
System Identification – Practical Assignment 10:
Recursive ARX identification

Logistics

Please reread the logistics part of lab 2, the same rules will apply to this lab. The only things that change
are the Teams assignment, which for this lab is “Lab 10 (recursive ARX)”, and of course the lab number
in the file name.

Assignment description

In this assignment we will implement the recursive variant of the ARX method, see the lecture Recursive
identification methods. We will interact online with the DC motor, see the “Online mode” section of the
DC motor guide.

The requirements for the lab are the following:

• To start with, we will apply some zeros, a step input (which together with the corresponding output
we will also keep for validation), followed by another sequence of zeros to bring the motor back to
zero conditions in preparation for the online experiment. The sampling rate is 0.01 s (10ms). The
step signal has magnitude around 0.3 and around 70 samples in length.

• To prepare for identification, create (but do not apply yet!) a PRBS signal with amplitudes in the
interval [−0.8, 0.8] and a length N of 200 samples. You can either use idinput or your own
PRBS code from the previous labs, but in the latter case use a sufficiently large number of bits so
that the signal does not repeat.

• Implement the general recursive ARX algorithm which applies the input designed above step by
step to the DC motor, and updates the ARX model at each step, see the pseudocode below with ad-
ditional information compared to the lecture. The code should produce a matrix Θ ∈ R(na+nb)×N

containing on each column k the parameter vector θ(k): first the coefficients a1, . . . , ana of A,
and then the coefficients b1, . . . , bnb of B. Use an initial inverse P−1(0) = 1000Ina+nb and a zero
initial parameter vector θ̂(0). You can try to take na = nb = 2, this will work better despite the
fact that the system is single-order.

• Compare on the validation data the quality of two models: one with the final parameters found
after processing the whole dataset; and another after only 5% of the data. Which model is better?
Think about the reasons. Hint: You can use idpoly(A,B,[],[],[],0,Ts) followed by
compare on an iddata object for the validation dataset (which you need to create yourself).
Do not forget that for idpoly, the vectors of polynomial coefficients must be rows and must
contain the leading constant coefficients (power 0 of the argument q−1), which must be 1 in A and
0 in B); these leading coefficients are not stored in Θ.

1



1: initialize θ̂(0), an na+ nb column vector
2: initialize P−1(0), an (na+ nb)× (na+ nb) matrix
3: for each step k = 1, 2, . . . , N do
4: send u(k) to the system, read y(k) from the system
5: form ARX regressor vector: φ(k) = [−y(k − 1), · · · ,−y(k − na), u(k − 1), · · · , u(k − nb)]⊤

6: find prediction error: ε(k) = y(k)− φ⊤(k)θ̂(k − 1) (a scalar)
7: update inverse: P−1(k) = P−1(k − 1)− P−1(k−1)φ(k)φ⊤(k)P−1(k−1)

1+φ⊤(k)P−1(k−1)φ(k)

8: compute weights: W (k) = P−1(k)φ(k) (an (na+ nb) column vector)
9: update parameters: θ̂(k) = θ̂(k − 1) +W (k)ε(k)

10: important: wait for the sampling period to elapse
11: end for

2


