System Identification

Control Engineering EN, 3rd year B.Sc. Technical University of Cluj-Napoca Romania

Lecturer: Lucian Buşoniu

Part VI

[Input signals](#page-1-0)

Motivation

Choosing inputs is the core of experiment design

All identification methods require inputs to satisfy certain conditions, for example:

- Transient analysis requires step or impulse inputs
- Correlation analysis preferably works with white-noise input
- ARX requires "sufficiently informative" inputs

In this part we:

- Revisit some types of input signals that were already used
- Describe a few new types of input signals
- Discuss choices and properties of input signals important for system identification
- Characterize the signals discussed using the properties introduced

Table of contents

[Common input signals](#page-4-0)

- [Step, impulse, sum of sines, white noise](#page-5-0)
- [Pseudo-random binary sequence](#page-9-0)
- ² [Input choices and properties](#page-19-0)
- ³ [Characterization of common input signals](#page-33-0)

Left: Unit step:

$$
u(k) = \begin{cases} 0 & k < 0 \\ 1 & k \ge 0 \end{cases}
$$

Right: Step of arbitrary magnitude:

$$
u(k) = \begin{cases} 0 & k < 0 \\ u_{ss} & k \ge 0 \end{cases}
$$

Remark: These are discrete-time reformulations of the continuous-time step variants.

Recall that in discrete time, we cannot freely approximate the ideal impulse (left), since the signal can only change values at the sampling instants.

Right: Discrete-time impulse realization:

$$
u(k) = \begin{cases} u_{\rm imp} & k = 0\\ 0 & \text{otherwise} \end{cases}
$$

- When $u_{\text{imp}} = \frac{1}{T_s}$, the integral of the signal is 1 and we get an approximation of the continuous-time impulse.
- When $u_{\text{imp}} = 1$ (e.g. in correlation analysis), we get a "unit" discrete-time impulse.

[Common input signals](#page-4-0) [Input choices and properties](#page-19-0) [Characterizing common inputs](#page-33-0)

Sum of sines

$$
u(k)=\sum_{j=1}^m a_j \sin(\omega_j k+\varphi_j)
$$

- *aj* : amplitudes of the *m* component sines
- $\omega_{\textit{\textbf{J}}}$: frequencies, 0 $\leq \omega_{\textit{\textbf{1}}} < \omega_{\textit{\textbf{2}}} < \ldots < \omega_{\textit{\textbf{m}}} \leq \pi$
- φ_j : phases

White noise

Recall zero-mean white noise: mean 0, different steps uncorrelated. In the figure, values were independently drawn from a zero-mean

Gaussian distribution.

Table of contents

[Common input signals](#page-4-0)

- [Step, impulse, sum of sines, white noise](#page-5-0)
- [Pseudo-random binary sequence](#page-9-0)
- [Input choices and properties](#page-19-0)
- ³ [Characterization of common input signals](#page-33-0)

0000000000000

Pseudo-random binary sequence (PRBS)

A signal that switches between two discrete values, generated with a specific algorithm.

Interesting because it approximates white noise, and so it inherits some of the useful properties of white noise (formalized later).

PRBS generator

PRBS can be generated with a linear shift feedback register as in the figure. All signals and coefficients are binary (the states are bits).

At each discrete step $k > 0$:

- State x_i transfers to state x_{i+1} .
- State x_1 is set to the modulo-two addition of states on the feedback path (if $a_i = 1$ then x_i is added, if $a_i = 0$ then it is not).
- \bullet Output $u(k)$ is collected at state x_m .

Remark: such a feedback register is easily implemented in hardware.

[Common input signals](#page-4-0) [Input choices and properties](#page-19-0) [Characterizing common inputs](#page-33-0)

Modulo-two addition

Formula/truth table of modulo-two addition:

$$
p \oplus q = \begin{cases} 0 & \text{if } p = 0, q = 0 \\ 1 & \text{if } p = 0, q = 1 \\ 1 & \text{if } p = 1, q = 0 \\ 0 & \text{if } p = 1, q = 1 \end{cases}
$$

...also known as XOR (eXclusive OR)

[Common input signals](#page-4-0) [Input choices and properties](#page-19-0) [Characterizing common inputs](#page-33-0)

Arbitrary-valued PRBS

To obtain a signal *u* 0 (*k*) taking values *b*, *c* instead of 0, 1, shift & scale the original signal $u(k)$:

$$
u'(k) = b + (c - b)u(k)
$$

Example for $b = 0.5$, $c = 0.8$:

State space representation

 $x(k) = \left[x_1(k), \ldots, x_m(k)\right]^\top$ compactly denotes the state vector of *m* variables (bits)

State space representation: matrix form

$$
x(k+1) = \begin{bmatrix} a_1 & a_2 & \dots & a_{m-1} & a_m \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix} \otimes x(k) =: A \otimes x(k)
$$

$$
u(k) = \begin{bmatrix} 0 & 0 & \dots & 0 & 1 \end{bmatrix} x(k) =: Cx(k)
$$

where $k \geq 0$, and \otimes symbolically indicates that the additions in the matrix product are performed modulo 2.

Period of PRBS

- The PRBS algorithm is deterministic, so the current state *x*(*k*) fully determines the future states and outputs
- ⇒ Period (number of steps until sequence repeats) at most 2*^m*
	- The identically zero state is undesirable, as the future sequence would always remain 0
- \Rightarrow Maximum practical period is $P = 2^m 1$

A PRBS with period $P = 2^m - 1$ is called maximum-length PRBS.

Such PRBS have interesting characteristics, so they are preferred in practice.

Maximum-length PRBS

The period is determined by the feedback coefficients *aⁱ* .

The following coefficients must be 1 to achieve maximum length (all others 0):

Other working combinations of coefficients exist, and coefficients for larger *m* can be found in the literature.

Matlab function

```
u = idinput(N, type, [], [b, c]);
```
Arguments:

- ¹ N: signal length (number of discrete steps).
- 2 type: signal type, a string. Relevant for us: 'prbs' for PRBS, 'rgs' for white Gaussian noise, 'sin' for multisine.
- **3** Third argument: the frequency band of the inputs (can be left at its default, empty matrix).
- ⁴ [b, c]: the range (lower and upper limits) of the signal. For Gaussian noise, [*b*, *c*] is instead the one-standard-deviation interval below and above the mean.

Remark: N can be configured to generate multiple-input signals (see the Matlab documentation for details).

Table of contents

- ² [Input choices and properties](#page-19-0)
- ³ [Characterization of common input signals](#page-33-0)

Choice of input shape

Some identification methods require specific types of inputs:

- **•** Transient analysis requires step or impulse inputs.
- Correlation analysis preferably works with white-noise input.

Rule of thumb: input shapes, including characteristics like amplitude, should be chosen to be representative for the typical operation of the system

Choice of input amplitude

- Range of allowed inputs typically constrained by system operator, due to safety or cost concerns
- Even if allowed, overly large inputs may take the system out of its zone of linearity and lead to poor performance of linear identification
- But too small inputs will lead to signals dominated by noise and disturbance

For nearly all methods, we work in discrete time so we must choose a sampling interval *T^s*

- Too large intervals will not model the relevant dynamics of the system. Initial idea: 10% of the smallest time constant
- Too small intervals will lead to overly large effects of noise and disturbance
- When in doubt, take *T^s* smaller

Due to Nyquist-Shannon, we know that signals cannot be recovered above frequency $1/(2T_s)$, so to mitigate noise and other effects it is useful to pass the outputs (and inputs, if measured) through a low-pass filter that eliminates higher frequencies

Mean and covariance

Given a random signal $u(k)$, its mean and covariance are defined:

$$
\mu = \mathrm{E} \left\{ u(k) \right\}
$$

$$
r_u(\tau) = \mathrm{E} \left\{ \left[u(k + \tau) - \mu \right] \left[u(k) - \mu \right] \right\}
$$

Notes:

- **Recall mean and variance of random variables**
- The same covariance function $r_u(\tau)$ was used in correlation analysis, where we assumed the signal is zero-mean
- Zero-mean signals may work better even for other methods, like ARX

Mean and covariance: deterministic signal

When the signal is deterministic (e.g. PRBS), the mean and covariance are redefined as:

$$
\mu = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} u(k)
$$

$$
r_u(\tau) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} [u(k+\tau) - \mu][u(k) - \mu]
$$

Note: $\lim_{N\to\infty}\frac{1}{N}\sum_{k=0}^{N-1}\cdot$ is the same as E $\{\cdot\}$ for a (well-behaved) random signal.

Persistent excitation

Even methods that do not fix the input shape make requirements on the inputs: e.g. for ARX we required that $u(k)$ is "sufficiently" informative", without making that property formal

This condition can be precisely stated in terms of a property called persistence of excitation

Persistent excitation: Motivating example

We develop an *idealized* version of correlation analysis. This is only an intermediate motivating step, and the property is useful in many identification algorithms.

Finite impulse response (FIR) model:

$$
y(k) = \sum_{j=0}^{M-1} h(j)u(k-j) + v(k)
$$

Correlation analysis: Covariances

Assuming *u*(*k*), *y*(*k*) are zero-mean, so the means do not need to be subtracted:

$$
r_{u}(\tau) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} u(k+\tau)u(k)
$$

$$
r_{yu}(\tau) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} y(k+\tau)u(k)
$$

In practice covariances must be estimated from finite datasets, but here we work with their ideal values (since this is only a motivating example, which we do not actually implement).

Correlation analysis: Identifying the FIR

Taking *M* equations to find the FIR parameters, we have:

$$
\begin{bmatrix}r_{yu}(0) \\ r_{yu}(1) \\ \vdots \\ r_{yu}(M-1)\end{bmatrix} = \begin{bmatrix}r_u(0) & r_u(1) & \cdots & r_u(M-1) \\ r_u(1) & r_u(0) & \cdots & r_u(M-2) \\ \vdots & \vdots & \ddots & \vdots \\ r_u(M-1) & r_u(M-2) & \cdots & r_u(0)\end{bmatrix} \begin{bmatrix}h(0) \\ h(1) \\ \vdots \\ h(M-1)\end{bmatrix}
$$

We are allowed to take a square system (number of equations equal to number of parameters) because we are in the idealized, noise-free case, so overfitting is not a concern.

Denote the matrix in the equation by *Ru*(*M*), the covariance matrix of the input.

Persistent excitation: formal definition

Definition

A signal *u*(*k*) is persistently exciting (PE) of order *n* if *Ru*(*n*) is positive definite.

A matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if $h^\top A h > 0$ for any nonzero vector $h \in \mathbb{R}^n$. Note that *A* must be nonsingular.

Examples:

\n- \n
$$
\begin{bmatrix}\n 1 & 0 \\
 0 & 1\n \end{bmatrix}
$$
 is positive definite. Denote\n $h = \begin{bmatrix} a \\
 b \end{bmatrix}$, then\n $h^\top A h = a^2 + b^2$.\n
\n- \n $\begin{bmatrix}\n 1 & 2 \\
 2 & 1\n \end{bmatrix}$ is not positive definite. Counterexample:\n $h = \begin{bmatrix} a \\
 -a \end{bmatrix}$,\n $h^\top A h = -2a^2$.\n
\n

PE in correlation analysis

If the order of PE is *M*, then *Ru*(*M*) is positive definite, hence invertible and the linear system from correlation analysis can be solved to find an FIR of length *M*.

So an order *M* of PE means that an FIR model of length *M* is identifiable (*M* parameters can be found).

General role of PE

Beyond FIR, PE plays a role in *all* parametric system identification methods, including ARX and methods still to be discussed, like prediction error methods and instrumental variable techniques.

A large enough order of PE is required to properly identify the parameters.

Typically, the required order is a multiple of (e.g. twice) the number of parameters *n* that must be estimated.

Covariance alternatives

In the sequel we will always use the following, simpler definition:

$$
r_u(\tau) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} u(k+\tau)u(k)
$$

even when *u* is nonzero-mean. Even though in that case *r^u* is no longer the true covariance in the statistical sense, it is still useful.

When applying the PE condition for nonzero-mean signals, the simplified definition above will lead to an order of PE larger by 1 than the order of PE obtained with the means removed.

Table of contents

- [Input choices and properties](#page-19-0)
- ³ [Characterization of common input signals](#page-33-0)

Step input

Take the more general, non-unit step:

$$
u(k) = \begin{cases} 0 & k < 0 \\ u_{ss} & k \ge 0 \end{cases}
$$

Step input: Mean and covariance

Mean and covariance:

$$
\mu = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} u(k) = u_{ss}
$$

$$
r_u(\tau) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} u(k + \tau)u(k) = u_{ss}^2
$$

Note the signal starts from $k = 0$, so the summation is modified (unimportant to the final result).

[Common input signals](#page-4-0) [Input choices and properties](#page-19-0) [Characterizing common inputs](#page-33-0)

Step input: Order of PE

Covariance matrix:

$$
R_u(n) = \begin{bmatrix} r_u(0) & r_u(1) & \dots & r_u(n-1) \\ r_u(1) & r_u(0) & \dots & r_u(n-2) \\ \vdots & & & & \\ r_u(n-1) & r_u(n-2) & \dots & r_u(0) \end{bmatrix} = \begin{bmatrix} u_{ss}^2 & u_{ss}^2 & \dots & u_{ss}^2 \\ u_{ss}^2 & u_{ss}^2 & \dots & u_{ss}^2 \\ \vdots & & & \\ u_{ss}^2 & u_{ss}^2 & \dots & u_{ss}^2 \end{bmatrix}
$$

This matrix has rank 1, so a step input is PE of order 1.

Recall discrete-time realization:

$$
u(k) = \begin{cases} \frac{1}{T_s} & k = 0\\ 0 & \text{otherwise} \end{cases}
$$

Mean and covariance:

$$
\mu = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} u(k) = 0
$$

$$
r_u(\tau) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} u(k + \tau) u(k) = 0
$$

 \Rightarrow $R_u(n)$ matrix of zeros, the impulse is not PE of any order.

Mean and covariance:

$$
\mu = \begin{cases}\na_1 \sin(\varphi_1) & \text{if } \omega_1 = 0 \\
0 & \text{otherwise}\n\end{cases}
$$
\n
$$
r_u(\tau) = \sum_{j=1}^{m-1} \frac{a_j^2}{2} \cos(\omega_j \tau) + \begin{cases}\na_m^2 \sin^2 \varphi_m & \text{if } \omega_m = \pi \\
\frac{a_m^2}{2} \cos(\omega_m \tau) & \text{otherwise}\n\end{cases}
$$

Sum of sines (continued)

For the multisine exemplified before, the covariance function is:

A multisine having *m* components is PE of order *n* with:

$$
n = \begin{cases} 2m & \text{if } \omega_1 \neq 0, \omega_m \neq \pi \\ 2m - 1 & \text{if } \omega_1 = 0 \text{ or } \omega_m = \pi \\ 2m - 2 & \text{if } \omega_1 = 0 \text{ and } \omega_m = \pi \end{cases}
$$

White noise: Mean and covariance

Take a zero-mean white noise signal of variance σ^2 , e.g. drawn from a Gaussian:

$$
u(k) \sim \mathcal{N}(0, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)
$$

Then, by definition:

$$
\mu = 0
$$

$$
r_u(\tau) = \begin{cases} \sigma^2 & \text{if } \tau = 0 \\ 0 & \text{otherwise} \end{cases}
$$

White noise: Covariance example

Covariance function of white noise signal exemplified before:

0000000000000

White noise: Order of PE

Covariance matrix:

$$
R_{u}(n) = \begin{bmatrix} r_{u}(0) & r_{u}(1) & \cdots & r_{u}(n-1) \\ r_{u}(1) & r_{u}(0) & \cdots & r_{u}(n-2) \\ \vdots & & & & \\ r_{u}(n-1) & r_{u}(n-2) & \cdots & r_{u}(0) \end{bmatrix}
$$

$$
= \begin{bmatrix} \sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma^{2} & \cdots & 0 \\ \vdots & & & \\ 0 & 0 & \cdots & \sigma^{2} \end{bmatrix} = \sigma^{2} I_{n}
$$

where I_n = the identity matrix, positive definite.

 \Rightarrow for any *n*, $R_u(n)$ positive definite — white noise is PE of any order.

Question

Given the information above, why does correlation analysis prefer white noise to other input signals, in order to identify the FIR?

PRBS: Mean

Consider a 0, 1-valued, maximum-length PRBS with *m* bits: $P = 2^m - 1$, a large number.

Then its state *x*(*k*) will contain all possible binary values with *m* digits except 0.

Signal $u(k)$ is the last position of $x(k)$, which takes value 1 a number of 2*^m*−¹ times, and value 0 a number of 2*^m*−¹ − 1 times.

⇒ Mean value:

$$
\mu = \frac{0}{P-1}\sum_{k=1}^{P} u(k) = \frac{1}{P}2^{m-1} = \frac{(P+1)/2}{P} = \frac{1}{2} + \frac{1}{2P} \approx \frac{1}{2}
$$

where the approximation holds for large *P*.

[Common input signals](#page-4-0) [Input choices and properties](#page-19-0) [Characterizing common inputs](#page-33-0)

PRBS: Covariance

Consider a zero-mean PRBS, scaled between −*b* and *b*:

$$
u'(k)=-b+2bu(k)
$$

Then:

$$
\mu = -b + 2b\left(\frac{1}{2} + \frac{1}{2P}\right) = \frac{b}{P} \approx 0
$$

$$
r_u(\tau) = \begin{cases} 1 - \frac{1}{P^2} \approx 1 & \text{if } \tau = 0\\ -\frac{1}{P} - \frac{1}{P^2} \approx -\frac{1}{P} \approx 0 & \text{otherwise} \end{cases}
$$

PRBS: Covariance example

Covariance function of the zero-mean PRBS above:

So, PRBS behaves similarly to white noise (similar covariance function). Combined with the ease of generating it, this property makes PRBS very useful in system identification.

PRBS: Order of PE

A maximum-length PRBS is PE of exactly order *P*, the period (and not larger).

Exercise

Take a small value of $P > 2$ and, using the formula for the covariance function of the PBRS, show that the PRBS is exactly of PE order *P*. Hint: construct $R_u(n)$ for $n = P$ and show that it is rank P, then for *n* > *P* and show it is *still* only of rank *P*. This can be done by showing that columns $P + 1$, $P + 2$, ... are linear combinations of the first P columns.

Summary

- Common input signals: step, impulse, multisine, zero-mean white noise, pseudo-random binary sequence
- PRBS details: generation using LSFRs, maximal period
- Choosing input amplitude and sampling period
- Mean and covariance of input signals
- Order of persistent excitation
- Characterizing mean, covariance, and PE order for all common input signals