
System Identification – Practical Assignment 8
Identifying output error models using the Gauss-Newton method

Logistics

Please reread the logistics part of lab 2, the same rules will apply to this lab. The only thing that changes
is the dropbox link, which for this lab is:

https://www.dropbox.com/request/QiI4tZw6Z1klw0GDUKqs

Assignment description

Each student is assigned an index number by the lecturer. Then, the student downloads the files that form
the basis of the assignment from the course webpage. There is a datafile, containing the identification
data in variable id, and separately the validation data in variable val. Both of these variables are objects
of type iddata from the system identification toolbox of Matlab, see doc iddata.

From prior knowledge, it is known that the system is first-order, without time delays, and only affected
by measurement noise e(k) at the output. This means that the following Output Error form is appropriate
to model it:

y(k) =
B(q−1)
F (q−1)

u(k) + e(k) =
bq−1

1 + fq−1
u(k) + e(k)

with the parameters θ = [f, b]>. Our objective will be to implement the prediction error method for this
particular model structure, using Gauss-Newton optimization. The algorithm is summarized at the end
of this description, in a more direct way than in the lectures, so as to help with implementation.

Requirements:

• Compute the recursion formulas required by the algorithm, on paper or at the whiteboard. Hint:
follow the line of derivations from the first-order ARMAX case exemplified in the lectures.

• Implement the algorithm, and run it on the identification data starting from nonzero initial param-
eters.

• For the near-optimal values of f and b obtained, create an OE model in the system identification
toolbox format, using idpoly. Note that the syntax of this function is idpoly(A,B,C,D,F,0,Ts)
where you need to specify the leading zero in B, the leading 1 in F , and the sampling time can be
found e.g. in the identification dataset. The polynomials that you don’t use can be set to 1. Use
compare to see how the model performs on the validation data.

• If the model is not satisfactory, tune α, δ and `max (as well as perhaps θ0), so as to improve
performance.

1

https://www.dropbox.com/request/QiI4tZw6Z1klw0GDUKqs�


choose stepsize α, initial parameters θ0, threshold δ, and max iterations `max

initialize iteration counter ` = 0
compute recursion formulas for ε(k), dε(k)

dθ = [dε(k)
df , dε(k)

db ]>

repeat
with the current parameters θ`:

simulate (apply recursion formulas) to find ε(k), dε(k)
dθ , for k = 1, . . . , N ,

starting from ε(0) = 0, dε(0)
dθ = [0, 0]>

compute gradient of the objective function, dV
dθ = 2

N

∑N
k=1 ε(k)dε(k)

dθ

compute approximate Hessian of the objective function, H = 2
N

∑N
k=1

dε(k)
dθ

[
dε(k)

dθ

]>

apply Gauss-Newton update formula: θ`+1 = θ` − αH−1 dV
dθ

increment counter: ` = ` + 1
until ‖θ` − θ`−1‖ ≤ δ, or `max was reached

2


