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Analytical development of IV methods

Classification

Recall taxonomy of models from Part I:
By number of parameters:

@ Parametric models: have a fixed form (mathematical formula),
with a known, often small number of parameters

@ Nonparametric models: cannot be described by a fixed, small
number of parameters
Often represented as graphs or tables

By amount of prior knowledge (“color”):

@ First-principles, white-box models: fully known in advance
@ Black-box models: entirely unknown
© Gray-box models: partially known

Like prediction error methods, instrumental variable methods produce
black-box, parametric, polynomial models.
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Overall motivation

@ The ARX method is simple (linear regression),
but only supports limited classes of disturbance

@ General PEM supports any (reasonable) disturbance,
but it is relatively difficult to apply from a numerical point of view

Can we come up with a method that combines both advantages?

(qualified) Yes! Instrumental variables
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Recall: ARX model

A(q )y (k) = B(q")u(k) + e(k)

u(k)

(1+a;qg '+ -+ anaqg ") y(k) =

(big™" + - + bwg "™)u(k) + e(k)

e(k)
-+

T/

y(k)
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ARX model: explicit form and detailed diagram

In explicit form:

y(k)=—aiy(k —=1) —ay(k—2) — ... — anay(k — na)
biu(k — 1)+ bou(k — 2) + ... + bppu(k — nb) + e(k)

where the model parameters are: ay, a, ..., ap, and by, by, ..., byp.

k
(k) e(k)




Analytical development of IV methods
[e]e] Yololele}

Recall: Linear regression representation

Regressor vector: ¢ € R™ previous output and input values.
Parameter vector: § € R"+ polynomial coefficients.
y



Analytical development of IV methods
[ee]eY Yolele}

Recall: Identification problem and solution

Given dataset u(k), y(k), k =1,..., N, find model parameters 6 to
achieve small errors (k) in:

y(k) =" (k)0 + (k)

Formal objective: minimize the mean squared error:
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Parameter errors

Finally, recall that for the guarantees, a true parameter vector 6y is
assumed to exist:

y(k) =" (k)00 + v(k)

Analyze the parameter errors (a vector of n elements):

- —1 -

_ 1 & 1 &
h— 0, = NZ<p(k)<pT(k) Nzyo(k)y(k)]
k=1 A L k=1
PR . 41 [N .
- _N;Ww (k)_ _N;p(k)w (k)] b0
_1 N -1 —1 N
= |y ek (k)| |5 Do ekl )—soT(k)ﬁo]]
L k=1 J L k=1
o 1774
— NZ<p(k)<pT(k) Nzyﬁ(k)V(k)]
L k=1 J L k=1
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Consistency conditions

We wish the algorithm to be consistent: the parameter errors should
become 0 in the limit of infinite data (and they should be well-defined).

As N — oo:

For the error to be (1) well-defined and (2) equal to zero, we need:

@ E {¢(k)p' (k)} invertible.
Q E {p(k)v(k)} zero.
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White noise required

@ We have E {¢(k)v(k)} = 0 if the elements of ¢ (k) are
uncorrelated with v(k) (note that v(k) is assumed zero-mean).

@ But (k) includes y(k —1),y(k —2),..., which depend on
vik—1),v(k—-2),...!

@ So the only option is to have v(k) uncorrelated with
vik—1),v(k—2),... = v(k) mustbe white noise.

Instrumental variables are a solution to remove this limitation to white
noise.
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Intuition

Idea: What if a different vector than (k) could be included in the
product with v(k)?

—1

N 1 N 1 N
7o = [szww(k)] [ ZZ(k)v(k)]
k=1 k=1

where the elements of Z(k) are uncorrelated with v(k). Then
E {Z(k)v(k)} = 0 and the error can be zero.

Vector Z(k) has n elements, which are called instruments.

2|
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Instrumental variable method

In order to have:

6 — 6y =

"L
N2 2K (k)
k=1

the estimated parameter must be:

N
N Z(k)y(k)] (8.3)

Constructing and solving this system gives the basic instrumental
variable (IV) method.
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Instrumental variable method: Alternate form

Alternate form of the system of equations::

N
N Z —y(k)]| =0 (8.4)

Exercise: Show that (8.4) is equivalent to (8.3), and that they imply
(8.2), which in turn implies (8.1).
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Simple instruments

So far the instruments Z(k) were not discussed. They are usually
created based on the inputs (including outputs would lead to
correlation with v and so eliminate the advantage of V).

Simple possibility: just include additional delayed inputs to obtain a
vector of the appropriate size, n = na + nb:

Z(k) = [u(k —nb—1),...u(k — na— nb),u(k —1),...,u(k — nb)] "

Compare to original vector:

o(k) =[-y(k —1),...,~y(k — na),u(k = 1),...,u(k — nb)] "

Question: Why not just include u(k —1),...,u(k — na)? J
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Generalization

Take na past values from generic instrumental variable x:
Z(k) = [-x(k —1),...,—x(k — na),u(k —1),...,u(k — nb)] "

which is the output of a transfer function with u at the input:

C(g~")x(k) = D(q~")u(k)

Remark: C(qg~'), D(g~") have different meanings than in PEM.
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IV generator: explicit form and detailed diagram

(T+cqg "+ + cwg ™)x(k) =
(dhq ™"+ + dwq ")u(k)
x(k)=—cix(k—1)—cox(k—2) — ... — CpecX(k — NC)
+diu(k — 1)+ dou(k —2) + ... + dngu(k — nd)
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Generalized instruments: obtaining the simple case

In order to obtain:
Z(k) = [u(k —nb—1),...u(k — na— nb),u(k —1),...,u(k — nb)]"
setC=1,D=—qg .

Exercise: Verify that the desired Z(k) is indeed obtained. J
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Generalized instruments: Initial model

Generalized instruments:
Z(k) = [-x(k—1)....,—x(k — na),u(k — 1), u(k — 2),...,u(k — nb)] "

Compare to original vector:

o(K) = [~y(k —1),...,—y(k — na),u(k — 1),...,u(k — nb)] "

Idea: Take instrument generator equal to an initial model,
C(g~") = A(g~"), D(g~") = B(g~"). This model can be obtained e.g.
with ARX estimation.
The instruments are an approximation of y:

Z(k)=[-y(k—1),...— §(k — na),u(tk —1),...,u(k — nb)] "
that has the crucial advantage of being uncorrelated with the noise.
Note here j is the simulated output!
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IV method summary

IV method
1: foreach step k=1,2,...,Ndo
2: form regressor vector:

@(k):[fy(kf‘l)a ,fy(k—na),u(k—1),~~~ 7u(k7nb)]T

& form IV vector:

Z(k) = [-x(k—1),---,—x(k—na),u(k—1),--- ,u(k—nb)] T
4:  simulate IV generator: x(k) = ZT(k)[c1, -+, Cnc, A1, , Ang] "
5: end for
6: compute & = 1 SN | Z(k)p T (k), an (na+ nb) x (na+ nb) matrix
7: compute Y = & >3, Z(k)y(k), an na + nb vector
8: solve ®0 = Y
9: return 0 = [ay,...,apa, b1, ..., bop] "

Negative- and zero-time signals set to 0 as usual.
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Comparison

Both PEM and IV can be seen as extensions of ARX:

A(q ")y(k) = B(q ")u(k) + e(k)
to disturbances v(k) different from white noise e(k).

v(k) J
N !

SN y(k
+ Alg")

ol s

@ PEM explicitly include the disturbance model in the structure,
e.g. in ARMAX v(k) = C(q~")e(k) leading to
Alq")y(k) = B(q~")u(k) + C(q~")e(k).

@ |V methods do not explicitly model the disturbance, but are
designed to be resilient to non-white, “colored” disturbance, by
using instruments Z(k) uncorrelated with it.
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Comparison (continued)

Advantage of IV: Simple model structure, identification consists only
of solving a system of linear equations. In contrast, PEM required
solving optimization problems with e.g. Newton’s method, was
susceptible to local minima etc.

Disadvantage of IV (why it was only a qualified yes in the beginning):

In practice, for finite number N of data, model quality depends heavily
on the choice of instruments Z(k). Moreover, the resulting model has
a larger risk of being unstable (even for a stable real system).

Methods exist to choose instruments Z(k) that are optimal in a certain sense,
but they will not be discussed here.
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Experimental data

Separate identification and validation data sets:
plot (id); and plot (val);

W |

Time Time

From prior knowledge, the system has order 2 and the disturbance is
colored (does not obey the ARX model structure).

Remarks: As before, the identification input is a pseudo-random
binary signal, and the validation input a sequence of steps.
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IV identification with custom instruments

Define the instruments by the generating transfer function, using
polynomials C(q~") and D(g~").
model = iv(id, [na, nb, nk], C, D);

Arguments:

@ Identification data.

@ Array containing the orders of A and B and the delay nk (like for
ARX).

© Polynomials C and D, as vectors of coefficients in increasing
power of g~ .
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Result with simple instruments

Take C(g~") =1, D(qg™") = —g~ "™, leading to
Z(k) = [u(k —nb—1),...u(k—na—nb),u(k —1),...,u(k — nb)] .
Compare to ARX.

y1. (sim)

val; measured
mARX; fit: 92.11%
mlVsimple; fit: -110.7%

y1

2 4 6 8 10 12

Conclusions:

@ Model unstable = in general, must pay attention because IV
models are not guaranteed to be stable! (recall the Comparison)

@ Results very bad with this simple choice.
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Result with ARX-model instruments

Take C(q~") = A(q™"), D(g~') = B(g™ ") from the ARX experiment,

leading to
S N T
Z(k) = [-§(k —1),...— y(k — na),u(k — 1),...,u(k — nb)] .
y1. (sim)
18 A %\\J&NA%A val, measured
" A‘, X I 1 Eﬁfﬁt{g’fﬁm_ee%
1201 ™ { |
10 |
< el YT \
> | A
6f \
4f '
2v
0

2 4 6 8 10 12

Conclusion: IV obtains better results. This is because the disturbance
is colored, and IV can deal effectively with this case (whereas ARX
cannot — but it still provides a useful starting point for 1V).



Matlab example
00000e

Result with automatic instruments

model = iv4 (id, [na, nb, nk]);

Implements an algorithm that generates near-optimal instruments.

y1. (sim)
16 7
\ val; measured
14 /\ R iasnts mMARX; fit: 92.11%
A | miIV4; fit: 97.87%
120 ™ {
10 |
| PNy
< 8 1% |
= | A
6 \/
4| ’
2
0

Conclusion: Virtually the same performance as ARX instruments.
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Theoretical guarantees

Assumption

Assumptions (simplified)

@ The disturbance v(k) = H(q~")e(k) where e(k) is zero-mean
white noise, and H(g~') is a transfer function satisfying certain
conditions.

@ The input signal u(k) has a sufficiently large order of PE and
does not depend on the disturbance (the experiment is
open-loop).

© The real system is stable and uniquely representable by the
model chosen: there exists exactly one 6y so that polynomials
A(g~";60) and B(g~"'; 6) are identical to those of the real
system.

Q Matrix E {Z(k)Z " (k)} is invertible.
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Discussion of assumptions

@ Assumption 1 shows the main advantage of IV over PEM: the
disturbance can be colored.

@ Assumptions 2 and 3 are not very different from those made by
PEM. Stability of a discrete-time system requires its poles to be
strictly inside the unit circle:

Stable, pole-zero map Unstable, pole-zero map

1 1

X
05

0 Oox 0

Imaginary Axis
o
®
Pl
Imaginary Axis

-05 05

Question: Why is the experiment not allowed to be closed-loop? |

@ Assumption 4 is required to solve the linear system, and given an
input with sufficient order of PE boils down to an appropriate
selection of instruments (e.g. not repeating the same delayed
input u(k — i) twice).
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Guarantee

Theorem 1

As the number of data points N — oo, the solution 6 of IV estimation
converges to the true parameter vector 6.

Remark: This is a consistency guarantee, in the limit of infinitely
many data points.
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Possible extensions

@ Multiple-input, multiple-output systems.

@ Larger-dimension instruments Z than parameter vectors 6 —
with other modifications, called extended IV methods.

@ Identification of systems operating in closed loop: next
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Motivation

In practice, systems must often be controlled, because when they
operate on their own, in open loop:

@ They would be unstable
@ Safety or economical limits for the signals would not be satisfied

This means that u(k) is computed using feedback from y(k): the
system operates in closed loop
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Closed-loop identification

However, most of the techniques that we studied assume the system
functions in open loop! For instance, IV guarantees require (among
other things):

o ...

@ The input signal u(k) does not depend on the disturbance (the
experiment is open-loop)

o ...
Removing this condition leads to closed-loop identification.

Several techniques can be modified for this setting, notably including
prediction error methods.

Here, we will focus on IV methods since they are easy to modify.
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Closed-loop IV structure

v(k)
u(k) + k
> B(g" . | A(1q B ( ,)

A(G ")y(k) = B(g ")u(k) + v(k)
u(k) = K(q")(r(k) - y(k))

where K(g~1) is the transfer function of the controller, and r(k) is a
reference signal

k)

Therefore, u(k) dynamically depends both on the reference signal
and on the system output
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The open-loop condition will of course fail. Let us dig deeper into it.

The underlying reason for which we needed the loop open was to
make the parameter errors:

—1

N 1 N 1 N
0 — 0= [sz(k)f(k)] [sz(k)v(k)]

k=1 k=1
equal to zero, leading to a good model. For this, we require:
@ E{Z(k)v(k)} zero.
@ E{Z(k)p'(k)} invertible.

With the usual IV choices, computed based on u (which now depends
on y and hence on v), the first condition would fail.
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Closed-loop IV idea

The vector of IVs Z(k) is not allowed to depend on u(k) anymore.
Idea: make it a function of r(k)!

Then:

@ E {Z(k)v(k)} will naturally be zero, since we are the ones
generating the reference r, independently from the disturbance v

@ We can make E {Z(k)¢ " (k)} invertible by ensuring the IVs are
good (e.g. no linear dependence), and that the reference r has a
sufficiently high order of PE
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Example choices of IVs

Simplest idea — include in Z the appropriate number of delayed
reference values:
Z(k)=[r(k—=1),r(k—2),...r(k —na—nb)]"

Slightly generalized to linear combinations of these values:
Z(k)=F -[r(k—=1),r(k—2),...r(k — na— nb)]"

where F is invertible. The simple case is recovered by taking F the
identity matrix.
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Experimental data

Identification left, and validation right:

Yy y
005 T
(|
| Inim
0 | 111 -0.05
U |
0.05 ! Y| 04
] 1 2 3 4 5 6 7 8 9 10 0 0.2 04 06 0.8 1 12 14 16 1.8 2
Time Time
u u
| ENRNINERARNEN
0’—/»'1”‘“ | “71; “ ;l“ 3 ‘4‘ ‘J.: ‘ L ‘ - 0 \
-0 L " 1 20 s s s s s s s s s
1] 1 2 3 4 5 6 7 8 9 10 [ 0.2 0.4 06 0.8 1 1.2 14 16 18 2
Time Time
0.05 r T T T !
——— o
‘ “ ‘ -0.06 ‘
or |
(8L A O S S L -0.08
o0 et adielerdidumtertabedudieiiiuli R R
[] 1 2 3 4 5 6 7 8 9 10 0 0.2 0.4 06 0.8 1 12 14 16 18 2
Time Time

Similarly to the open-loop case, the system has order 2 and the
disturbance is colored (does not obey the ARX model structure).

However, now the input is generated by a controller based on the
reference signal r, which is a PRBS.
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Simulated Response Comparison
0.1 " : : ' , | ,
val (y1)
mlV: -883.3%
mCL: 98.12%
I
|
0 ‘ i
[} \
B - E— N B
5> _F ‘ f
£ / |
< | \ i
\ "
01 | MV 1
/
|
|
|
|
. P I . . . . J
1.6 1.8 2

02 04 06 08 1 12 14
Time (seconds)

@ Regular IV with ARX instruments: fails.
@ Closed-loop IV using r to generate instruments: works.
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Summary

@ Objective: combine simplicity of ARX linear regression with
generality of PEM disturbance v

@ Examined in-depth why ARX fails for colored disturbance v

@ Solution: replace regressors ¢ (at strategic places in equations)
by instrumental variables Z that do not depend on y

@ Several ways to compute Z from u only
@ Solution quality dependent on Z, may even be unstable

@ Matlab example

@ Further generalizing Z to depend only on reference r allows IV to
work in closed-loop

@ Matlab example for closed-loop identification
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