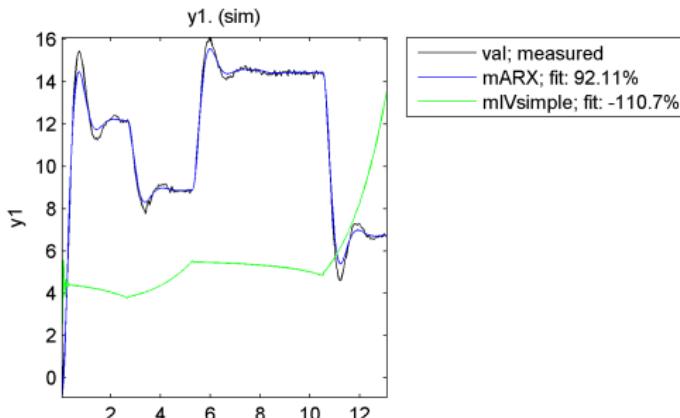
- ① Identification data.
- ② Array containing the orders of A and B and the delay nk (like for ARX).
- ③ Polynomials C and D , as vectors of coefficients in increasing power of q^{-1} .

Result with simple instruments

Take $C(q^{-1}) = 1$, $D(q^{-1}) = -q^{-nb}$, leading to

$$Z(k) = [u(k - nb - 1), \dots, u(k - na - nb), u(k - 1), \dots, u(k - nb)]^\top.$$

Compare to ARX.



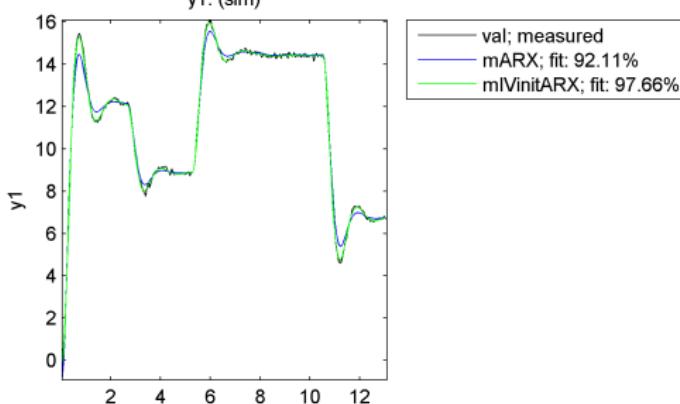
Conclusions:

- Model unstable \Rightarrow in general, must pay attention because IV models **are not guaranteed to be stable!** (recall the Comparison)
- Results very bad with this simple choice.

Result with ARX-model instruments

Take $C(q^{-1}) = \hat{A}(q^{-1})$, $D(q^{-1}) = \hat{B}(q^{-1})$ from the ARX experiment, leading to

$$Z(k) = [-\hat{y}(k-1), \dots, -\hat{y}(k-na), u(k-1), \dots, u(k-nb)]^\top.$$

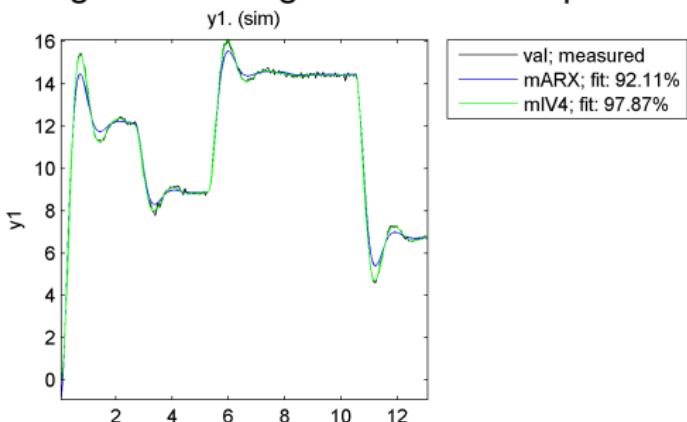


Conclusion: IV obtains better results. This is because the disturbance is colored, and IV can deal effectively with this case (whereas ARX cannot – but it still provides a useful starting point for IV).

Result with automatic instruments

```
model = iv4(id, [na, nb, nk]);
```

Implements an algorithm that generates near-optimal instruments.



Conclusion: Virtually the same performance as ARX instruments.

Table of contents

- 1 Analytical development of instrumental variable methods
- 2 Matlab example
- 3 Theoretical guarantees
- 4 Closed-loop identification using IV
- 5 Closed-loop Matlab example

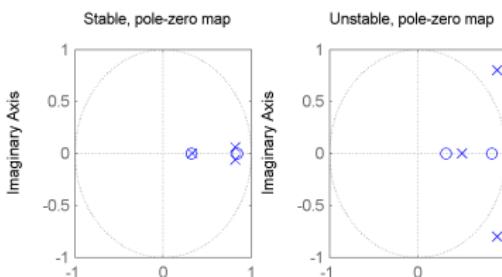
Assumptions

Assumptions (simplified)

- 1 The disturbance $v(k) = H(q^{-1})e(k)$ where $e(k)$ is zero-mean white noise, and $H(q^{-1})$ is a transfer function satisfying certain conditions.
- 2 The input signal $u(k)$ has a sufficiently large order of PE and does not depend on the disturbance (the experiment is open-loop).
- 3 The real system is stable and *uniquely* representable by the model chosen: there exists exactly one θ_0 so that polynomials $A(q^{-1}; \theta_0)$ and $B(q^{-1}; \theta_0)$ are identical to those of the real system.
- 4 Matrix $E \{Z(k)Z^\top(k)\}$ is invertible.

Discussion of assumptions

- Assumption 1 shows the main advantage of IV over PEM: the disturbance can be colored.
- Assumptions 2 and 3 are not very different from those made by PEM. Stability of a discrete-time system requires its poles to be strictly inside the unit circle:



Question: Why is the experiment not allowed to be closed-loop?

- Assumption 4 is required to solve the linear system, and given an input with sufficient order of PE boils down to an appropriate selection of instruments (e.g. not repeating the same delayed input $u(k - i)$ twice).

Guarantee

Theorem 1

As the number of data points $N \rightarrow \infty$, the solution $\hat{\theta}$ of IV estimation converges to the true parameter vector θ_0 .

Remark: This is a **consistency** guarantee, in the limit of infinitely many data points.

Possible extensions

- Multiple-input, multiple-output systems.
- Larger-dimension instruments Z than parameter vectors θ — with other modifications, called extended IV methods.
- Identification of systems operating in closed loop: next

Table of contents

- 1 Analytical development of instrumental variable methods
- 2 Matlab example
- 3 Theoretical guarantees
- 4 Closed-loop identification using IV
- 5 Closed-loop Matlab example

Motivation

In practice, systems must often be controlled, because when they operate on their own, in open loop:

- They would be unstable
- Safety or economical limits for the signals would not be satisfied

This means that $u(k)$ is computed using feedback from $y(k)$: the system operates in closed loop

Closed-loop identification

However, most of the techniques that we studied assume the system functions in open loop! For instance, IV guarantees require (among other things):

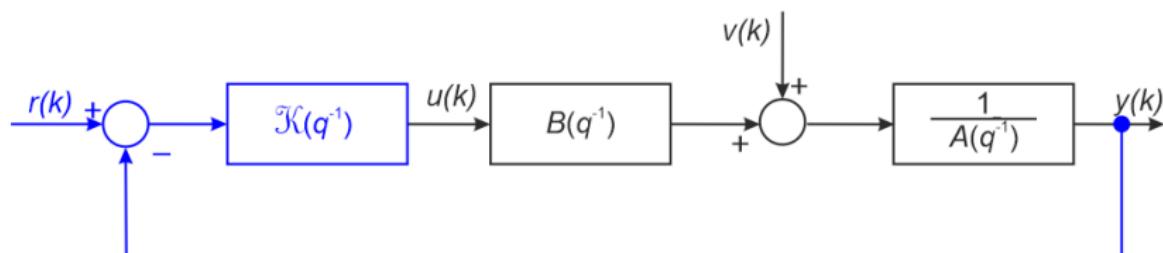
- ...
- The input signal $u(k)$ does not depend on the disturbance (the experiment is open-loop)
- ...

Removing this condition leads to **closed-loop identification**.

Several techniques can be modified for this setting, notably including prediction error methods.

Here, we will focus on IV methods since they are easy to modify.

Closed-loop IV structure



$$A(q^{-1})y(k) = B(q^{-1})u(k) + v(k)$$

$$u(k) = \mathcal{K}(q^{-1})(r(k) - y(k))$$

where $\mathcal{K}(q^{-1})$ is the transfer function of the controller, and $r(k)$ is a reference signal

Therefore, $u(k)$ dynamically depends both on the reference signal and on the system output

Challenge

The open-loop condition will of course fail. Let us dig deeper into it.

The underlying reason for which we needed the loop open was to make the parameter errors:

$$\hat{\theta} - \theta_0 = \left[\frac{1}{N} \sum_{k=1}^N Z(k) \varphi^\top(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^N Z(k) v(k) \right]$$

equal to zero, leading to a good model. For this, we require:

- $E \{Z(k)v(k)\}$ zero.
- $E \{Z(k)\varphi^\top(k)\}$ invertible.

With the usual IV choices, computed based on u (which now depends on y and hence on v), the first condition would fail.

Closed-loop IV idea

The vector of IVs $Z(k)$ is not allowed to depend on $u(k)$ anymore.

Idea: **make it a function of $r(k)$!**

Then:

- $E \{Z(k)v(k)\}$ will naturally be zero, since we are the ones generating the reference r , independently from the disturbance v
- We can make $E \{Z(k)\varphi^\top(k)\}$ invertible by ensuring the IVs are good (e.g. no linear dependence), and that the reference r has a sufficiently high order of PE

Example choices of IVs

Simplest idea – include in Z the appropriate number of delayed reference values:

$$Z(k) = [r(k-1), r(k-2), \dots, r(k-na-nb)]^\top$$

Slightly generalized to linear combinations of these values:

$$Z(k) = \mathcal{F} \cdot [r(k-1), r(k-2), \dots, r(k-na-nb)]^\top$$

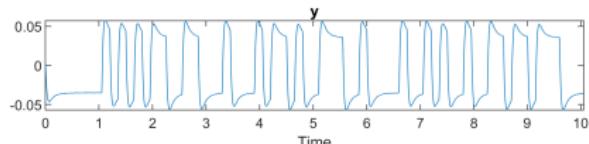
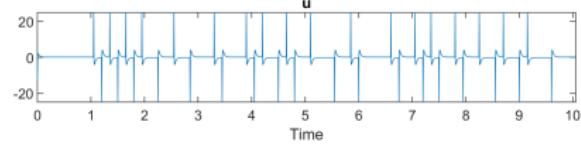
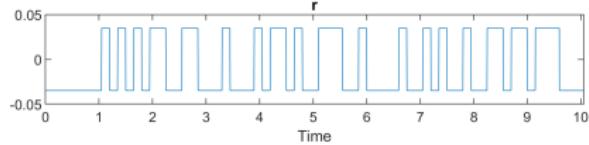
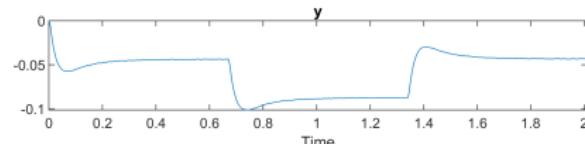
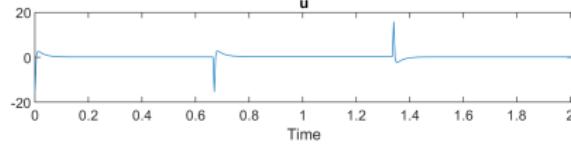
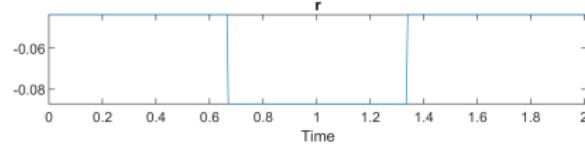
where \mathcal{F} is invertible. The simple case is recovered by taking \mathcal{F} the identity matrix.

Table of contents

- 1 Analytical development of instrumental variable methods
- 2 Matlab example
- 3 Theoretical guarantees
- 4 Closed-loop identification using IV
- 5 Closed-loop Matlab example

Experimental data

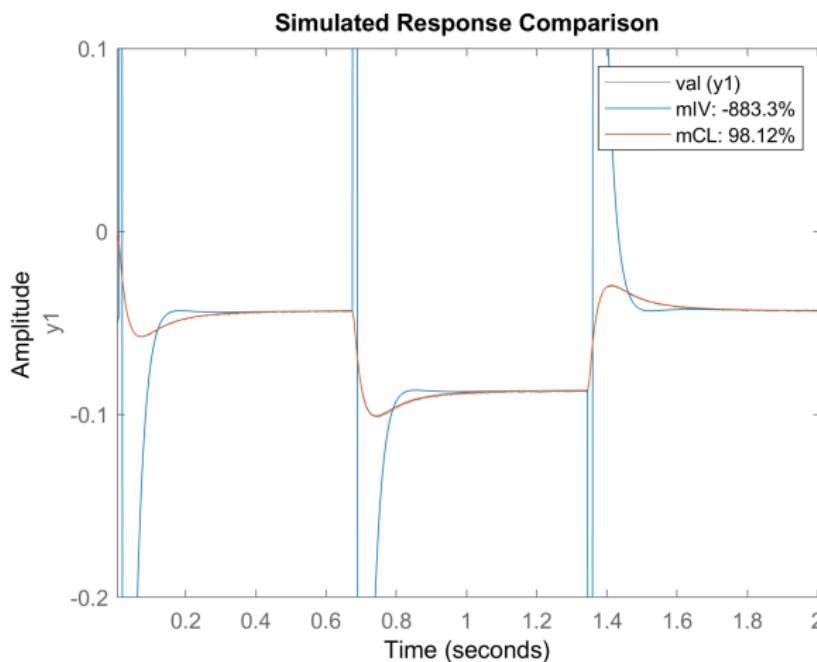
Identification left, and validation right:



Similarly to the open-loop case, the system has order 2 and the disturbance is colored (does not obey the ARX model structure).

However, now the input is generated by a controller based on the reference signal r , which is a PRBS.

Results



- Regular IV with ARX instruments: fails.
- Closed-loop IV using r to generate instruments: works.

Summary

- Objective: combine simplicity of ARX linear regression with generality of PEM disturbance v
- Examined in-depth why ARX fails for colored disturbance v
- Solution: replace regressors φ (at strategic places in equations) by *instrumental variables* Z that do not depend on y
- Several ways to compute Z from u only
- Solution quality dependent on Z , may even be unstable
- Matlab example
- Further generalizing Z to depend only on reference r allows IV to work in closed-loop
- Matlab example for closed-loop identification