
System Identification
Control Engineering EN, 3rd year B.Sc.

Technical University of Cluj-Napoca
Romania

Lecturer: Lucian Buşoniu

Model validation Structure selection & overparametrization Other practical issues Conclusion

Part X

Model validation and practical issues

Model validation Structure selection & overparametrization Other practical issues Conclusion

Table of contents

1 Model validation with correlation tests

Introduction

Correlation tests

Matlab example

2 Structure selection and avoiding overparametrization

3 Other practical issues

4 Conclusion

Model validation Structure selection & overparametrization Other practical issues Conclusion

Recall: Importance of validation

Model validation is a crucial step: the model must be good enough
(for its intended usage).

If validation is unsuccessful, previous steps in the workflow must be
redone, for instance:

Rerun the identification algorithm with different parameters (e.g.
δ in recursive methods).
Change the model structure: e.g. orders of polynomials na, nb in
ARX, or even the model type entirely, e.g. IV instead of ARX
Design and run a new experiment (e.g. more data, different input
signal)

Model validation Structure selection & overparametrization Other practical issues Conclusion

Motivation

So far, we validated and selected models mostly informally, by
examining plots or comparing errors – using common sense.

Next, some mathematically well-founded tests will be given.

However, common sense remains indispensable – mathematical tests
work under assumptions that may not always be satisfied.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Focus: Prediction error methods

We focus on single-output models obtained by prediction error
methods.

Some of the tests can be extended to other settings.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Table of contents

1 Model validation with correlation tests

Introduction

Correlation tests

Matlab example

2 Structure selection and avoiding overparametrization

3 Other practical issues

4 Conclusion

Model validation Structure selection & overparametrization Other practical issues Conclusion

Whiteness: Intuition

Recall general PEM model structure:

y(k) = G(q−1)u(k) + H(q−1)e(k)

where e(k) is assumed to be zero-mean white noise.

PEM are derived so that the prediction error
ε(k) = y(k)− ŷ(k) = e(k). If the system satisfies the model structure
(so the white-noise assumption holds), and moreover if the model is
accurate, then ε(k) is also zero-mean white noise.

Whiteness hypothesis

(W) The prediction errors ε(k) are zero-mean white noise.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Independence of past inputs: Intuition

y(k) = G(q−1)u(k) + v(k)

If the model G is accurate, it entirely explains the influence of inputs
u(k) on current and future outputs y(k + τ). Therefore, the errors
ε(k + τ) = y(k + τ)− ŷ(k + τ) are only influenced by the
disturbances v , and are independent of inputs u(k). This holds
regardless of whether the whiteness hypothesis is true or not.

Independence hypothesis 1

(I1) The prediction errors ε(k + τ) are independent of inputs u(k) for
τ ≥ 0 (i.e., current and future errors are independent of current
inputs).

Model validation Structure selection & overparametrization Other practical issues Conclusion

Independence of all inputs: Intuition

y(k) = G(q−1)u(k) + v(k)

If the experiment is closed-loop, u(k) depends on past outputs and
this will lead to a correlation of past errors ε(k + τ), τ < 0 with u(k)
(note the independence for τ ≥ 0 is not affected). If open-loop, then
ε(k + τ), τ < 0 is also independent from u(k).

Independence hypothesis 2

(I2) The prediction errors ε(k + τ) are independent of u(k) for any τ
(i.e., all the errors are independent of all the inputs).

Model validation Structure selection & overparametrization Other practical issues Conclusion

All hypotheses

(W) The prediction errors ε(k) are zero-mean white noise.
(I1) The prediction errors ε(k + τ) are independent of u(k) for τ ≥ 0

(current and future errors are independent of current inputs).
(I2) The prediction errors ε(k + τ) are independent of u(k) for any τ

(all the errors are independent of all the inputs).

A good model should satisfy (W) and (I1), and if there is no feedback,
also (I2).

We will develop tests that allow to either accept or reject these
hypotheses for a given model, and therefore validate or reject the
model.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Whiteness: Correlations

Recall the correlation function (equal to the covariance in zero-mean
case):

rε(τ) = E {ε(k + τ)ε(k)}

If ε(k) is zero-mean white noise:

The correlation function is zero, rε(τ) = 0 for any nonzero τ .
At zero, rε(0) is the variance σ2 of the white noise.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Whiteness: Correlations from data

Correlations are estimated from data, and then normalized by the
(estimated) variance:

r̂ε(τ) =
1
N

N−τ∑
k=1

ε(k + τ)ε(k)

x(τ) =
r̂ε(τ)

r̂ε(0)

Normalization helps since we can think of the normalized magnitudes
independently from any system details, whereas the unnormalized
magnitudes depend of the nature of the system and signal (mV, cells
per milliliter, m, km all lead to different numbers).

Model validation Structure selection & overparametrization Other practical issues Conclusion

Whiteness test

In practice, x(τ) will never be zero for finite data, so instead we check
if it is small for nonzero τ . For statistical reasons, we impose a cutoff
at 1.96√

N

Whiteness test

If |x(τ)| ≤ 1.96√
N

for all τ 6= 0 supported by the data, then the whiteness
hypothesis (W) is accepted. Otherwise, (W) is rejected.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Independence: Correlations & their computation from
data

To verify independence of ε from u, use cross-correlation function:

rεu(τ) = E {ε(k + τ)u(k)}

1 If (I1) is true, then rεu(τ) = 0 for τ ≥ 0.
2 If (I2) is true, then rεu(τ) = 0 for any τ .

Estimation from data and normalization:

r̂εu(τ) =

{
1
N

∑N−τ
k=1 ε(k + τ)u(k) if τ ≥ 0

1
N

∑N
k=1−τ ε(k + τ)u(k) if τ < 0

x(τ) =
r̂εu(τ)√

r̂ε(0)r̂u(0)

Model validation Structure selection & overparametrization Other practical issues Conclusion

Independence test at τ

Independence tests

If |x(τ)| ≤ 1.96√
N

, ∀τ ≥ 0 supported by the data, then the independence
hypothesis (I1) is accepted.
If the condition holds ∀τ supported by the data (including negative τ),
then (I2) is also accepted.

If the model is accurate (I1 holds), then checking the condition at
τ < 0 (I2) verifies the presence of feedback.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Correlation tests: Overall interpretation

y(k) = G(q−1)u(k) + H(q−1)e(k)

If W and I1 hold, then the entire model (G and H) is correct

If I1 holds but W fails, then G is correct but H is incorrect

If I1 holds and I2 fails, there is feedback in the data. If I2 also
holds then there is no feedback

If I1 fails, then G is incorrect and there is not much else that we
can conclude

Model validation Structure selection & overparametrization Other practical issues Conclusion

Table of contents

1 Model validation with correlation tests

Introduction

Correlation tests

Matlab example

2 Structure selection and avoiding overparametrization

3 Other practical issues

4 Conclusion

Model validation Structure selection & overparametrization Other practical issues Conclusion

Matlab example: Experimental data

The real system is in output-error form:

y(k) =
B(q−1)

F (q−1)
u(k) + e(k)

and has order n = 3.
plot(id); and plot(val);

Model validation Structure selection & overparametrization Other practical issues Conclusion

Matlab: ARX model

First, we try an ARX model:
mARX = arx(id, [3, 3, 1]);

Simulating on the validation data shows that the model is poor:

Model validation Structure selection & overparametrization Other practical issues Conclusion

Matlab: ARX model correlation tests

To investigate further, we run correlation tests:
resid(mARX, id);

The whiteness test (W) fails, and the model is rejected. This is
because the system is not within the model class.

As I1 holds, we conclude that the input-output model G is good, but
the noise model H is wrong and we should work to improve that part.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Matlab: OE model

mOE = oe(id, [3, 3, 1])

Simulating on the validation data shows the model has good quality:

Model validation Structure selection & overparametrization Other practical issues Conclusion

Matlab: OE model correlation tests

resid(mOE, id);

OE model passes all the tests – as expected because the OE model
class contains the real system. Thus, both G and H are validated.

Important note: The Matlab functions impose a smaller cutoff for the
correlations, so they are less likely to reject a correct model.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Table of contents

1 Model validation with correlation tests

2 Structure selection and avoiding overparametrization

Structure selection

Overparametrization

3 Other practical issues

4 Conclusion

Model validation Structure selection & overparametrization Other practical issues Conclusion

Structure selection in workflow

While we nearly always tuned the model structure (e.g. type, orders,
length), the criteria for doing so were often informal.

Next, we discuss structure selection in a formal way.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Structure selection: Model complexity

Consider we are given several model structures M1,M2, . . . ,M`.
Example: ARX structures of increasing order.

How to choose among them?

First idea: choose Mi leading to the smallest mean squared error:

V (θ̂) =
1
N

N∑
k=1

ε(k)2

This ignores the complexity of the model, which is related to:

the computational effort for identification and simulation
the amount of data needed for identification
the risk of overfitting

We explore other options that do consider model complexity (without
going into their derivation).

Model validation Structure selection & overparametrization Other practical issues Conclusion

Akaike’s information criterion (AIC)

WAIC = N log V (θ̂) + 2p, or equivalently: log V (θ̂) +
2p
N

where N is the number of data points and p the number of
parameters (e.g., na + nb in ARX).

Choice: Model with smallest WAIC.

Intuition:

The term 2p penalizes the complexity of the model (number of
parameters).
Division by the number N of data points in 2p/N takes into
account that more data allows more parameters to be identified.
Taking the logarithm of the MSE allows to better differentiate
between small values of the MSE.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Final prediction error (FPE)

WFPE = V (θ̂)
1 + p/N
1− p/N

Choice: Model with smallest WFPE.

Intuition: When N is large:

V (θ̂)
1 + p/N
1− p/N

= V (θ̂)(1 +
2p/N

1− p/N
) ≈ V (θ̂)(1 +

2p
N

)

and the term 2p
N works like before, but now it leads to a correction

proportional to the MSE rather than getting added directly.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Matlab example

An OE system with n = 2.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Matlab: selstruc with AIC

Recall arxstruc:

Na = 1:15; Nb = 1:15; Nk = 1:5;
NN = struc(Na, Nb, Nk); V = arxstruc(id, val, NN);

struc generates all combinations of orders in Na, Nb, Nk.
arxstruc identifies for each combination an ARX model on the
data id, simulates it on the data val, and returns information
about the MSEs, model orders etc. in V.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Matlab: selstruc with AIC (continued)

To choose the structure with the Akaike’s information criterion:
N = selstruc(V, ’aic’);

For our data, N= [8, 8, 1].

Alternatively, graphical selection also allows using AIC:
N = selstruc(V, ’plot’);

Note that the best-AIC model is not (always) the same as the best-fit
model!

Model validation Structure selection & overparametrization Other practical issues Conclusion

Matlab: Results

Model validation Structure selection & overparametrization Other practical issues Conclusion

Remarks

AIC, FPE also work if the system is not in the model class.

Matlab offers functions aic, fpe that compute these criteria for a list
of models with any structure.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Table of contents

1 Model validation with correlation tests

2 Structure selection and avoiding overparametrization

Structure selection

Overparametrization

3 Other practical issues

4 Conclusion

Model validation Structure selection & overparametrization Other practical issues Conclusion

Motivation

Consider a case where the real system obeys the ARMAX structure:

A0(q−1)y(k) = B0(q−1)u(k) + C0(q−1)e(k)

where subscript 0 indicates quantities related to the real system.

This is equivalent to any model:

W (q−1)A0(q−1)y(k) = W (q−1)B0(q−1)u(k) + W (q−1)C0(q−1)e(k)

with W (q−1) some polynomial of order nw .

So, using ARMAX identification with na = na0 + nw , nb = nb0 + nw ,
nc = nc0 + nw can produce an accurate model. This model is
however too complicated (overparametrized), and will have some
nearly common factors W (q−1) in all polynomials (only “nearly”
because of the approximate nature of the identification).

Model validation Structure selection & overparametrization Other practical issues Conclusion

Pole-zero cancellations

This type of situation can be identified by checking if some poles and
zeros of the model (approximately) cancel each other out.

We exemplify using Matlab function pzmap, which shows the poles
and zeros of G in the generic model:

y(k) = G(q−1)u(k) + v(k)

For the ARMAX example, G(q−1) = W (q−1)B0(q−1)
W (q−1)A0(q−1)

, so the roots of W
are both poles and zeros and (approximately) cancel each other out.

This idea extends to other model types besides ARMAX.

Model validation Structure selection & overparametrization Other practical issues Conclusion

Matlab: overparameterized OE model

On the same data as for correlation tests (recall system has order
n = 3):

mOE = oe(id, [5, 5, 1]);

Looking at the validation data, the model is accurate:

Model validation Structure selection & overparametrization Other practical issues Conclusion

Matlab: testing for pole-zero cancellations
pzmap(mOE, ’sd’, nsd);

Arguments ’sd’, nsd specify a statistical confidence region around
the poles and zeros. Here we take nsd=1.96, for statistical reasons.

Two pairs of poles and zeros have overlapping confidence regions ⇒
likely they are canceling each other. This indicates that identification
should be rerun with the true system order 3 (we already did this in
our earlier OE results).

Model validation Structure selection & overparametrization Other practical issues Conclusion

Table of contents

1 Model validation with correlation tests

2 Structure selection and avoiding overparametrization

3 Other practical issues

Drifts

Time delays

Local minima

Outliers

4 Conclusion

Model validation Structure selection & overparametrization Other practical issues Conclusion

Drifts

Sometimes, the data will contain spurious slow signals called drifts,
coming e.g. from slow disturbances (as opposed to the fast noise or
disturbance, which we know how to handle)

Idea: Treat the drifts as time series, fit them with linear regression,
and remove them

Model validation Structure selection & overparametrization Other practical issues Conclusion

Estimating drifts

1 Treat the input and output as separate time series (no longer a
dynamical system identification problem), write drift models:

u∗(k) = θu
1 + θu

2k + θu
3k2 + . . . + θu

nkn−1

y∗(k) = θy
1 + θy

2k + θy
3k2 + . . . + θy

nkn−1

2 Find the parameter vectors θu, θy by linear regression on
u(k), y(k) and compute the corresponding drifts u∗(k), y∗(k)

3 Subtract the drifts from the data:

ū(k) = u(k)− u∗(k), ȳ(k) = y(k)− y∗(k)

4 Identify as usual, but with “detrended” signals ū, ȳ

Notes: Matlab function detrend available; Removing zero-order
drifts = removing the means

Model validation Structure selection & overparametrization Other practical issues Conclusion

Time delays

Read the delay on the graph. Set nk appropriately in Matlab, or
otherwise add nk leading zeros to the polynomial B(q−1) in the
model:

· · · y(k) =
B(q−1)

· · ·
u(k) + · · ·

Note: Taking nk too small is safe (possibly requiring an increase of
nb); too large and it breaks the model!

Model validation Structure selection & overparametrization Other practical issues Conclusion

Local minima

Iterative optimization (needed for methods that cannot be solved
as linear regression, such as ARMAX and OE) may get stuck in
local minima
E.g. if initialized to θ1, Newton’s method likely converges to the
local minimum θ`. But from θ2 it finds the global optimum θ∗!

⇒ If result is bad and local minima suspected, restart the
optimization from another initial parameter vector

Note: ARMAX usually converges to the global optimum; OE often to
local optima except when u is white noise

Model validation Structure selection & overparametrization Other practical issues Conclusion

Outliers

Sometimes, a few measurements will be wildly incorrect, due to
e.g. transient malfunctions. These are called outliers
Best tested via the prediction error ε, after finding an initial model:
if ε(k) is anomalously large at some step k , an outlier is likely
Solution 1: Fill in the data using e.g. the average of y(k − 1) and
y(k + 1) (shown in the figure), or the model prediction ŷ(k)

Solution 2: Cap the prediction error at a reasonable maximum
εmax, so V (θ) =

∑N
k=1 min{ε2(k), εmax}

Model validation Structure selection & overparametrization Other practical issues Conclusion

Role of system identification

Model found can be used to e.g.:

Analyze system behavior (e.g. stability, etc.)
Predict future behavior.
Simulate system behavior in new scenarios.
Design a controller for the system.

	Model validation with correlation tests
	Introduction
	Correlation tests
	Matlab example

	Structure selection and avoiding overparametrization
	Structure selection
	Overparametrization

	Other practical issues
	Drifts
	Time delays
	Local minima
	Outliers

	Conclusion
	Conclusion

