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Part V

ARX identification



Classification

Recall taxonomy of models from Part I:
By number of parameters:
@ Parametric models: have a fixed form (mathematical formula),
with a known, often small number of parameters

@ Nonparametric models: cannot be described by a fixed, small
number of parameters
Often represented as graphs or tables

By amount of prior knowledge (“color”):

@ First-principles, white-box models: fully known in advance
@ Black-box models: entirely unknown
© Gray-box models: partially known

The ARX method produces parametric, polynomial models.



Why ARX?

@ General-order, fully implementable method with guarantees — like
correlation analysis

@ Unlike correlation analysis, gives a compact model with a
number of parameters proportional to the order of the system
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We stay in the single-output, single-input case for the entire lecture except
the optional appendix. Nonlinear ARX is for the project, we won’t need it for
the labs.
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Recall: Discrete time

We remain in the discrete-time setting:

u(k) u(t) YO~ Yk

—_— Hold System

Sample
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ARX model structure

In the ARX model structure, the output y(k) at the current discrete
time step is computed based on previous input and output values:

y(k)+ aiy(k—1)+ay(k—2)+...+ anay(k — na)
=biu(k — 1)+ bou(k —2) + ...+ bppu(k — nb) + e(k)
equivalent to

y(k) = —ary(k —1) — ay(k —2) — ... — @nay(k — na)
+ biu(k — 1)+ bou(k —2) + ...+ bypu(k — nb) + e(k)

e(k) is the noise at step k.
Model parameters: ay, ag, ..., an, and by, ba, ..., byp.

Name: AutoRegressive (y(k) a function of previous y values) with
eXogenous input (dependence on u)
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Graphical form

y(k) = —aiy(k —1) — axy(k —2) — ... — anay(k — na)
+ biu(k — 1) + bou(k — 2) + ... + bppu(k — nb) + e(k)

e(k)

where the backward shift operator g~ delays any discrete-time
signal z(k) by one step:

g 'z(k) = z(k - 1)
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Polynomial ARX form

Using g~ ', we write:

y(k)+ary(k = 1)+ ay(k — 2) + ... + anay(k — na)
—(1+a1q ' +aq 2+...+anq ")yk) = Aq yk)
and:
biu(k — 1) + bou(k — 2) + ... + bpyu(k — nb)
= (b1 + b2 2+ ...+ bag ™) u(k) =: B(g~")u(k)

Therefore, the ARX model is written compactly:
A(q ")y (k) = B(q ")u(k) + e(k)
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Compact graphical form

u(k),

Zooming out:
e(k)/L
u(k) . 3 1 y(K)
) B(q ) : ) A(q,1) —
equivalent to:
1 _
y(k) = 50— [B(q~")u(k) + e(k)]



Remarks

@ The ARX model is quite general, it can describe arbitrary linear
relationships between inputs and outputs. However, the noise
enters the model in a restricted way, and later we introduce
models that generalize this.

@ In the absence of noise, the model reduces to a standard
discrete-time transfer function.
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Linear regression model

Returning to the explicit representation:
y(k) =—ary(k—1) —ay(k—2) — ... — anay(k — na)
+ biu(k — 1)+ bou(k —2) + ...+ bppu(k — nb) + e(k)
=[-y(k—=1),...,—y(k—na),u(k —1),...,u(k — nb)]
[@1,...,8na, b1, ... b + e(k)
=" (k)8 + e(k)

So in fact ARX obeys the standard model structure in linear
regression!
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Vectors of regressors and parameters

Regressor vector: o(k) € R previous output and input values.
Parameter vector: # € R polynomial coefficients.

k1) ar]
— (k.— na) _ al,,a
o) = | k- 1) = by
| u(k —nb) |  bos]
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Identification problem

Consider now that we are given a dataset u(k), y(k), k=0,...,N,
and we have to find the model parameters 6.

Then for any k > 1:
y(k) = " (k)0 + (k)

where (k) is now interpreted as an equation error (hence the
changed notation).

Objective: minimize the mean squared error:

1 N
V(o) = 5 D e(k)?

k=1

Remark: When k < na, nb, negative-time values for u and y are
needed to construct . They can be taken equal to 0 (assuming the
system is in zero initial conditions).



ARX identification

O@0000000

Linear system of equations

y(1)=[-y(0) - —y(1—na) wu(0) --- u(1—nb)]o
y2)=[-y(1) -+ -y(2—na) u(l) --- u(2—nb)]o
y(N)=[-y(N-1) - —y(N—na) u(N-1) --- u(N-nb)]6
Matrix form:
y(1) -y(©) - —y(1-na) u©) - u(l-nb)
y@ | | -y e —y@-na) u(t) - u@-nb) y
y(:N) —y(l\:l—1) —y(N:— na) u(N:—1) -+ Uu(N — nb)
Y =0

with notations Y € RN and ¢ € RVx(na+nb),
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ARX solution

From linear regression, to minimize 1 "3, =(k)? the parameters are:
h=(o"o) o7y

Since the new V(0) = ‘NZQﬂ e(k)? is proportional to the criterion
above, the same solution also minimizes V(6).
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Solution for large datasets

When the number of data points N is very large, the form above is
impractical. In that case, a better form is the alternative one we
introduced in the linear regression lecture:
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Solution for large datasets (continued)

Remaining issue: the sum of N terms can grow very large, leading to
numerical problems: (matrix of very large numbers)~'- vector of very
large numbers.

Solution: Normalize element values by diving them by N. In
equations, N simplifies so it has no effect on the analytical
development, but in practice it keeps the numbers reasonable.

-1

1Y
0=1x k;so(k)@T(k)

What about the division by N? It can be implemented recursively,
without ever computing large numbers — details later in the course.



Using the model
One-step ahead prediction y: The true output sequence is known, so
all the delayed signals are available and we can simply plug them in
the formula, together with the coefficients taken from 6:
J(k)=—aiy(k—1)—ay(k—2)— ... — anay(k — na)
+ biu(k —1) + bou(k —2) + ... + bppu(k — nb)
Signals at negative time can be taken equal to 0.
Example: On day k — 1, predict weather for day k.
Simulation y: True outputs y(k — i) unknown, so we must use
previously simulated outputs y(k — i):
y(k)=—aiy(k 1) — ay(k —2) — ... — anay(k — na)
+ biu(k — 1) + bou(k — 2) + ... + bypu(k — nb)
(simulated outputs at negative and zero time can also be taken 0.)

Example: Simulation of an aircraft’s response to emergency pilot
inputs, that may be dangerous to apply to the real system.
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Note on using models

We can run many types of of models, not just ARX, in prediction or
simulation modes. This is a general concept that does not only apply
to ARX.
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Special case of ARX: FIR

Setting A= 1 (na = 0) in ARX, we get:

nb
y(k) = B(q")u(k) + e(k) = Y _ bju(k — ) + e(k)

j=1

<

= ) h)ulk —j) + e(k)
j

Il
o

the FIR model from correlation analysis!

To see this, take nb = M — 1, and b; = h(j). Note h(0),the impulse
response at time 0, is assumed 0 — i.e. system does not respond
instantaneously to changes in input.

e(k)
u(k) oy

— B —

+




ARX identification
0O0000000e

Fundamental difference between ARX and FIR

ARX:  A(q~")y(k) = B(g~")u(k) + e(k)
FIR: y(k) = B(qg ") u(k) + e(k)
Since ARX includes relationships between current and previous

outputs, it will be sufficient to take orders na and nb equal to the order
of the dynamical system.

FIR needs a sufficiently large order nb (or length M) to model the
entire transient regime of the impulse response (in principle, we only
recover the correct model as M — o).

= more parameters = more data needed to identify them.



Matlab example

Table of contents

Q Matlab example



Matlab example
©00000

Experimental data

Consider we are given the following, separate, identification and
validation data sets.
plot (id); and plot (val);

vt y1

2 3
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- / 2t T —
—~ \ .
1 / \:\, — . \ TN/ AN —
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ut ut

25 25}
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15 —_

; 15}
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Time Time

Remarks: Identification input: a so-called pseudo-random binary
signal. Validation input: a sequence of steps.



ldentifying an ARX model
model = arx(id, [na, nb, nk]);
Arguments:

@ Identification data.
@ Array containing the orders of A and B and the delay nk.

Structure different from theory: includes explicitly a minimum delay
nk between inputs and outputs, useful for systems with time delays.

y(K) +ary(k —1)+azy(k —2) + ... + anay(k — na)
= biu(k — nk)+bau(k — nk —1) + ... + bppu(k — nk — nb+ 1) + e(k)
A(g My(k) = B(q ")u(k — nk) + e(k), where:
A =(+aqg ' +aq2+...4+anqg ™)
B(g~") = (bi + boq ' + bypg ")

The theoretical structure is obtained by setting nk = 1. For nk > 1,
we can also transform the new structure into the theoretical one by
using a B polynomial of order nk + nb — 1, with nk — 1 leading zeros:

Btheor(q_1) = Oq_1 +... Oq_nk+1 + by q_nk .+ ban—nk—nb-H
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Model validation

Assuming the system is second-order, in the ARX form, and without
time delay, we take na =2, nb = 2, nk = 1. Validation:

compare (model, wval);
y1. (sim)

model; measured
val; fit: 91.16%

1.8

16

14

12

y1

0.8

06

04

02

Results are not great.
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Structure selection

Alternate idea: try many different structures and choose the best one.

Na = 1:15;

Nb = 1:15;

Nk = 1:5;

NN = struc(Na, Nb, Nk);

V = arxstruc(id, wval, NN);

@ struc generates all combinations of orders in Na, Nb, Nk.

@ arxstruc identifies for each combination an ARX model (on the
data in 1st argument), simulates it (on the data in the 2nd
argument), and returns all the MSEs on the first row of v (see
help arxstruc for the format of v).



Matlab example
000080

Structure selection (continued)

To choose the structure with the smallest MSE:
N = selstruc(V, 0);
For our data, N=[8,7,1].

Alternatively, graphical selection: N selstruc(V, ’'plot’);
Then click on bar corresponding to best (red) model and “Select”,
“Close”.

<) ARX Model Structure Selectio =1Of x|

File Options Style  Help

hodel Misfit vs number of par's

Mumber of par's

=

£ Green: MOL Choice

@ Red: AIC Choice | | I3

& 003 Red: Best Fit Misfit=0 00445322
E na=

g nb=7

= nk=1

=

.E Select

g Close

=

= I ]
=]

0 10 20 li} 40
Nurnber of par's

Inspect models by clicking bars or press SELECT.

(Later we learn other structure selection criteria than smallest MSE.)
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Validation of best ARX model

model = arx(id, N); compare (model, wval);
Measured Output and Simulated Model Qutput
25

Measured Output
model Fit: 97.77%

s \/\

y1

05

0

0 10 20 30 40 50
Time

A better fit is obtained. However, this is very likley not an 8th order
systems, and something else is likely going on... we will see later.
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Main result

Assumptions
@ There exists a true parameter vector 6y so that:

y(k) = @' (K)bo + v(k)

with v(k) a stationary stochastic process independent from u(k).
@ E {¢(k)p " (k)} is a nonsingular matrix.
Q E{p(k)v(k)} =0.

Theorem

ARX identification is consistent: the estimated parameters §converge
to the true parameters 6y, in the limit as N — oo.



Accuracy guarantee
(o] 1]

Discussion of assumptions

@ Assumption 1 is equivalent to the existence of true polynomials
Ao(g™"), Bo(g~ ") so that:

Ao(q~ ")y (k) = Bo(q~")u(k) + v(k)
To motivate Assumption 2, recall
0= [ S0 e (0] (4 S ek)y ()
As N — oo, § YiL o(K)eT (k) — E {p(k)eT (K)}.

@ E {¢(k)p' (k)} is nonsingular if the data is “sufficiently
informative” (e.g., u(k) should not be a simple feedback from
y(k); see Soderstrdm & Stoica for more discussion).

Q E {p(k)v(k)} = 0 e.g. if v(k) is white noise. Later on, we will
discuss in more detail Assumption 3 and the role of

E{o(k)v(k)} = 0.
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Summary

@ ARX model structure and representation with polynomials in g~
@ Linear-regression form with regressors ¢ and parameters 6

@ Least-squares solution to the linear-regression problem. Rewrite
for large datasets

@ Using the model for prediction and simulation
@ Relationship with FIR

@ Matlab example.
@ Simplified accuracy guarantee.
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Nonlinear ARX structure

Recall standard ARX:

Y(k)=—aiy(k—1)—ay(k —2) —... — anay(k — na)
+ biu(k — 1)+ bou(k —2) + ...+ bppu(k — nb) + e(k)
Linear dependence on delayed outputs y(k — 1),...,y(k — na) and
inputs u(k —1),...,u(k — nb).

Nonlinear ARX (NARX) generalizes this to any nonlinear
dependence:

y(k) :g(y(kf1)7y(k72)7"'7y(k7na)a
u(k —1),u(k —2),...,u(k — nb); ) + e(k)

Function g is parameterized by ¢ € R", and these parameters can be
tuned to fit identification data and thereby model a particular system.



Polynomial NARX

In our particular case, g is a polynomial of degree m in the delayed
outputs and inputs:

y(k) = p(y(k —1),....y(k — na),u(k — 1),...,u(k — nb)) + e(k)
= p(d(k)) + e(k)

where d(k) = [y(k —1),...,y(k — na),u(k —1),...,u(k — nb)] " is
the vector of delayed signals.

E.g., for orders na= nb =1 (so d(k) = [y(k — 1), u(k —1)] ") and
degree m = 1, the model is:

y(k)=ay(k—1)+bu(k — 1)+ c+ e(k)

which by further taking ¢ = 0 recovers the linear ARX form
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Polynomial NARX (continued)

For the same na = nb =1 and degree m = 2:

y(k) =ay(k —1) + bu(k — 1) + cy(k — 1)?
+du(k —1)? + wu(k —1)y(k — 1) + z + e(k)

@ Do not confuse with polynomial form
A(g")y(k) = B(g~")u(k) + e(k)

@ The parameters are now the coefficients of the polynomial, e.g.
0 =lab,cdwz"

@ Linear regression works as usual, finding the parameters that
minimize the MSE!

@ Negative and zero-time y and u can be taken 0,
assuming system in zero initial conditions
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Recall prediction versus simulation

One-step ahead prediction y: True output sequence is known, delays
vector d(k) is fully available:

d(k) =[y(k —1),...,y(k — na),u(k —1),...,u(k — nb)] "
y(k) =g(d(k); )

Simulation y: True outputs unknown, use the previously simulated
outputs to construct an approximation d(k) of d(k):

d(k) =[(k —1),....7(k — na),u(k —1),...,u(k — nb)] "
y(k) =g(d(k); 0)
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MIMOQO system

So far we considered y(k) € R, u(k) € R,
Single-Input, Single-Output (SISO) systems

Many systems are Multiple-Input, Multiple-Output (MIMO).
E.g., aircraft. Inputs: throttle, aileron, elevator, rudder.
Outputs: airspeed, roll, pitch, yaw.
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MIMO ARX

Consider next y(k), e(k) € R", u(k) € R™. MIMO ARX model:

A(@ "y(k) = B(g ")u(k) + e(k)
AG Y =1+Aq " +...+Anqg "™
B(g"Y=8Bi1g"+...+ Bpg ™

where [ is the ny x ny identity matrix, Ay, ..., Apg € RY*W,
Bi,..., By € Ry>xnu,
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Concrete example

Take na=1,nb=2, ny =2, nu=3. Then:

A(q "y(k) = B(q~"u(k) + e(k)
Alg ") =1+ Aq’

_ [kt b b e [b b B e
B b2 b B bP B
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Concrete example (continued)

(o ¥+ [3 o) bk
ui (k)

bi' b2 b3 o [b)' b2 bS], e1(k)
= ([ b= o)+ oz b ] " Leatk)

Explicit relationship:

yik)+ai'yi(k — 1) + aiPya(k — 1)
=bluy(k — 1)+ bj2us(k — 1) + bl3us(k — 1)
+ biuy(k — 2) + bl2us(k — 2) + bi2us(k — 2) + ey (k)
Vo(k) 4+ & yi(k — 1) + a2ys(k — 1)
= b2 uy(k — 1)+ b22up(k — 1) + bPus(k — 1)
+ b3 uy(k — 2) + b32uo(k — 2) + b33 us(k — 2) + ex(k)
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Matlab example

Consider a continuous stirred-tank reactor:

/Cooling Jacket

Product

Image credit: mathworks.com
Input: coolant flow Q
Outputs:

@ Concentration C4 of substance A in the mix
@ Temperature T of the mix
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Matlab: Experimental data

puts

Left: identification, Right: validation

120 . . . . 110 . _— . :
1108 g i [y
£ ] fL 4y E 100|- by i
= ohd | M oh ki, AT s P ey :
5 100 /jJLvW\IJNIw KX MF“LF J R hf = I, U - f—“ﬂﬂwﬂjj
9% ha. 90
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02 02
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Mo o ”
E 0tp T M ottt L d A £ ol ,‘f\m\v\b\ ]
5 L eV aa Vo N
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450 o 450
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Matlab: MIMO ARX, different from theory

al(qg') a%qg") ... a™(q")
Aq) = az‘ffj‘) a#q") ... @Y
(@) a(q) . ()

. 1 ifi=j P i pa
(g1 = +alg'+...+a,q "
(@) {0 otherwise * 219 na;

b11(q—1) b12(q—1) b1nu(q—1
g_ |PF'(@ ) b%E(qh) ... bM(gTT)
bny1'(.c'7—1) bny2(q—1) bnynu(q—1)

bij(q—1) b q_”klf +. .+ beUq_nkﬁ_nb[j+1



Matlab: Identifying the model

m = arx(id, [Na, Nb, Nk]);
Arguments:

@ Identification data.
© Matrices with orders of polynomials in A, B, and delays nk:

[nayy ... naiy |
Na=| ...

| Nany1 ... Nanyny |

_nb11 nbmu_
Nb=| ...

| Nbpyt ... Nbpyny |

[ nk11 . nk1 nu
Nk =1 ...

| NKnyr ... NKpyny
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Matlab: Results

Take na =2, nb = 2, and nk = 1 everywhere in matrix elements:

Na = [2 2; 2 2]; Nb = [2; 2]; Nk = [1; 171;
m = arx(id, [Na Nb Nk]);
compare (m, val);

Measured Qutput and Simulated Model Output
16

Measured Output
m Fit: 83.38%

0.14
0.12

) on W WMW

0.06

0 20 40 60 80 100

Time
450
Measured Output
it o
445 MW m Fit: 89.78%
S 440 A

435
430

0 20 40 60 80 100

Time
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