
System Identification
Control Engineering EN, 3rd year B.Sc.

Technical University of Cluj-Napoca
Romania

Lecturer: Lucian Buşoniu

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Part VII

Prediction error methods

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Table of contents

1 Model structures

2 General prediction error methods

3 Solving the optimization problem

4 Theoretical guarantees

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Classification

Recall taxonomy of models from Part I:

By number of parameters:

1 Parametric models: have a fixed form (mathematical formula),
with a known, often small number of parameters

2 Nonparametric models: cannot be described by a fixed, small
number of parameters
Often represented as graphs or tables

By amount of prior knowledge (“color”):

1 First-principles, white-box models: fully known in advance
2 Black-box models: entirely unknown
3 Gray-box models: partially known

Like ARX, general prediction error methods (PEM) produce
black-box, parametric (polynomial) models.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Table of contents

1 Model structures

2 General prediction error methods

3 Solving the optimization problem

4 Theoretical guarantees

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Motivation

General PEM can be seen as an extension of ARX to significantly
more general model structures, and are therefore able to identify
more classes of systems.

To clarify, we first introduce the general class of models to which PEM
can be applied.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

General model structure

y(k) = G(q−1)u(k) + H(q−1)e(k)

where G and H are discrete-time transfer functions – fractions of
polynomials. Signal e(t) is zero-mean white noise.

G is the input-output transfer function.
H is the disturbance transfer function.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

General model structure: Explicit form

By making the fractions explicit and placing the common factors of the
denominators of G and H in A(q−1), we get the more detailed form:

y(k) =
B(q−1)

A(q−1)F (q−1)
u(k) +

C(q−1)

A(q−1)D(q−1)
e(k)

A(q−1)y(k) =
B(q−1)

F (q−1)
u(k) +

C(q−1)

D(q−1)
e(k)

where A, B, C, D, F are all polynomials, of orders na, nb, nc, nd , nf :

A = 1 + a1q−1 + . . . + anaq−na

B(q−1) = b1q−1 + . . . + bnbq−nb F (q−1) = 1 + f1q−1 + . . . + fnf q−nf

C(q−1) = 1 + c1q−1 + . . . + cncq−nc D(q−1) = 1 + d1q−1 + . . . + dndq−nd

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

General model structure: Graphical form

A(q−1)y(k) =
B(q−1)

F (q−1)
u(k) +

C(q−1)

D(q−1)
e(k)

Very general form, all other linear forms are special cases of this. Not
for practical use, but to describe algorithms in a generic way. In
practice, we use one of the special cases, as exemplified next.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

ARMAX model structure

Setting F = D = 1 (i.e. orders nf = nd = 0), we get:

A(q−1)y(k) = B(q−1)u(k) + C(q−1)e(k)

Name: AutoRegressive (dependence on previous outputs), Moving
Average (referring to noise model) with eXogenous input
(dependence on u)

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

ARMAX: explicit form

A(q−1)y(k) = B(q−1)u(k) + C(q−1)e(k)

A(q−1) = 1 + a1q−1 + . . . + anaq−na

B(q−1) = b1q−1 + . . . + bnbq−nb

C(q−1) = 1 + c1q−1 + . . . + cncq−nc

y(k) + a1y(k − 1) + . . . + anay(k − na)

= b1u(k − 1) + . . . + bnbu(k − nb)

+ e(k) + c1e(k − 1) + . . . + cnce(k − nc)

with parameter vector:

θ = [a1, . . . , ana, b1, . . . , bnb, c1, . . . , cnc]
> ∈ Rna+nb+nc

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Running example: 1st order ARMAX

Take na = nb = nc = 1. This leads to the 1st order ARMAX model:

(1 + aq−1)y(k) = bq−1u(k) + (1 + cq−1)e(k)

y(k) = −ay(k − 1) + bu(k − 1) + ce(k − 1) + e(k)

where we skipped the indices in a, b, c since there is a single
parameter in each polynomial.

We will be using this as a running example throughout this part.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Special case of ARMAX: ARX

Setting C = 1 in ARMAX (nc = 0), we get:

A(q−1)y(k) = B(q−1)u(k) + e(k)

precisely the ARX model we worked with before.

Compared to ARX, ARMAX can model more intricate disturbances
(C(q−1)e(k) instead of e(k), which is often assumed to be
zero-mean white-noise).

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Recall: FIR special case of ARX

Further setting A = 1 (na = 0) in ARX, we get:

y(k) = B(q−1)u(k) + e(k) =
nb∑
j=1

bju(k − j) + e(k)

=
M−1∑
j=0

h(j)u(k − j) + e(k)

the FIR model.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Output error

Output Error, OE:

y(k) =
B(q−1)

F (q−1)
u(k) + e(k)

obtained for na = nc = nd = 0, i.e. A = C = D = 1.

This corresponds to simple, additive measurement noise on the
output (the “output error”).

Exercises:

Is OE a special case of ARMAX/ARX?
What is the explicit form of the OE model?

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Table of contents

1 Model structures

2 General prediction error methods

Stepping stone: ARX revisited

General case

Special cases: 1st order ARMAX, ARX

Matlab example

3 Solving the optimization problem

4 Theoretical guarantees

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

ARX reinterpreted as a PEM

1 Compute predictions at each step, ŷ(k) = ϕ>(k)θ
given parameters θ.

2 Compute prediction errors at each step, ε(k) = y(k)− ŷ(k).
3 Find a parameter vector θ minimizing criterion

V (θ) = 1
N

∑N
k=1 ε2(k).

The procedure above is just a reinterpretation, equivalent to the
algorithm discussed in the ARX lecture.

Prediction error methods are obtained by extending this procedure to
general model structures.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

ARX reinterpreted as a PEM (continued)

Remarks:

For ARX, we already know how to minimize the MSE (from linear
regression); for more general models new methods will be
introduced.
ARX predictor ŷ(k) is chosen to achieve the error ε(k) = e(k),
equal to the noise. We will aim to achieve the same error in the
general PEM, intuitively because we cannot do better.
Note different meanings of ε(k) (prediction error) and e(k)
(noise)
The prediction error is just a rearrangement of the equation
y(k) = ϕ>(k)θ + ε(k) = ŷ(k) + ε(k).

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Checklist

For each model structure, we will have to run through the three steps:
prediction, prediction error, and minimization of the MSE.

We keep a running checklist:

ARX
prediction ŷ(k) X

prediction error ε(k) X
minimization of V (θ) X

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Table of contents

1 Model structures

2 General prediction error methods

Stepping stone: ARX revisited

General case

Special cases: 1st order ARMAX, ARX

Matlab example

3 Solving the optimization problem

4 Theoretical guarantees

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Recall: General model structure

y(k) = G(q−1)u(k) + H(q−1)e(k)

where G and H are discrete-time transfer functions:

y(k) =
B(q−1)

A(q−1)F (q−1)
u(k) +

C(q−1)

A(q−1)D(q−1)
e(k)

In the sequel, we skip argument q−1 to make the equations readable,
and implicitly understand that each capital letter is a transfer function
or polynomial of q−1.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Prediction error

We start by deriving e(k).

y(k) = Gu(k) + He(k)

⇒ e(k) = H−1(y(k)−Gu(k))

where H−1 = AD
C is the inverse of polynomial fraction H.

The predictor will be derived so that the prediction error
ε(k) = y(k)− ŷ(k) = e(k). So, the same formula can also be used to
compute ε(k):

ε(k) = H−1(y(k)−Gu(k))

This is a dynamical system that can be simulated to compute ε(k).

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Predictor

To achieve error e(k), the predictor dynamics must be:

ŷ(k) = y(k)− e(k) = Gu(k) + He(k)− e(k) = Gu(k) + (H − 1)e(k)

= Gu(k) + (H − 1)H−1(y(k)−Gu(k))

= Gu(k) + (1− H−1)(y(k)−Gu(k))

= Gu(k) + (1− H−1)y(k)−Gu(k) + H−1Gu(k)

= (1− H−1)y(k) + H−1Gu(k)

Remark: In order to have a causal predictor, that only depends on
past values of the output and input, we require G(0) = 0 and
H(0) = 1.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Preview: Finding the parameters & using the model

Finding the parameters: Once the procedure to compute the errors is
available, the parameters θ are found by minimizing criterion
V (θ) = 1

N

∑N
k=1 ε2(k). This will usually require multiple evaluations of

error signal ε(k), for multiple values of the parameters θ.

We do not yet go into specific computational methods to solve the
error minimization problem. We will study them in detail in the next
section.

Using the model: Once an estimate θ̂ of the optimum is found, the
predictor formula is applied to compute the model outputs ŷ(k). The
model can also be adapted to run in simulation mode.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Checklist

ARX General PEM
prediction ŷ(k) X X

prediction error ε(k) X X
minimization of V (θ) X ?

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Table of contents

1 Model structures

2 General prediction error methods

Stepping stone: ARX revisited

General case

Special cases: 1st order ARMAX, ARX

Matlab example

3 Solving the optimization problem

4 Theoretical guarantees

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Running example: 1st order ARMAX

Recall ARMAX:
Ay(k) = Bu(k) + Ce(k)

Placing it in the standard form, we get:

y(k) =
B
A

u(k) +
C
A

e(k)

= Gu(k) + He(k)

So G = B
A , H = C

A

For 1st order: A = 1 + aq−1, B = bq−1, C = 1 + cq−1.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

1st order ARMAX: Prediction error

Recall general error formula:

ε(k) = H−1(y(k)−Gu(k))

For our case, since G = B
A , H = C

A :

ε(k) =
A
C

(
y(k)− B

A
u(k)

)
Cε(k) = Ay(k)− Bu(k)

(1 + cq−1)ε(k) = (1 + aq−1)y(k)− bq−1u(k)

ε(k) + cε(k − 1) = y(k) + ay(k − 1)− bu(k − 1)

ε(k) = −cε(k − 1) + y(k) + ay(k − 1)− bu(k − 1)

This is a dynamical, recursive formula which needs to be simulated
over time! Requires initialization of ε(0), usually taken 0.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

1st order ARMAX: Predictor

Recall general predictor formula:

ŷ(k) = (1− H−1)y(k) + H−1Gu(k)

For our case, since G = B
A , H = C

A :

ŷ(k) =

(
1− A

C

)
y(k) +

�A
C

B

�A
u(k)

Cŷ(k) = (C − A)y(k) + Bu(k)

(1 + cq−1)ŷ(k) = (�1 + cq−1 − �1− aq−1)y(k) + bq−1u(k)

ŷ(k) + cŷ(k − 1) = (c − a)y(k − 1) + bu(k − 1)

ŷ(k) = −cŷ(k − 1) + (c − a)y(k − 1) + bu(k − 1)

Again, a dynamical, recursive formula. Requires initialization at ŷ(0),
usually taken 0.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Checklist

ARX General PEM 1st order ARMAX
prediction ŷ(k) X X X

prediction error ε(k) X X X
minimization of V (θ) X ? ?

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Specializing the framework to ARX

It is instructive to see how the formulas simplify in the ARX case.
Rewriting ARX in the general model template:

y(k) = Gu(k) + He(k) =
B
A

u(k) +
1
A

e(k)

We have:

H =
1
A

, G =
B
A

ŷ(k) = (1− H−1)y(k) + H−1Gy(k) = (1− A)y(k) + Bu(k)

= (−a1q−1 − . . .− anaq−na)y(k) + (b1q−1 + . . . bnb + q−nb)u(k)

= ϕ(k)θ

ε(k) = H−1(y(k)−Gu(k)) = Ay(k)− Bu(k)

= y(k)− (1− A)y(k)− Bu(k) = y(k)− ŷ(k)

which is therefore equivalent to the ARX formulation.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Table of contents

1 Model structures

2 General prediction error methods

Stepping stone: ARX revisited

General case

Special cases: 1st order ARMAX, ARX

Matlab example

3 Solving the optimization problem

4 Theoretical guarantees

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Experimental data

Consider again the experimental data on which ARX was applied.
plot(id); and plot(val);

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Recall: ARX result

Assuming the system is second-order and without time delay, we take
na = 2, nb = 2, nk = 1.

Results are quite bad.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Identifying an ARMAX model
mARMAX = armax(id, [na, nb, nc, nk]);

Arguments:

1 Identification data.
2 Array containing the orders of A, B, C and the delay nk .

Like for ARX, structure includes the explicit minimum delay nk
between inputs and outputs.

y(k) + a1y(k − 1) + a2y(k − 2) + . . . + anay(k − na)

= b1u(k − nk) + b2u(k − nk − 1) + . . . + bnbu(k − nk − nb + 1)

+ e(k) + c1e(k − 1) + c2e(k − 2) + . . . + cnce(k − nc)

A(q−1)y(k) = B(q−1)u(k − nk) + C(q−1)e(k), where:

A(q−1) = (1 + a1q−1 + a2q−2 + . . . + anaq−na)

B(q−1) = (b1 + b2q−1 + bnbq−nb+1)

C(q−1) = (1 + c1q−1 + c2q−2 + . . . + cncq−nc)

Remark: As for ARX, the theoretical structure is obtained by setting
nk = 1 (and to represent nk > 1 in the theoretical structure, change
B like in the ARX Matlab example).

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

ARMAX model

Considering the system is 2nd order with no time delay, take na = 2,
nb = 2, nc = 2, nk = 1. Validation: compare(val, mARMAX);

In contrast to ARX, results are good. Flexible noise model pays off.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Identifying an OE model

Recall OE model structure:

y(k) =
B(q−1)

F (q−1)
u(k) + e(k)

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Identifying an OE model (continued)
mOE = oe(id, [nb, nf, nk]);

Arguments:
1 Identification data.
2 Array containing the orders of B, F , and the delay nk .

y(k) =
B(q−1)

F (q−1)
u(k − nk) + e(k), where:

B(q−1) = (b1 + b2q−1 + bnbq−nb+1)

F (q−1) = (1 + f1q−1 + f2q−2 + . . . + fnf q−nf)

Explicit formula:

y(k) + f1y(k − 1) + f2y(k − 2) + . . . + fnf y(k − nf)
=b1u(k − nk) + b2u(k − nk − 1) + . . . + bnbu(k − nk − nb + 1)

+ e(k) + f1e(k − 1) + f2e(k − 2) + . . . + fnf e(k − nf)

Remark: Like before, can transform into theoretical structure by
setting nk = 1 (or changing B if nk > 1).

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

OE model

Considering the system is second-order with no time delay, we take
nb = 2, nf = 2, nk = 1. Validation: compare(val, mOE);

Results as good as ARMAX. System turns out to obey both model
structures. Question: What is the true structure then?

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Summary

ARX reinterpreted as a PEM, isolating the predictor and
prediction error
Derived PEM in the general-model case: prediction error,
predictor
Example application to first-order ARMAX: prediction error,
predictor
Double-checked predictor and error formulas for ARX
Matlab example illustrating ARX, ARMAX, and OE identification
Error-minimization method remains open

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Table of contents

1 Model structures

2 General prediction error methods

3 Solving the optimization problem

4 Theoretical guarantees

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Checklist

ARX General PEM 1st order ARMAX
prediction ŷ(k) X X X

prediction error ε(k) X X X
minimization of V (θ) X ? ?

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Optimization problem

Objective of identification procedure: Minimize mean squared error

V (θ) =
1
N

N∑
k=1

ε(k)2

where ε(k) are the prediction errors. In the general case:
ε(k) = H−1(q−1)(y(k)−G(q−1)u(k))

Solution: θ̂ = arg min
θ

V (θ)

So far we took this solution for granted and investigated its properties.
While in ARX linear regression could be applied to find θ̂, in general
this does not work. Main implementation question:

How to solve the optimization problem?

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Minimization via derivative root

Consider first the scalar case, θ ∈ R.

Idea: at any minimum, the derivative
f (θ) = dV

dθ is zero. So, find a root of f (θ).

Remarks:
Care must be taken to find a
minimum and not a maximum or
inflexion. This can be checked with
the second derivative, d2V

dθ2 = df
dθ > 0.

We may also find a local minimum
which is larger (worse) than the
global one.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Newton’s method for root finding

Start from some initial point θ0.
At iteration `, next point θ`+1 is the intersection between abscissa
and tangent at f in current point θ`. By geometry arguments:

θ`+1 = θ` −
f (θ`)
df (θ`)

dθ

Remarks:

Notation df (θ`)
dθ means the value of derivative df

dθ at point θ`.

The slope of the tangent is df (θ`)
dθ .

θ`+1 is the “best guess” for root given current point θ`.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Newton’s method for optimization

Replace f (θ) by dV
dθ to get back to optimization problem:

θ`+1 = θ` −
dV (θ`)

dθ
d2V (θ`)

dθ2

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Gradient and Hessian

To extend from the scalar case to θ ∈ Rn, we need first and
second-order derivatives of V (θ), taking into account that
V : Rn → R. Then:

dV
dθ

=

∂V
∂θ1
∂V
∂θ2
...

∂V
∂θn

 ,
d2V
dθ2 =

∂2V
∂θ2

1

∂2V
∂θ1∂θ2

. . . ∂2V
∂θ1θn

∂2V
∂θ2∂θ1

∂2V
∂θ2

2
. . . ∂2V

∂θ2θn

...
...

...
...

∂2V
∂θn∂θ1

∂2V
∂θnθ2

. . . ∂2V
∂θ2

n

Gradient dV
dθ is an n-vector, and Hessian d2V

dθ2 an n × n-matrix.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Newton’s method for optimization – general case

Start from scalar-case formula:

θ`+1 = θ` −
dV (θ`)

dθ
d2V (θ`)

dθ2

and extend to use the gradient vector and Hessian matrix:

θ`+1 = θ` −
[

d2V (θ`)

dθ2

]−1 dV (θ`)

dθ

Add a step size α` > 0. Final formula:

θ`+1 = θ` − α`

[
d2V (θ`)

dθ2

]−1 dV (θ`)

dθ

Remark:

The stepsize helps with the convergence of the method, e.g.
when V is noisy.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Stopping criterion

Algorithm can be stopped:

When the difference between consecutive parameter vectors is
small, e.g. maxn

i=1 |θi,`+1 − θi,`| smaller than some preset
threshold.

or
When the number of iterations ` exceeds a preset maximum.

Remark: Nothing so far in Newton’s method was specific to system
identification. The method works in general for any optimization
problem! Next, we return to system identification.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Computing the derivatives

V (θ) =
1
N

N∑
k=1

ε(k)2

Keeping in mind that ε(k) depends on θ, from matrix calculus:

dV
dθ

=
2
N

N∑
k=1

ε(k)
dε(k)

dθ

d2V
dθ2 =

2
N

N∑
k=1

dε(k)

dθ

[
dε(k)

dθ

]>
+

2
N

N∑
k=1

ε(k)
d2ε(k)

dθ2

where:
dε(k)

dθ is the vector derivative and d2ε(k)
dθ2 the Hessian of ε(k).

dε(k)
dθ [dε(k)

dθ]
>

is an n × n matrix.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Gauss-Newton

Ignore the second term in the Hessian of V and just use the first term:

H =
2
N

N∑
k=1

dε(k)

dθ

[
dε(k)

dθ

]>
leading to the Gauss-Newton algorithm:

θ`+1 = θ` − α`H−1 dV (θ`)

dθ

Motivation:

Quadratic form of H gives better algorithm behavior.
Simpler computation.

The details of how to compute dε(k)
dθ depend on the model structure

chosen.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Checklist

ARX General PEM 1st order ARMAX
prediction ŷ(k) X X X

prediction error ε(k) X X X
minimization of V (θ) X X ?

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Example: 1st order ARMAX

Recall model and prediction error for 1st order ARMAX:

y(k) = −ay(k − 1) + bu(k − 1) + ce(k − 1) + e(k)

ε(k) = −cε(k − 1) + y(k) + ay(k − 1)− bu(k − 1)

We need dε(k)
dθ = [∂ε(k)

∂a , ∂ε(k)
∂b , ∂ε(k)

∂c]
>

. Differentiating second equation:

∂ε(k)

∂a
= −c

∂ε(k − 1)

∂a
+ y(k − 1)

∂ε(k)

∂b
= −c

∂ε(k − 1)

∂b
− u(k − 1)

∂ε(k)

∂c
= −c

∂ε(k − 1)

∂c
− ε(k − 1)

So, ∂ε(k)
∂a , ∂ε(k)

∂b , ∂ε(k)
∂c are dynamical signals! They can be computed

using the recursions above, starting e.g. from 0 initial values.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Example: 1st order ARMAX (continued)

Finally, the overall algorithm is implemented as follows:

initialize θ0, iteration counter ` = 0
repeat

given current value of parameter vector θ`,
apply recursions above to find dε(k)

dθ , k = 1, . . . , n
plug dε(k)

dθ into equations for dV
dθ , d2V

dθ2

apply Newton (or Gauss-Newton) update formula to find θ`+1
increment counter: ` = ` + 1

until θ`+1 − θ` is small enough, or maximum ` was reached

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Checklist

ARX General PEM 1st order ARMAX
prediction ŷ(k) X X X

prediction error ε(k) X X X
minimization of V (θ) X X X

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Summary

Need for nonlinear regression
Newton’s method for root finding, scalar case
Newton’s method for optimization, scalar case
Generalization to n dimensions; computing the gradient and
Hessian
Gauss-Newton optimization
Example on first-order ARMAX, with complete formulas and
algorithm

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Table of contents

1 Model structures

2 General prediction error methods

3 Solving the optimization problem

4 Theoretical guarantees

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Assumptions

Assumptions (simplified)
1 Signals u(k) and y(k) are stationary stochastic processes.
2 The input signal u(k) has a sufficiently high order of persistent

excitation.
3 The Hessian d2V

dθ2 is nonsingular at the minimum points of V .

Recall V (θ) = 1
N

∑N
k=1 ε2(k), the MSE. Assumption 3 ensures V is

not “flat” around minima.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Guarantee

Theorem 1

Define the limit V∞(θ) = limN→∞ V (θ). Given Assumptions 1–3, the
identification solution θ̂ = arg minθ V (θ) converges to a minimum
point θ∗ of V∞(θ) as N →∞.

Remark: This is a type of consistency guarantee, in the limit of
infinitely many data points.

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Further assumptions to strengthen guarantee

Assumptions (simplified)
4 The true system satisfies the model structure chosen. This

means there exists at least one θ0 so that for any input u(k) and
the corresponding output y(k) of the true system, we have:

y(k) = G(q−1; θ0)u(k) + H(q−1; θ0)e(k)

with e(k) white noise.
5 The input u(k) is independent from the noise e(k) (the

experiment is performed in open loop).

Model structures General prediction error methods Solving the optimization problem Theoretical guarantees

Additional guarantee

Theorem 2

Under Assumptions 1-5, θ̂ converges to a true parameter vector θ0 as
N →∞.

Remark: Also a consistency guarantee. Theorem 1 guaranteed a
minimum-error solution, whereas Theorem 2 additionally says this
solution corresponds to the true system, if the system satisfies the
model structure.

	Model structures
	Model structures

	General prediction error methods
	Stepping stone: ARX revisited
	General case
	Special cases: 1st order ARMAX, ARX
	Matlab example

	Solving the optimization problem
	Solving the optimization problem

	Theoretical guarantees
	Theoretical guarantees

