
System Identification – Practical Assignment 8
Identifying an output-error model of the DC motor with

Gauss-Newton optimization

Logistics

Please reread the logistics part of lab 2, the same rules will apply to this lab. The only things that change
are the Teams assignment, which for this lab is “Lab 8 (OE)”, and of course the lab number in the file
name.

Assignment description

In this assignment we will identify an OE model of the DC motor system using the prediction error
method. See the course material, Part VII: General Prediction Error Methods.

We know from the physics of the DC motor that it is a first-order system, and due to serial communication
issues the system may exhibit a time delay of a few steps. Due among other things to the usage of discrete
differences to compute the rotation velocity output, this signal is affected by noise. This means that the
following Output Error form is appropriate to model it:

y(k) =
b

1 + fq−1
u(k − nk) + e(k)

with the parameters θ = [f, b]⊤. Our objective will be to implement the prediction error method for this
particular model structure, using Gauss-Newton optimization. The algorithm is summarized at the end
of this description so as to help with implementation. Note that, differently from the lectures, we need to
take particular care to handle the delay nk; in particular, since the error and its derivative will depend on
u(k − nk), we start the recursion at k = nk + 1.

Requirements:

• Find the recursion formulas required by the algorithm, on paper or at the whiteboard. Hint: While
imposing ε(k) = e(k), find ε(k) using the model equation, and then compute the partial derivatives
with respect to the two parameters.

• To keep things simple, we will create a single, longer sequence of data containing both the identi-
fication and validation data. We will use a sampling rate of 0.01 s (10ms). After a short range of
zero inputs, apply a PRBS signal with amplitudes in the interval [−0.7, 0.7] and a length of about
200 samples, followed by another range of zero inputs, and then a step signal of magnitude around
0.4 and around 70 samples in length. You can either use idinput or your own PRBS code from
the previous labs, but in the latter case use a sufficiently large number of bits so that the signal
does not repeat.

• Apply the signal generated to the DC motor. The output is the rotational velocity. Isolate the
data range corresponding to the PRBS input and copy it to new input and output vectors; this
will be our identification data. Important note: To minimize system wear, separate the code that
generates the data from the code that performs the rest of the steps below (easiest using different
script sections, see Code Sections in the Matlab documentation), and regenerate the data only when
necessary.

1



• Plot and examine the data obtained.

• Implement the algorithm, and run it on the identification data starting from nonzero initial param-
eters, while tuning the delay nk.

• For the near-optimal values of f and b obtained, create an OE model in the system identification
toolbox format, using idpoly. The syntax of this function is idpoly(A,B,C,D,F,0,Ts)
where you need to specify the nk leading zeros in B, the leading 1 in F , and the sampling time.
The polynomials that you don’t use can be set to 1. Use compare to see how the model performs
on the validation data.

• If the model is not satisfactory, tune α, δ and ℓmax (as well as perhaps θ0), so as to improve
performance.

choose stepsize α, initial parameters θ0, threshold δ, and max iterations ℓmax

initialize iteration counter ℓ = 0
compute recursion formulas for ε(k), dε(k)

dθ = [dε(k)df , dε(k)db ]⊤

repeat
with the current parameters θℓ:
initialize ε(k) = y(k), dε(k)dθ = [0, 0]⊤ for k = 1, . . . , nk
for k = nk + 1 to N do

apply recursion formulas to find ε(k), dε(k)
dθ

end for
compute gradient of the objective function, dV

dθ = 2
N−nk

∑N
k=nk+1 ε(k)

dε(k)
dθ

compute approximate Hessian of the objective function, H = 2
N−nk

∑N
k=nk+1

dε(k)
dθ

[
dε(k)
dθ

]⊤
apply Gauss-Newton update formula: θℓ+1 = θℓ − αH−1 dV

dθ
increment counter: ℓ = ℓ+ 1

until ∥θℓ − θℓ−1∥ ≤ δ, or ℓmax was reached

2


