System Identification — Practical Assignment 2
Linear Regression for Function Approximation

Logistics

This practical assignment should very preferably be carried out by each student separately. Otherwise,
if there are more students than computers, with the explicit agreement of the lab teacher for each group,
students may team up in groups of 2.

The assignment solution consists of Matlab code. Develop this code in a single Matlab script. If you
need to create functions, they can be local to the script, see local functions in scripts.

The overall rules for labs, including deadlines for finalizing them and the procedure for lab validation, are
described on the website so they will not be repeated here; except to say again that both direct scrutiny
by the TA and automated plagiarism checks are in place to detect copied solutions, from colleagues or
automated code generation tools like ChatGPT. Only after the first check has been performed by the lab
TA and he or she validated your lab solution, you are allowed to upload it for the final plagiarism check,
on a Teams assignment titled “Lab 2 (linear regression)”. Submit only once, a single m-file, named ex-
actly according to the following pattern:
L2_ENgh_LastnameFirstname.m

where g is your group, h your halfgroup, and your last and first names follow. E.g., L2 EN32 _PopAlex.

If you worked in a group per the above, only upload one file with both student names included. Any files
that are duplicate, nonstandard, inappropriately named, or corresponding to solutions that were not pre-
checked by the TAs, will not be considered.

Assignment description

In this assignment we will perform function approximation with linear regression and polynomial ap-
proximators, see Linear Regression in the course material on Mathematical Background.

A data set of input-output pairs is given, where the outputs are generated by an unknown function g. The
function has one input variable and one output variable, and the output measurements are affected by
noise. You will develop an approximator of this function, using a linear model with polynomial terms
(basis functions). The parameters of the model will be found using the identification data set. A second
data set is provided for validating the developed model. The two data sets are given in a MATLAB data
file, containing one structure for each set. The training data set is named id and the validation data
set val. Each of these structures contains a vector X of input samples, and the corresponding output
samples in vector Y.

Each student is assigned an index number. Then, the student downloads the data file that form the basis
of the assignment from the course webpage.

Requirements:

* Plot the identification data to get an idea of the function shape.

* Create a polynomial approximator of degree n — 1, where n is the number of parameters / basis
functions. Here, n should be tunable. Note there is one extra parameter for the constant term,
which is why the degree is just n — 1. For example, when n = 4, the polynomial has degree 3 and
the approximator is:

f](:)?) =01+ 205 + 1'293 + :L‘394

m.


https://www.mathworks.com/help/matlab/matlab_prog/local-functions-in-scripts.html

Your code should be written so as to work for any value of n (configurable via a variable).

* Create a system of linear equations for linear regression, using the identification data. Use the ma-
trix representation explained in the lecture. Solve this system using matrix left division, operator
\ in Matlab (or alternatively with 1insolve). Report the MSE on the identification data.

 Validate the model on the different, validation data set: compute the approximated outputs and
from those the MSE on the validation data. Show a plot of the approximated function on the
validation data set, comparing to the actual outputs.

* Tune n for good performance (by trying values up to, say, 25). Performance should be evaluated by
the MSE on the different, validation data set to avoid overfitting. Produce a plot of the MSE versus
n and find the point where the MSE is minimal, which corresponds to the optimal polynomial
degree.

Your plots will look similar to those exemplified in the next figure (except your data and fit quality
may be different, of course). It is normal, and expected, to see a poor validation fit when n is too
low (underfitting, approximator not powerful enough to model the dataset), and when n is too large
(overfitted, approximator too powerful so it starts modeling noise, and the MSE on the validation data
increases while the MSE on the identification data keeps going down).

12 T T T T T

True values
Approximated

10 |t




