System Identification

Control Engineering EN, 3rd year B.Sc. Technical University of Cluj-Napoca Romania

Lecturer: Lucian Buşoniu

Part VIII

[Instrumental variable methods. Closed-loop](#page-1-0) [identification](#page-1-0)

Table of contents

[Analytical development of instrumental variable methods](#page-3-0)

[Matlab example](#page-26-0)

- [Theoretical guarantees](#page-32-0)
- [Closed-loop identification using IV](#page-37-0)
- [Closed-loop Matlab example](#page-44-0)

Recall **taxonomy of models** from Part I:

By number of parameters:

- ¹ Parametric models: have a fixed form (mathematical formula), with a known, often small number of parameters
- ² Nonparametric models: cannot be described by a fixed, small number of parameters Often represented as graphs or tables

By amount of prior knowledge ("color"):

- ¹ First-principles, white-box models: fully known in advance
- 2 Black-box models: entirely unknown
- **3** Gray-box models: partially known

Like prediction error methods, instrumental variable methods produce *black-box*, *parametric*, polynomial models.

- The ARX method is simple (linear regression), but only supports limited classes of disturbance
- **General PEM supports any (reasonable) disturbance,** but it is relatively difficult to apply from a numerical point of view

Can we come up with a method that combines both advantages?

(qualified) **Yes! Instrumental variables**

Table of contents

[Analytical development of instrumental variable methods](#page-3-0)

- [Starting point: ARX](#page-6-0)
- **•** [Instrumental variables methods](#page-13-0)
- [Comparison: IV versus PEM](#page-23-0)
- [Matlab example](#page-26-0)
- Theoretical quarantees
- ⁴ [Closed-loop identification using IV](#page-37-0)
- ⁵ [Closed-loop Matlab example](#page-44-0)

Recall: ARX model

$$
A(q^{-1})y(k) = B(q^{-1})u(k) + e(k)
$$

$$
(1+a_1q^{-1} + \dots + a_{na}q^{-na})y(k) =
$$

$$
(b_1q^{-1} + \dots + b_{nb}q^{-nb})u(k) + e(k)
$$

ARX model: explicit form and detailed diagram

In explicit form:

$$
y(k) = -a_1y(k-1) - a_2y(k-2) - \ldots - a_{na}y(k-na) b_1u(k-1) + b_2u(k-2) + \ldots + b_{nb}u(k-nb) + e(k)
$$

where the model parameters are: $a_1, a_2, \ldots, a_{n_a}$ and b_1, b_2, \ldots, b_{nb} .

Recall: Linear regression representation

$$
y(k) = \begin{bmatrix} -y(k-1) & \cdots & -y(k-na) & u(k-1) & \cdots & u(k-nb) \end{bmatrix}
$$

$$
\begin{bmatrix} a_1 & \cdots & a_{na} & b_1 & \cdots & b_{nb} \end{bmatrix}^\top + e(k)
$$

$$
=:\varphi^\top(k)\theta + e(k)
$$

Regressor vector: $\varphi \in \mathbb{R}^{n\alpha + nb}$, previous output and input values. Parameter vector: $\theta \in \mathbb{R}^{n\alpha+nb}$, polynomial coefficients.

[Analytical development of IV methods](#page-3-0) [Matlab example](#page-26-0) [Theoretical guarantees](#page-32-0) [Closed-loop identification using IV](#page-37-0) [Closed-loop Matlab example](#page-44-0) 000000 0000000 Recall: Identification problem and solution

Given dataset $u(k)$, $y(k)$, $k = 1, \ldots, N$, find model parameters θ to achieve small errors ε(*k*) in:

$$
y(k) = \varphi^\top(k)\theta + \varepsilon(k)
$$

Formal objective: minimize the mean squared error:

$$
V(\theta) = \frac{1}{N} \sum_{k=1}^{N} \varepsilon(k)^2
$$

Solution: can be written in several ways, here we use:

$$
\widehat{\theta} = \left[\frac{1}{N} \sum_{k=1}^{N} \varphi(k) \varphi^{T}(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^{N} \varphi(k) y(k) \right]
$$

Parameter errors

Finally, recall that for the guarantees, a true parameter vector θ_0 is assumed to exist:

$$
y(k) = \varphi^\top(k)\theta_0 + v(k)
$$

Analyze the parameter errors (a vector of *n* elements):

$$
\widehat{\theta} - \theta_0 = \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) \varphi^{\top}(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) y(k) \right]
$$

$$
- \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) \varphi^{\top}(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) \varphi^{\top}(k) \right] \theta_0
$$

$$
= \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) \varphi^{\top}(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) [y(k) - \varphi^{\top}(k) \theta_0] \right]
$$

$$
= \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) \varphi^{\top}(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^N \varphi(k) v(k) \right]
$$

We wish the algorithm to be consistent: the parameter errors should become 0 in the limit of infinite data (and they should be well-defined).

As
$$
N \to \infty
$$
:
\n
$$
\frac{1}{N} \sum_{k=1}^{N} \varphi(k) \varphi^{T}(k) \to E \{ \varphi(k) \varphi^{T}(k) \}
$$
\n
$$
\frac{1}{N} \sum_{k=1}^{N} \varphi(k) v(k) \to E \{ \varphi(k) v(k) \}
$$

For the error to be (1) well-defined and (2) equal to zero, we need:

- **D** E $\{\varphi(k)\varphi^{\top}(k)\}$ invertible.
- 2 E { $\varphi(k)$ *v*(*k*)} zero.

White noise required

- We have $E\{\varphi(k) v(k)\} = 0$ if the elements of $\varphi(k)$ are uncorrelated with *v*(*k*) (note that *v*(*k*) is assumed zero-mean).
- \bullet But $\varphi(k)$ includes $y(k-1), y(k-2), \ldots$, which depend on $v(k-1), v(k-2), \ldots$
- So the only option is to have $v(k)$ uncorrelated with $v(k-1)$, $v(k-2)$, ... $\Rightarrow v(k)$ must be *white noise*.

Instrumental variables are a solution to remove this limitation to white noise.

Table of contents

[Analytical development of instrumental variable methods](#page-3-0) • [Starting point: ARX](#page-6-0)

- **•** [Instrumental variables methods](#page-13-0)
- [Comparison: IV versus PEM](#page-23-0)
- [Matlab example](#page-26-0)
- Theoretical quarantees
- ⁴ [Closed-loop identification using IV](#page-37-0)
- ⁵ [Closed-loop Matlab example](#page-44-0)

$$
\widehat{\theta} - \theta_0 = \left[\frac{1}{N} \sum_{k=1}^{N} \varphi(k) \varphi^{T}(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^{N} \varphi(k) v(k) \right]
$$

1

Idea: What if a different vector than $\varphi(k)$ could be included in the product with *v*(*k*)?

$$
\widehat{\theta} - \theta_0 = \left[\frac{1}{N} \sum_{k=1}^{N} Z(k) \varphi^{T}(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^{N} Z(k) v(k) \right]
$$

where the elements of $Z(k)$ are uncorrelated with $v(k)$. Then $E\left\{Z(k)v(k)\right\}=0$ and the error can be zero.

Vector *Z*(*k*) has *n* elements, which are called instruments.

Instrumental variable method

In order to have:

$$
\widehat{\theta} - \theta_0 = \left[\frac{1}{N} \sum_{k=1}^{N} Z(k) \varphi^{T}(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^{N} Z(k) v(k) \right]
$$
(8.1)

the estimated parameter must be:

$$
\widehat{\theta} = \left[\frac{1}{N} \sum_{k=1}^{N} Z(k) \varphi^{T}(k)\right]^{-1} \left[\frac{1}{N} \sum_{k=1}^{N} Z(k) y(k)\right]
$$
(8.2)

This $\widehat{\theta}$ is the solution to the system of *n* equations:

$$
\left[\frac{1}{N}\sum_{k=1}^{N}Z(k)\varphi^{\top}(k)\right]\theta=\left[\frac{1}{N}\sum_{k=1}^{N}Z(k)y(k)\right]
$$
(8.3)

Constructing and solving this system gives the basic instrumental variable (IV) method.

Instrumental variable method: Alternate form

Alternate form of the system of equations::

$$
\left[\frac{1}{N}\sum_{k=1}^{N}Z(k)[\varphi^{\top}(k)\theta-\gamma(k)]\right]=0
$$
\n(8.4)

Exercise: Show that [\(8.4\)](#page-16-0) is equivalent to [\(8.3\)](#page-15-0), and that they imply [\(8.2\)](#page-15-1), which in turn implies [\(8.1\)](#page-15-2).

So far the instruments *Z*(*k*) were not discussed. They are usually created based on the inputs (including outputs would lead to correlation with *v* and so eliminate the advantage of IV).

Simple possibility: just include additional delayed inputs to obtain a vector of the appropriate size, $n = na + nb$:

 $Z(k) = [u(k - nb - 1), \ldots u(k - na - nb), u(k - 1), \ldots, u(k - nb)]^{\top}$

Compare to original vector:

 $\varphi(k) = [-\gamma(k-1), \ldots, -\gamma(k-na), u(k-1), \ldots, u(k-nb)]^\top$

Question: Why not just include $u(k - 1), \ldots, u(k - na)$?

Take *na* past values from generic instrumental variable *x*:

$$
Z(k) = [-x(k-1),..., -x(k-na), u(k-1),..., u(k-nb)]^{\top}
$$

which is the output of a transfer function with *u* at the input:

$$
C(q^{-1})x(k)=D(q^{-1})u(k)
$$

Remark: $C(q^{-1})$, $D(q^{-1})$ have different meanings than in PEM.

[Analytical development of IV methods](#page-3-0) [Matlab example](#page-26-0) [Theoretical guarantees](#page-32-0) [Closed-loop identification using IV](#page-37-0) [Closed-loop Matlab example](#page-44-0) IV generator: explicit form and detailed diagram

$$
(1 + c_1q^{-1} + \cdots + c_{nb}q^{-nc})x(k) =
$$

\n
$$
(d_1q^{-1} + \cdots + d_{nd}q^{-nd})u(k)
$$

\n
$$
x(k) = -c_1x(k-1) - c_2x(k-2) - \cdots - c_{nc}x(k-nc)
$$

\n
$$
+ d_1u(k-1) + d_2u(k-2) + \cdots + d_{nd}u(k-nd)
$$

[Analytical development of IV methods](#page-3-0) [Matlab example](#page-26-0) [Theoretical guarantees](#page-32-0) [Closed-loop identification using IV](#page-37-0) [Closed-loop Matlab example](#page-44-0) Generalized instruments: obtaining the simple case

In order to obtain:

$$
Z(k) = [u(k - nb - 1), \ldots u(k - na - nb), u(k - 1), \ldots, u(k - nb)]^{\top}
$$

set *C* = 1, *D* = −*q* −*nb* .

Exercise: Verify that the desired *Z*(*k*) is indeed obtained.

Generalized instruments: Initial model

Generalized instruments:

 $Z(k) = [-x(k-1), \ldots, -x(k-na), u(k-1), u(k-2), \ldots, u(k-nb)]^{\top}$

Compare to original vector:

 $\varphi(k) = [-y(k-1), \ldots, -y(k-na), u(k-1), \ldots, u(k-nb)]^\top$

Idea: Take instrument generator equal to an initial model, $C(q^{-1}) = A(q^{-1}), D(q^{-1}) = B(q^{-1}).$ This model can be obtained e.g. with ARX estimation.

The instruments are an approximation of *y*:

 $Z(k) = [-\hat{y}(k-1), \ldots - \hat{y}(k-na), u(k-1), \ldots, u(k-nb)]$ that has the crucial advantage of being *uncorrelated* with the noise. Note here \hat{v} is the *simulated* output!

000000

0000000

IV method summary

IV method

- 1: **for** each step $k = 1, 2, ..., N$ **do**
- 2: form regressor vector:

$$
\varphi(k) = [-y(k-1),\cdots,-y(k-na),u(k-1),\cdots,u(k-nb)]^{\top}
$$

3: form IV vector:
\n
$$
Z(k) = [-x(k-1), \cdots, -x(k-na), u(k-1), \cdots, u(k-nb)]^{\top}
$$
\n4: simulate IV operator: $x(k) = Z^{\top}(k)[C_1, \cdots, C_2, d_1, \cdots, d_n]^{\top}$

- 4: simulate IV generator: $x(k) = Z^{\top}(k)[c_1, \cdots, c_{nc}, d_1, \cdots, d_{nd}]$
- 5: **end for**
- 6: compute $\tilde{\Phi} = \frac{1}{N} \sum_{k=1}^{N} Z(k) \varphi^{\top}(k)$, an $(na + nb) \times (na + nb)$ matrix
- 7: compute $\tilde{Y} = \frac{1}{N} \sum_{k=1}^{N} Z(k) y(k)$, an $na + nb$ vector
- 8: solve $\tilde{\Phi}\theta = \tilde{Y}$
- 9: $\textsf{return } \theta = [a_1, \ldots, a_{na}, b_1, \ldots, b_{nb}]^\top$

Negative-time signals set to 0 as usual.

Table of contents

[Analytical development of instrumental variable methods](#page-3-0)

- [Starting point: ARX](#page-6-0)
- **•** [Instrumental variables methods](#page-13-0)
- [Comparison: IV versus PEM](#page-23-0)
- [Matlab example](#page-26-0)
- Theoretical quarantees
- ⁴ [Closed-loop identification using IV](#page-37-0)
- ⁵ [Closed-loop Matlab example](#page-44-0)

Both PEM and IV can be seen as extensions of ARX:

$$
A(q^{-1})y(k) = B(q^{-1})u(k) + e(k)
$$

to disturbances *v*(*k*) different from white noise *e*(*k*).

- PEM explicitly include the disturbance model in the structure, e.g. in ARMAX $v(k) = C(q^{-1})e(k)$ leading to $A(q^{-1})y(k) = B(q^{-1})u(k) + C(q^{-1})e(k).$
- IV methods do *not* explicitly model the disturbance, but are designed to be resilient to non-white, "colored" disturbance, by using instruments *Z*(*k*) uncorrelated with it.

Comparison (continued)

Advantage of IV: Simple model structure, identification consists only of solving a system of linear equations. In contrast, PEM required solving optimization problems with e.g. Newton's method, was susceptible to local minima etc.

Disadvantage of IV (why it was only a *qualified* yes in the beginning): In practice, for finite number *N* of data, model quality depends heavily on the choice of instruments $Z(k)$. Moreover, the resulting model has a larger risk of being unstable (even for a stable real system).

Methods exist to choose instruments $Z(k)$ that are optimal in a certain sense, but they will not be discussed here.

Table of contents

[Analytical development of instrumental variable methods](#page-3-0)

² [Matlab example](#page-26-0)

[Theoretical guarantees](#page-32-0)

⁴ [Closed-loop identification using IV](#page-37-0)

⁵ [Closed-loop Matlab example](#page-44-0)

From prior knowledge, the system has order 2 and the disturbance is colored (does not obey the ARX model structure).

Remarks: As before, the identification input is a pseudo-random binary signal, and the validation input a sequence of steps.

IV identification with custom instruments

Define the instruments by the generating transfer function, using polynomials $C(q^{-1})$ and $D(q^{-1})$.

 $model = iv(id, [na, nb, nk], C, D);$

Arguments:

- **D** Identification data.
- ² Array containing the orders of *A* and *B* and the delay *nk* (like for ARX).
- ³ Polynomials *C* and *D*, as vectors of coefficients in increasing power of q^{-1} .

Result with simple instruments

Take $C(q^{-1})=1$, $D(q^{-1})=-q^{-nb}$, leading to $Z(k) = [u(k - nb - 1), \ldots u(k - na - nb), u(k - 1), \ldots, u(k - nb)]^{\top}$. Compare to ARX.

Conclusions:

- Model unstable \Rightarrow in general, must pay attention because IV models are not guaranteed to be stable! (recall the Comparison)
- Results very bad with this simple choice.

 000000

0000000

Result with ARX-model instruments

Conclusion: IV obtains better results. This is because the disturbance is colored, and IV can deal effectively with this case (whereas ARX cannot – but it still provides a useful starting point for IV).

[Analytical development of IV methods](#page-3-0) [Matlab example](#page-26-0) [Theoretical guarantees](#page-32-0) [Closed-loop identification using IV](#page-37-0) [Closed-loop Matlab example](#page-44-0) Result with automatic instruments

 $model = iv4(id, [na, nb, nk]);$

Implements an algorithm that generates near-optimal instruments.

Conclusion: Virtually the same performance as ARX instruments.

lable of contents

- [Analytical development of instrumental variable methods](#page-3-0)
- [Matlab example](#page-26-0)
- ³ [Theoretical guarantees](#page-32-0)
- ⁴ [Closed-loop identification using IV](#page-37-0)
- ⁵ [Closed-loop Matlab example](#page-44-0)

Assumptions

Assumptions (simplified)

- ¹ The disturbance *v*(*k*) = *H*(*q* −1)*e*(*k*) where *e*(*k*) is zero-mean white noise, and $H(q^{-1})$ is a transfer function satisfying certain conditions.
- ² The input signal *u*(*k*) has a sufficiently large order of PE and does not depend on the disturbance (the experiment is open-loop).
- ³ The real system is stable and *uniquely* representable by the model chosen: there exists exactly one θ_0 so that polynomials $\mathcal{A}(q^{-1}; \theta_0)$ and $\mathcal{B}(q^{-1}; \theta_0)$ are identical to those of the real system.
- **•** Matrix $E\left\{Z(k)Z^{\top}(k)\right\}$ is invertible.

Discussion of assumptions

- Assumption 1 shows the main advantage of IV over PEM: the disturbance can be colored.
- Assumptions 2 and 3 are not very different from those made by PEM. Stability of a discrete-time system requires its poles to be strictly inside the unit circle:

Question: Why is the experiment not allowed to be closed-loop?

Assumption 4 is required to solve the linear system, and given an input with sufficient order of PE boils down to an appropriate selection of instruments (e.g. not repeating the same delayed input $u(k - i)$ twice).

Guarantee

Theorem 1

As the number of data points $N \to \infty$, the solution $\widehat{\theta}$ of IV estimation converges to the true parameter vector θ_0 .

Remark: This is a consistency guarantee, in the limit of infinitely many data points.

Possible extensions

- Multiple-input, multiple-output systems.
- **Larger-dimension instruments Z than parameter vectors** θ with other modifications, called extended IV methods.
- Identification of systems operating in closed loop: next

Table of contents

[Analytical development of instrumental variable methods](#page-3-0)

- [Matlab example](#page-26-0)
- [Theoretical guarantees](#page-32-0)
- ⁴ [Closed-loop identification using IV](#page-37-0)
- ⁵ [Closed-loop Matlab example](#page-44-0)

In practice, systems must often be controlled, because when they operate on their own, in open loop:

- They would be unstable
- Safety or economical limits for the signals would not be satisfied

This means that *u*(*k*) is computed using feedback from *y*(*k*): the system operates in closed loop

Closed-loop identification

However, most of the techniques that we studied assume the system functions in open loop! For instance, IV guarantees require (among other things):

\bullet ...

- The input signal *u*(*k*) does not depend on the disturbance (the experiment is open-loop)
- ...

Removing this condition leads to **closed-loop identification**.

Several techniques can be modified for this setting, notably including prediction error methods.

Here, we will focus on IV methods since they are easy to modify.

Closed-loop IV structure

$$
A(q^{-1})y(k) = B(q^{-1})u(k) + v(k)
$$

$$
u(k) = \mathcal{K}(q^{-1})(r(k) - y(k))
$$

where $\mathcal{K}(q^{-1})$ is the transfer function of the controller, and $r(k)$ is a reference signal

Therefore, *u*(*k*) dynamically depends both on the reference signal and on the system output

The open-loop condition will of course fail. Let us dig deeper into it. The underlying reason for which we needed the loop open was to make the parameter errors:

$$
\widehat{\theta} - \theta_0 = \left[\frac{1}{N} \sum_{k=1}^{N} Z(k) \varphi^{T}(k) \right]^{-1} \left[\frac{1}{N} \sum_{k=1}^{N} Z(k) v(k) \right]
$$

equal to zero, leading to a good model. For this, we require:

- \bullet E { $Z(k)v(k)$ } zero.
- $\mathrm{E}\left\{Z(k)\varphi^{\top}(k)\right\}$ invertible.

With the usual IV choices, computed based on *u* (which now depends on *y* and hence on *v*), the first condition would fail.

The vector of IVs *Z*(*k*) is not allowed to depend on *u*(*k*) anymore.

Idea: **make it a function of** *r*(*k*)!

Then:

- \bullet E { $Z(k)v(k)$ } will naturally be zero, since we are the ones generating the reference *r*, independently from the disturbance *v*
- We can make $\text{E}\left\{Z(k)\varphi^{\top}(k)\right\}$ invertible by ensuring the IVs are good (e.g. no linear dependence), and that the reference *r* has a sufficiently high order of PE

Simplest idea – include in *Z* the appropriate number of delayed reference values:

$$
Z(k) = [r(k-1), r(k-2), \ldots r(k-na-nb)]^{\top}
$$

Slightly generalized to linear combinations of these values:

$$
Z(k) = F \cdot [r(k-1), r(k-2), \ldots r(k-na-nb)]^{\top}
$$

where *F* is invertible. The simple case is recovered by taking *F* the identity matrix.

Table of contents

[Analytical development of instrumental variable methods](#page-3-0)

- [Matlab example](#page-26-0)
- [Theoretical guarantees](#page-32-0)
- ⁴ [Closed-loop identification using IV](#page-37-0)

Experimental data

Identification left, and validation right:

Similarly to the open-loop case, the system has order 2 and the disturbance is colored (does not obey the ARX model structure).

However, now the input is generated by a controller based on the reference signal *r*, which is a PRBS.

Results

- Regular IV with ARX instruments: fails.
- Closed-loop IV using *r* to generate instruments: works.

- Objective: combine simplicity of ARX linear regression with generality of PEM disturbance *v*
- Examined in-depth why ARX fails for colored disturbance *v*
- Solution: replace regressors φ (at strategic places in equations) by *instrumental variables Z* that do not depend on *y*
- Several ways to compute *Z* from *u* only
- Solution quality dependent on Z, may even be unstable
- Matlab example
- Further generalizing *Z* to depend only on reference *r* allows IV to work in closed-loop
- Matlab example for closed-loop identification