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Motivation

So far, we have been dealing with transient analysis of step-response
models. This mostly involved familiar concepts related to linear
systems and their time-domain responses.

Many upcoming methods for system identification require additional
tools: linear regression and some concepts from probability theory
and statistics. We will discuss these tools here.

In this part we redefine some notation (e.g. x , A) to have a different meaning
than in the rest of the course.
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Regression problem

Problem elements:

A collection of known samples y(k) ∈ R, indexed by
k = 1, . . . , N: y is the regressed variable.
For each k , a known vector ϕ(k) ∈ Rn: contains the regressors
ϕi(k), i = 1, . . . , n, ϕ(k) = [ϕ1(k), ϕ2(k) . . . , ϕn(k)]>.
An unknown parameter vector θ ∈ Rn.

Objective: identify the behavior of the regressed variable from the
data, using the linear model:

y(k) = ϕ>(k)θ

Linear regression is classical and very common, e.g. it was used by
Gauss to compute the orbits of the planets in 1809.
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Regression problem: Two major uses

1 k is a time variable, and we wish to model the time series y(k).
2 k is just a data index, and ϕ(k) = φ(x(k)) where x is an input of

some unknown function g. Then y(k) is the corresponding
output (possibly corrupted by noise), and the goal is to identify a
model of g from the data.
This problem is called function fitting, function approximation, or
supervised learning, and is the main use of regression in the
course.

unknown g(x) ĝ(x)

?



Linear regression Probability & Statistics

Function approximation: Basis functions

For function approximation, the regressors φi(x) in:

φ(x(k)) = [φ1(x(k)), φ2(x(k)), . . . , φn(x(k))]>

are also called basis functions.
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Function approximation: Motivating example 1

We study the yearly income y (in EUR) of a person based on their
education level x1 and job experience x2 (both measured in years).

We are given a set of tuples (x1(k), x2(k), y(k)) from a representative
set of persons. The goal is to predict the income of any other person
by knowing how educated (x1) and experienced (x2) they are.

Take basis functions φ(x) = [x1, x2, 1]>. So we expect the
income to behave like θ1x1 + θ2x2 + θ3 = φ>(x)θ, growing linearly
with education and experience (from some minimum level).
Regression involves finding the parameters θ in order to best fit
the given data.
Reality is of course more complicated... so we would likely need
more input variables, better basis functions, etc.
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Function approximation: Motivating example 2

We study the reaction time y (in ms) of a driver based on their age x1
(in years) and fatigue x2 (e.g. on a scale from 0 to 1).

We are given a set of tuples (x1(k), x2(k), y(k)) from a representative
set of persons of various ages and stages of fatigue. The goal is to
predict the rection time of any other person by knowing how old (x1)
and tired (x2) they are.
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Regressors example 1: Polynomial of k

Suitable for time series modeling.

y(k) = θ1 + θ2k + θ3k2 + . . . + θnkn−1

=
[
1 k k2 . . . kn−1

]


θ1
θ2
θ3
. . .
θn


= ϕ>(k)θ
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Regressors example 2: Polynomial of x

Suitable for function approximation. For instance,
polynomial of degree 2 with two input variables x = [x1, x2]

>:

y(k) = θ1 + θ2x1(k) + θ3x2(k) + θ4x2
1 (k) + θ5x2

2 (k) + θ6x1(k)x2(k)

=
[
1 x1(k) x2(k) x2

1 (k) x2
2 (k) x1(k)x2(k)

]


θ1
θ2
θ3
θ4
θ5
θ6


= φ>(x(k))θ = ϕ>(k)θ

Connection: Project part 1
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Regressors example 3: Gaussian basis functions

Suitable for function approximation:

φi(x) = exp
[
− (x − ci)

2

b2
i

]
(1-dim);

= exp

− d∑
j=1

(xj − cij)
2

b2
ij

 (d-dim)
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Linear system

Writing the model for each of the N data points, we get a linear
system of equations:

y(1) = ϕ1(1)θ1 + ϕ2(1)θ2 + . . . ϕn(1)θn

y(2) = ϕ1(2)θ1 + ϕ2(2)θ2 + . . . ϕn(2)θn

· · ·
y(N) = ϕ1(N)θ1 + ϕ2(N)θ2 + . . . ϕn(N)θn

Recall that in function approximation, ϕi(k) = φi(x(k))

This system can be written in a matrix form:
y(1)
y(2)

...
y(N)

 =


ϕ1(1) ϕ2(1) . . . ϕn(1)
ϕ1(2) ϕ2(2) . . . ϕn(2)
· · · · · · · · · · · ·

ϕ1(N) ϕ2(N) . . . ϕn(N)

 ·


θ1
θ2
θ3
. . .
θn


Y = Φθ

with newly introduced variables Y ∈ RN and Φ ∈ RN×n.
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Least-squares problem

If N = n, the system can be solved with equality.

In practice, it is a good idea to use N > n, due e.g. to noise. In this
case, the system can no longer be solved with equality, but only in an
approximate sense.

Error at k : ε(k) = y(k)− ϕ>(k)θ,
error vector ε = [ε(1), ε(2), . . . , ε(N)]>.
Objective function to be minimized:

V (θ) =
1
2

N∑
k=1

ε(k)2 =
1
2

ε>ε

Least-squares problem

Find the parameter vector θ̂ that minimizes the objective function:

θ̂ = arg min
θ

V (θ)
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Parenthesis: Optimization problem

Given a function V of variables θ, which may be the least-squares
objective, or any other function:

find the optimal function value minθ V (θ) and variable values
θ∗ = arg minθ V (θ) that achieve the minimum.

Note that in the case of linear regression, we use the notation θ̂; while
θ̂ is still the true solution to the optimization problem given the data, it
is still an estimate because the data is noisy
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Mathematical regression solution

For an easy derivation, start with:

Y = Φθ

and left-multiply by Φ>:
Φ>Y = Φ>Φθ

Another left-multiplication by the inverse of Φ>Φ leads to:

θ̂ = (Φ>Φ)−1Φ>Y

Remarks:

A better way of finding θ̂ is to write the optimization problem of
minimizing the MSE, and solving it via setting the (matrix)
derivative to 0.
Matrix Φ>Φ must be invertible. This boils down to a good choice
of the model (order n, regressors ϕ) and having informative data.
The optimal objective value is
V (θ̂) = 1

2 [Y>Y − Y>Φ(Φ>Φ)−1Φ>Y ].

(Φ>Φ)−1Φ> is the pseudo-inverse of Φ.
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Alternative expression

Φ>Φ =
N∑

k=1

ϕ(k)ϕ>(k),Φ>Y =
N∑

k=1

ϕ(k)y(k)

So the solution can be written:

θ̂ =

[
N∑

k=1

ϕ(k)ϕ>(k)

]−1 [
N∑

k=1

ϕ(k)y(k)

]

Advantage: matrix Φ of size N × n no longer has to be computed,
only smaller matrices and vectors are required, of size n × n and n,
respectively.
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Solving the linear system in practice

In practice both these inversion-based techniques perform poorly
from a numerical point of view. Better algorithms exist, such as
so-called orthogonal triangularization.

In most cases, MATLAB is competent in choosing a good algorithm. If
Φ is stored in variable PHI and Y in Y, then the command to solve the
linear system using matrix left division (backslash) is:

theta = PHI \ Y;

Better control of the algorithm is obtained by using function
linsolve instead of matrix left division.
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Model choice

Assume that given a model size n, we have a way to generate
regressors ϕ(k) that make the model more expressive (e.g., basis
functions on a finer grid). Then we expect the objective function to
behave as follows:

Remark: With noisy data, increasing n too much can lead to
overfitting: good performance on the training data, but poor
performance on other data. Validation on a separate dataset is
essential in practice!

So we can grow n incrementally and stop when error Vval on the
validation data starts growing.
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Analytical example: Estimating a scalar

Model:
y(k) = b = 1 · b = ϕ(k)θ

where ϕ(k) = 1∀k , θ = b.

For all N data points:

y(1) = ϕ(1)θ = 1 · b
· · ·

y(N) = ϕ(N)θ = 1 · b

In matrix form: y(1)
...

y(N)

 =

1
...
1

 θ

Y = Φθ
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Analytical example: Estimating a scalar (continued)

θ̂ = (Φ>Φ)−1Φ>Y

=

[
1 · · · 1

] 1
...
1



−1 [

1 · · · 1
] y(1)

...
y(N)


= N−1 [

1 · · · 1
] y(1)

...
y(N)


=

1
N

(y(1) + . . . + y(N))

Intuition: Estimate is the average of all measurements, filtering out
the noise.
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Example: Approximating the “banana” function

Function g(x1, x2) = (1− x1)
2 + 100[(x2 + 1.5)− x2

1 ]2, called
Rosenbrock’s banana function (unknown to the algorithm).
Approximation data: 200 input points (x1, x2), randomly
distributed over the space [−2, 2]× [−2, 2]; and corresponding
outputs y = g(x1, x2), affected by noise.
Validation data: a uniform grid of 31× 31 points over
[−2, 2]× [−2, 2] with their corresponding (noisy) outputs.
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Banana function: Results with radial basis functions

Recall radial basis functions:

Results with 6× 6 RBFs, with
centers on an equidistant grid and
width equal to the distance
between two centers:
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Banana function: Results with polynomial

Polynomial of degree 4 in the two input variables (15 parameters):
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Banana function: Overfitting example

Again polynomial, but this time of degree 13.

The MSE on the identification data is 55.32 (compared to 87.63 for
degree 4 above). However, on the validation data:

Very bad result! Overly large degree leads to overfitting.
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Summary linear regression

Linear models for function and time series approximation.
Polynomial and radial basis functions.
Writing the problem as a linear system of equations,
mathematical objective, and solution (theoretical and practical).
Model choice and overfitting.
Examples: estimating a scalar and the banana function.
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Discrete random variable

Consider a set X containing possible values x . A corresponding
random variable X is described by the probability mass function:

Definition
The probability mass function (PMF) of X is the list of the probabilities
of all individual values p(x0), p(x1), . . . . The probabilities must sum up
to 1: P(X ∈ X ) =

∑
x∈X p(x) = 1.

Example: The number rolled with a dice is a discrete random
variable, with six possible values X = {1, 2, ..., 6}. For a fair dice, the
PMF is p(x) = 1/6 for all x , from 1 to 6.

Note that X may contain finitely or infinitely many elements, but in the
latter case, the set must be countable (Intuition: elements can be
listed / indexed by the natural numbers 0, 1, 2, . . . ).
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Continuous random variable

Consider now an interval X ⊆ R of real numbers, with each individual
real value denoted x . A corresponding, continuous-valued random
variable X is described by the probability density function:

Definition (semi-formal)

The probability density function (PDF) of X is a function
f : X → [0,∞), such that the probability of obtaining a value in some
subinterval [a, b] ⊆ X is:

P(X ∈ [a, b]) =

∫ b

a
f (x)dx

The PDF must satisfy P(X ∈ X ) =
∫

x∈X f (x)dx = 1.

Remark: X might also be the full set of real numbers.
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Example 1: Uniform PDF

We wish to characterize the angle at which a roulette wheel ends up,
as a fraction of a full turn: x ∈ [0, 1]. In this case, X = [0, 1]. For a fair
roulette, each value x has equal probability.

Try first to define a PMF; it should have the same value everywhere.
Denote this value by c; since there are infinitely many values in any
finite-length interval in [0, 1], any nonzero value of c would lead to
infinitely large probability for any such interval! So the only value of
c = p(x) that can work is 0, but this has no useful meaning –
therefore, we cannot use a PMF to describe this case.

Meaningful probabilities can only be defined for intervals, and that is
why we need a PDF f . In particular, to have uniform probabilities, we
want P(x ∈ [a, b]) = b − a, which means f (x) = 1.
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Example 2: Gaussian PDF

Similar in shape, but not in meaning, with Gaussian basis functions.

f (x) =
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
Parameters: mean µ, and variance σ2 (their meaning is clarified later)

The Gaussian distribution arises very often in nature: e.g., distribution
of IQs in a human population. It is also called the normal distribution,
and denoted N (µ, σ2).
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Expected value

Definition

E {X} =

{∑
x∈X p(x)x for discrete random variables∫

x∈X f (x)x for continuous random variables

Intuition: the average of all values, weighted by their probability; the
value “expected” beforehand given the probability distribution.

The expected value is also called mean, or expectation.

Examples:

For a fair dice with X the value of a face,
E {X} = 1

6 1 + 1
6 2 + . . . + 1

6 6 = 7/2.

If X has a Gaussian PDF N (µ, σ2), then E {X} = µ.
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Expected value of a function

Consider a function g : X → R, depending on some random variable
X . Then g(X ) is itself a random variable, and:

E {g(X )} =

{∑
x∈X p(x)g(x) if discrete∫

x∈X f (x)g(x) if continuous
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Variance

Definition

Var {X} = E
{
(X − E {X})2} = E

{
X 2}− (E {X})2

Intuition: the “spread” of the random values around the expectation.

Var {X} =

{∑
x∈X p(x)(x − E {X})2 if discrete∫

x∈X f (x)(x − E {X})2 if continuous

=

{∑
x∈X p(x)x2 − (E {X})2 if discrete∫

x∈X f (x)x2 − (E {X})2 if continuous

Examples:

For a fair dice, Var {X} = 1
6 12 + 1

6 22 + . . .+ 1
6 62− (7/2)2 = 35/12.

If X has a Gaussian PDF N (µ, σ2), then Var {X} = σ2.
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Notation

We will generically denote E {X} = µ and Var {X} = σ2.

Quantity σ =
√

Var {X} is called standard deviation.
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Probability: Independence

Definition
Two random variables X and Y are called independent if:

in the continuous case, fX ,Y (x , y) = fY (x) · fY (y).
in the discrete case, pX ,Y (x , y) = pX (x) · pY (y).

where fX ,Y denotes the joint PDF of the vector (X , Y ), fX and fY are
the PDFs of X and Y , and similarly for the PMFs p.

Examples:

The event of rolling a 6 with a dice is independent of the event of
getting a 6 at the previous roll (or, indeed, any other value and
any previous roll).
The event of rolling two consecutive 6-s, however, is not
independent of the previous roll!

(Incidentally, failing to understand the first example leads to the
so-called gambler’s fallacy. Having just had a long sequence of
bad–or good–games at the casino, means nothing for the next game!)



Linear regression Probability & Statistics

Covariance

Definition

Cov {X , Y} = E {(X − E {X})(Y − E {Y})} = E {(X − µX )(Y − µY )}

where µX , µY denote the means (expected values) of the two random
variables.

Intuition: how much the two variables “change together” (positive if
they change in the same way, negative if they change in opposite
ways).

Remark: Var {X} = Cov {X , X}.
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Uncorrelated variables

Definition

Random variables X and Y are uncorrelated if Cov {X , Y} = 0.
Otherwise, they are correlated.

Examples:

The education level of a person is correlated with their income.
Hair color is uncorrelated with income (or at least it should be,
ideally).

Remarks:

If X and Y are independent, they are uncorrelated.
But the reverse is not necessarily true! Variables can be
uncorrelated and still dependent.
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Vectors of random variables

Consider a vector X = [X1, . . . , XN ]> where each Xi is a continuous,
real random variable. This vector has a joint PDF f (x), with x ∈ RN .

Definitions
Expected value and covariance matrix of X :

E {X} := [E {X1} , . . . , E {XN}]> = [µ1, . . . , µN ]>, denoted µ ∈ RN

Cov {X} :=


Cov {X1, X1} Cov {X1, X2} · · · Cov {X1, XN}
Cov {X2, X1} Cov {X2, X2} · · · Cov {X2, XN}

· · · · · · · · · · · ·
Cov {XN , X1} Cov {XN , X2} · · · Cov {XN , XN}


= E

{
(X − µ)(X − µ)>

}
, denoted Σ ∈ RN,N

Remarks: Cov {Xi , Xi} = Var {Xi}. Also, Cov
{

Xi , Xj
}

= Cov
{

Xj , Xi
}

,
so matrix Σ is symmetrical.
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Example: Multivariate Gaussian (normal)

The PDF of a vector X with a Gaussian joint distribution can be
written:

f (x) =
1

(2π)N
√

det(Σ)
exp

(
−(x − µ)Σ−1(x − µ)>

)
parameterized by the vector mean µ and covariance matrix Σ
(assumed positive definite, so det(Σ) > 0 and Σ−1 exists).
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Stochastic process

Definition
A stochastic process X is a sequence of random variables
X = (X1, . . . , Xk , . . . , XN).

It is in fact just a vector of random variables, with the additional
structure that the index in the vector has the meaning of time step k .

In system identification, signals (e.g., inputs, outputs) will often be
stochastic processes evolving over discrete time steps k .
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Zero-mean white noise

Definition

The stochastic process X is zero-mean white noise if: ∀k , E {Xk} = 0
(zero-mean), and ∀k , k ′ 6= k , Cov {Xk , Xk ′} = 0 (the values at different
steps are uncorrelated). In addition, the variance Var {Xk} must be
finite ∀k .

Stated concisely using vector notation: mean µ = E {X} = 0 ∈ RN

and covariance matrix Σ = Cov {X} is diagonal (with positive finite
elements on the diagonal).

In system identification, noise processes often affect signal
measurements, and we will sometimes assume that the noise is white
and zero-mean.
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Stationary process

Signal values at different time steps can be correlated (e.g. when
they depend on the output of some dynamic system). Nevertheless,
signals are sometimes required to be stationary, in the sense:

Definition

The stochastic process X is stationary if ∀k , E {Xk} = µ, and
∀k , k ′, τ , Cov {Xk , Xk+τ} = Cov {Xk ′ , Xk ′+τ}.

The mean is the same at every step, whereas the covariance
depends on only the relative positions of time steps, not their
absolute positions.
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Summary probability theory

Discrete-valued random variables (RVs) and probability mass
functions.
Continuous-valued RVs and probability density functions.
Expected value and variance of a RV.
Independence, covariance, and correlation of two RVs.
Vector of RVs, with expected value and covariance matrix.
Stochastic process, zero-mean white noise, and stationary
process.
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