
System Identification
Control Engineering EN, 3rd year B.Sc.

Technical University of Cluj-Napoca
Romania

Lecturer: Lucian Buşoniu

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Part IX

Recursive identification methods

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Table of contents

1 Introduction and motivation

2 Recursive least-squares and ARX

3 Recursive instrumental variables

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Recursive identification: Idea

Recursive methods can work online, while the system is running.

At each step k , compute a new parameter estimate θ̂(k)

(= a new model), based on the previous estimate θ̂(k − 1) and newly
available data u(k), y(k).

Remark: To contrast them with recursive identification, the previous
methods, which used the whole data set at once, will be called batch
identification.

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Motivation

Recursive methods:

Require less memory, and less computation for each update,
than the whole batch algorithm.

⇒ Easier to apply in real-time.
(total computation, after the entire dataset, may be larger)
When properly modified, can deal with systems that change over
time (time-varying).

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Motivation (continued)

If model is used to tune a controller, we obtain adaptive control:

Sketch of adaptive control based on recursive identification

initialize model and controller
loop at every step k = 1, 2, . . .

apply u(k) with current controller, measure y(k)
update model using latest sample u(k), y(k)
adapt/redesign controller using new model

end loop

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Disadvantage

Recursive methods are usually approximations of batch techniques
⇒ guarantees more difficult to obtain.

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Motivating example: Estimating a scalar

Recall scalar estimation. Model:

y(k) = b + e(k) = 1 · b + e(k) = ϕ(k)θ + e(k)

where ϕ(k) = 1∀k , θ = b.

For the data points up to and including k :

y(1) = ϕ(1)θ = 1 · b
· · ·

y(k) = ϕ(k)θ = 1 · b

After calculation, the solution of this system is:

θ̂(k) =
1
k

[y(1) + . . . + y(k)]

(estimate is the average of all measurements, filtering out the noise).

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Estimating a scalar: Recursive formulation

Rewrite the formula:

θ̂(k) =
1
k

[y(1) + . . . + y(k)]

=
1
k

[(k − 1)
1

k − 1
(y(1) + . . . + y(k − 1)) + y(k)]

=
1
k

[(k − 1)θ̂(k − 1) + y(k)]

(already a recursive formula, but we go on to gain more intuition)

=
1
k

[k θ̂(k − 1) + y(k)− θ̂(k − 1)]

= θ̂(k − 1) +
1
k

[y(k)− θ̂(k − 1)]

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Estimating a scalar: Insight

θ̂(k) = θ̂(k − 1) +
1
k

[y(k)− θ̂(k − 1)]

Method has many of the features of general recursive techniques:

Recursive formula: new estimate θ̂(k) computed based on
previous estimate θ̂(k − 1) and new data y(k).
[y(k)− θ̂(k − 1)] is a prediction error ε(k), since
θ̂(k − 1) = b̂ = ŷ(k), a one-step-ahead prediction of the output.
Update applies a correction proportional to ε(k), weighted by 1

k :
When the error ε(k) is large (or small), a large (or small)
adjustment is made.
The weight 1

k decreases with time k , so adjustments get smaller asbθ becomes better.

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Table of contents

1 Introduction and motivation

2 Recursive least-squares and ARX

General recursive least-squares

Recursive ARX

Matlab example

3 Recursive instrumental variables

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Recall: Least-squares regression

Model:
y(k) = ϕ>(k)θ + e(k)

Dataset up to k gives a linear system of equations:

y(1) = ϕ>(1)θ

y(2) = ϕ>(2)θ

· · ·
y(k) = ϕ>(k)θ

After some linear algebra and calculus, the least-squares solution can
be written:

θ̂(k) =

 k∑
j=1

ϕ(j)ϕ>(j)

−1 k∑
j=1

ϕ(j)y(j)

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Least-squares: Recursive formula

With notation P(k) =
∑k

j=1 ϕ(j)ϕ>(j):

θ̂(k) = P−1(k)

 k∑
j=1

ϕ(j)y(j)

= P−1(k)

k−1∑
j=1

ϕ(j)y(j) + ϕ(k)y(k)

= P−1(k)

[
P(k − 1)θ̂(k − 1) + ϕ(k)y(k)

]
= P−1(k)

[
[P(k)− ϕ(k)ϕ>(k)]θ̂(k − 1) + ϕ(k)y(k)

]
= θ̂(k − 1) + P−1(k)

[
−ϕ(k)ϕ>(k)θ̂(k − 1) + ϕ(k)y(k)

]
= θ̂(k − 1) + P−1(k)ϕ(k)

[
y(k)− ϕ>(k)θ̂(k − 1)

]

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Least-squares: Insight

θ̂(k) = θ̂(k − 1) + P−1(k)ϕ(k)
[
y(k)− ϕ>(k)θ̂(k − 1)

]
θ̂(k) = θ̂(k − 1) + W (k)ε(k)

Recursive formula: new estimate θ̂(k) computed based on
previous estimate θ̂(k − 1) and new data y(k).[
y(k)− ϕ>(k)θ̂(k − 1)

]
is a prediction error ε(k), since

ϕ>(k)θ̂(k − 1) = ŷ(k) is the one-step-ahead prediction using the
previous parameter vector.
W (k) = P−1(k)ϕ(k) is a weighting vector: elements of P grow
large for large k , therefore W (k) decreases.

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Recursive matrix inversion

The previous formula requires matrix inverse P−1(k), which is
computationally costly.

For P, an easy recursion exists: P(k) = P(k − 1) + ϕ(k)ϕ>(k), but
this does not help; the matrix must still be inverted.

The Sherman-Morrison formula gives a recursion for the inverse P−1:

P−1(k) = P−1(k − 1)− P−1(k − 1)ϕ(k)ϕ>(k)P−1(k − 1)

1 + ϕ>(k)P−1(k − 1)ϕ(k)

Exercise: Prove the Sherman-Morrison formula! (linear algebra)

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Overall algorithm

Recursive least-squares (RLS)

initialize θ̂(0), P−1(0)
loop at every step k = 1, 2, . . .

measure y(k), form regressor vector ϕ(k)

find prediction error ε(k) = y(k)− ϕ>(k)θ̂(k − 1)

update inverse P−1(k) = P−1(k − 1)− P−1(k−1)ϕ(k)ϕ>(k)P−1(k−1)
1+ϕ>(k)P−1(k−1)ϕ(k)

compute weights W (k) = P−1(k)ϕ(k)

update parameters θ̂(k) = θ̂(k − 1) + W (k)ε(k)
end loop

Each new model can then be used for some purpose, e.g. function
approximation or adaptive control

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Initialization

The RLS algorithm requires initial parameter θ̂(0), and initial inverse
P−1(0).

Typical choices without prior knowledge:

θ̂(0) = [0, . . . , 0]> - a vector of n zeros.
P−1(0) = δI, with δ a large number such as 103.
(An equivalent initial value of P would be P(0) = 1

δ I.)

Intuition: P−1(0) large means that initially the weights W (k) are large
and large updates are applied to θ̂, to learn fast from the samples.

Conversely, if good prior parameters θ̂ are available, θ̂(0) can be
initialized to them, and δ correspondingly decreased so that the
updates start smaller.

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Sanity check: Recovering the scalar case

y(k) = b + e(k) = ϕ(k)θ + e(k), where ϕ(k) = 1, θ = b

Take θ̂(0) = 0, P−1(0) →∞. We have with Sherman-Morrison:

P−1(k) = P−1(k − 1)− (P−1(k − 1))2

1 + P−1(k − 1)
=

P−1(k − 1)

1 + P−1(k − 1)

P−1(1) = 1

P−1(2) =
1
2

· · ·

P−1(k) =
1
k

Also, ε(k) = y(k)− θ̂(k − 1) and W (k) = P−1(k) = 1
k , leading to:

θ̂(k) = θ̂(k − 1) + W (k)ε(k) = θ̂(k − 1) +
1
k

[y(k)− θ̂(k − 1)]

⇒ formula for the scalar case was recovered.

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Table of contents

1 Introduction and motivation

2 Recursive least-squares and ARX

General recursive least-squares

Recursive ARX

Matlab example

3 Recursive instrumental variables

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Recall: ARX model

A(q−1)y(k) = B(q−1)u(k) + e(k)

Linear regression representation:

y(k) =− a1y(k − 1)− a2y(k − 2)− . . .− anay(k − na)

b1u(k − 1) + b2u(k − 2) + . . . + bnbu(k − nb) + e(k)

=
[
−y(k − 1) · · · −y(k − na) u(k − 1) · · · u(k − nb)

]
·
[
a1 · · · ana b1 · · · bnb

]>
+ e(k)

=:ϕ>(k)θ + e(k)

Regressor vector: ϕ ∈ Rna+nb, previous output and input values.
Parameter vector: θ ∈ Rna+nb, polynomial coefficients a1, a2, . . . , ana

and b1, b2, . . . , bnb.

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Recursive ARX

With the linear regression representation, recursive ARX is just an
instantiation of RLS template.

Recursive ARX

initialize θ̂(0), P−1(0)
loop at every step k = 1, 2, . . .

measure u(k), y(k)
form regressor vector
ϕ(k) = [−y(k − 1), · · · ,−y(k − na), u(k − 1), · · · , u(k − nb)]>

find prediction error ε(k) = y(k)− ϕ>(k)θ̂(k − 1)

update inverse P−1(k) = P−1(k − 1)− P−1(k−1)ϕ(k)ϕ>(k)P−1(k−1)
1+ϕ>(k)P−1(k−1)ϕ(k)

compute weights W (k) = P−1(k)ϕ(k)

update parameters θ̂(k) = θ̂(k − 1) + W (k)ε(k)
end loop

Remark: Outputs more than na steps ago, and inputs more than nb
steps ago, are not used so they can be forgotten, reducing memory
usage.

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Guarantees idea

With θ̂(0) = 0, P−1(0) = δI and δ →∞, recursive ARX at step k is
equivalent to running batch ARX on the dataset
u(1), y(1), . . . , u(k), y(k).

⇒ the same guarantees as batch ARX:

Theorem
Under appropriate assumptions (including the existence of true
parameters θ0), ARX identification is consistent: the estimated
parameters θ̂ tend to the true parameters θ0 as k →∞.

The condition on P is to ensure the inverses are the same as in the
offline case.

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Table of contents

1 Introduction and motivation

2 Recursive least-squares and ARX

General recursive least-squares

Recursive ARX

Matlab example

3 Recursive instrumental variables

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

System

To illustrate recursive ARX, we take a known system:

y(k) + ay(k − 1) = bu(k − 1) + e(k), a = −0.9, b = 1

(Söderström & Stoica)

system = idpoly([1 -0.9], [0 1]);

Identification data obtained:
sim(system, u, ’noise’);

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Recursive ARX

model = rarx(id, [na, nb, nk], ’ff’, 1, th0, Pinv0);

Arguments:

1 Identification data.
2 Array containing the orders of A and B and the delay nk .
3 ’ff’, 1 selects the algorithm variant presented in this lecture.
4 th0 is the initial parameter value.
5 Pinv0 is the initial inverse P−1(0).

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Results

na = nb = nk = 1
For all the experiments: P−1(0) = δI with δ = 1000, and
θ0 = [0, 0]>

Conclusion: Algorithm converges to true parameter values

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

System outside model class

Take now an output-error system (so it is not ARX with white noise):

y(k) =
bq−1

1 + fq−1 u(k) + e(k), f = −0.9, b = 1

(Söderström & Stoica)

system = idpoly([], [0 1], [], [], [1 -.9]);

Identification data:

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Results

nf = nb = nk = 1, so we attempt the ARX model:

y(k) + fy(k − 1) = bu(k − 1) + e(k)

Conclusion: Convergence to the true values is not attained! – due to
colored noise (system not in model class). Just as in the IV lecture,
the algorithm is inconsistent.

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Other recursive PEM algorithms

Other recursive PEM methods available in Matlab, e.g.:

ARMAX, rarmax
output-error, roe
generic prediction error method, rpem

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Table of contents

1 Introduction and motivation

2 Recursive least-squares and ARX

3 Recursive instrumental variables

Recursive IV method

Matlab example

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Recall: Instrumental variable method

We’ll start from the following formula to compute the IV-method
parameter vector:

θ̂ =

[
1
N

N∑
k=1

Z (k)ϕ>(k)

]−1 [
1
N

N∑
k=1

Z (k)y(k)

]

Regressor vector:
ϕ(k) = [−y(k − 1), · · · ,−y(k − na), u(k − 1), · · · , u(k − nb)]>,
instrument vector usually:
Z (k) = [−x(k − 1), · · · ,−x(k − na), u(k − 1), · · · , u(k − nb)]>.

Since instrument vector Z (k) uncorrelated with the noise,
IV methods can handle colored noise.

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Recursive formulation (1)

Averaging by the number of data points can be removed, leading to:

θ̂ =

[
N∑

k=1

Z (k)ϕ>(k)

]−1 [
N∑

k=1

Z (k)y(k)

]

Averaging was needed in batch IV since summations over many data
points could grow very large, leading to numerical problems.
Recursive IV will, in the end, add terms one by one, and will therefore
be numerically more stable.

Rewrite the equation for the recursive case:

θ̂(k) = P−1(k)

 k∑
j=1

Z (j)y(j)

where P(k) =

∑k
j=1 Z (j)ϕ>(j).

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Recursive formulation (2)

With this definition of P, the recursive update is found similarly to
RLS:

θ̂(k) = P−1(k)

 k∑
j=1

Z (j)y(j)

= P−1(k)

k−1∑
j=1

Z (j)y(j) + Z (k)y(k)

= P−1(k)

[
P(k − 1)θ̂(k − 1) + Z (k)y(k)

]
= P−1(k)

[
[P(k)− Z (k)ϕ>(k)]θ̂(k − 1) + Z (k)y(k)

]
= θ̂(k − 1) + P−1(k)

[
−Z (k)ϕ>(k)θ̂(k − 1) + Z (k)y(k)

]
= θ̂(k − 1) + P−1(k)Z (k)

[
y(k)− ϕ>(k)θ̂(k − 1)

]

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Recursive formulation (3)

Final formula:

θ̂(k) = θ̂(k − 1) + P−1(k)Z (k)
[
y(k)− ϕ>(k)θ̂(k − 1)

]
θ̂(k) = θ̂(k − 1) + W (k)ε(k)

with the Sherman-Morrison update of the inverse:

P−1(k) = P−1(k − 1)− P−1(k − 1)Z (k)ϕ>(k)P−1(k − 1)

1 + ϕ>(k)P−1(k − 1)Z (k)

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Recursive IV: Overall algorithm

Recursive IV

initialize θ̂(0), P−1(0)
loop at every step k = 1, 2, . . .

measure y(k), form regressor vector ϕ(k) and instrument vector
Z (k) = [−x(k − 1), · · · ,−x(k − na), u(k − 1), · · · , u(k − nb)]>

find prediction error ε(k) = y(k)− ϕ>(k)θ̂(k − 1)

update inverse P−1(k) = P−1(k − 1)− P−1(k−1)Z (k)ϕ>(k)P−1(k−1)
1+ϕ>(k)P−1(k−1)Z (k)

compute weights W (k) = P−1(k)Z (k)

update parameters θ̂(k) = θ̂(k − 1) + W (k)ε(k)
end loop

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Table of contents

1 Introduction and motivation

2 Recursive least-squares and ARX

3 Recursive instrumental variables

Recursive IV method

Matlab example

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

OE system

Take the same OE system we used in the ARX example:

y(k) =
bq−1

1 + fq−1 u(k) + e(k), f = −0.9, b = 1

with the same dataset:

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Results with recursive IV

We use the IV model with colored noise v(k):

y(k) + fy(k − 1) = bu(k − 1) + v(k)

Instrument vector: Z (k) = [u(k − 2), u(k − 1)].

Conclusion: Better than recursive ARX, parameters converge to their
true values.

Intro & motivation Recursive least-squares and ARX Recursive instrumental variables

Summary

Learn parameters incrementally, online: θ̂(k) from θ̂(k − 1) and
new data u(k), y(k)

Produce a model early, easier to apply in real-time
Motivating example: estimating a scalar from noisy
measurements
General linear regression, recursive variant:

θ̂(k) = θ̂(k − 1) + P−1(k)ϕ(k)
[
y(k)− ϕ>(k)θ̂(k − 1)

]
Tuning knob: initial size δ of the inverse
Application to ARX is immediate, leading to recursive ARX
For IV some equations need to be revisited but the line is the
same
Matlab examples for both recursive ARX and recursive IV

	Introduction and motivation
	Idea and overall motivation
	Motivating example: Estimating a scalar

	Recursive least-squares and ARX
	General recursive least-squares
	Recursive ARX
	Matlab example

	Recursive instrumental variables
	Recursive IV method
	Matlab example

