
System Identification – Practical Assignment 8
Output error identification using the Gauss-Newton method

Logistics

This practical assignment should very preferably be carried out by each student separately. Otherwise,
if there are more students than computers, with the explicit agreement of the lab teacher for each group,
students may team up in groups of 2.

The assignment solution consists of Matlab code. Develop this code in a single Matlab script. If you
need to create functions, they can be local to the script, see local functions in scripts.

The overall rules for labs are described on the website. For each particular lab, your attendance will
only be registered if you have a working, original solution. The teacher will check that your code works
during the lab class. Only after this has been done, for the originality check, upload your solution here:

https://www.dropbox.com/request/ApI3XWD1aQmX0c38xYYz
Upload only once, a single m-file, named exactly according to the following pattern:

L8 ENgh LastnameFirstname.m
where g is the group, h the halfgroup, and the last and first names follow. E.g., L8 EN32 PopAlex.m.
If you worked in a group per the above, only upload one file with both student names included. Any files
that are duplicate, nonstandard, inappropriately named, or corresponding to unchecked solutions will
not be considered. Files will be automatically tested for plagiarism, and any solution that fails this test
will be marked copied; only solutions that pass both the working and the originality test are definitively
validated. Therefore, while you are encouraged to discuss ideas and algorithms amongst colleagues,
sharing and borrowing pieces of code is forbidden.

Assignment description

Each student is assigned an index number by the lecturer. Then, the student downloads the files that form
the basis of the assignment from the course webpage. There is a datafile, containing the identification
data in variable id, and separately the validation data in variable val. Both of these variables are objects
of type iddata from the system identification toolbox of Matlab, see doc iddata.

From prior knowledge, it is known that the system is first-order, without time delays, and only affected
by measurement noise e(k) at the output. This means that the following Output Error form is appropriate
to model it:

y(k) =
B(q−1)
F (q−1)

u(k) + e(k) =
bq−1

1 + fq−1
u(k) + e(k)

with the parameters θ = [f, b]>. Our objective will be to implement the prediction error method for this
particular model structure, using Gauss-Newton optimization. The algorithm is summarized at the end
of this description, in a more direct way than in the lectures, so as to help with implementation.

Requirements:

• Compute the recursion formulas required by the algorithm, on paper or at the whiteboard. Hint:
follow the line of derivations from the first-order ARMAX case exemplified in the lectures.

• Implement the algorithm, and run it on the identification data starting from nonzero initial param-
eters.
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https://www.mathworks.com/help/matlab/matlab_prog/local-functions-in-scripts.html
https://www.dropbox.com/request/ApI3XWD1aQmX0c38xYYz


• For the near-optimal values of f and b obtained, create an OE model in the system identification
toolbox format, using idpoly. Note that the syntax of this function is idpoly(A,B,C,D,F,0,Ts)
where you need to specify the leading zero in B, the leading 1 in F , and the sampling time can be
found e.g. in the identification dataset. The polynomials that you don’t use can be set to 1. Use
compare to see how the model performs on the validation data.

• If the model is not satisfactory, tune α, δ and `max (as well as perhaps θ0), so as to improve
performance.

choose stepsize α, initial parameters θ0, threshold δ, and max iterations `max

initialize iteration counter ` = 0
compute recursion formulas for ε(k), dε(k)

dθ = [dε(k)
df , dε(k)

db ]>

repeat
with the current parameters θ`:

simulate (apply recursion formulas) to find ε(k), dε(k)
dθ , for k = 1, . . . , N

compute gradient of the objective function, dV
dθ = 2

N

∑N
k=1 ε(k)dε(k)

dθ

compute approximate Hessian of the objective function, H = 2
N

∑N
k=1

dε(k)
dθ

[
dε(k)

dθ

]>
apply Gauss-Newton update formula: θ`+1 = θ` − αH−1 dV

dθ
increment counter: ` = ` + 1

until ‖θ` − θ`−1‖ ≤ δ, or `max was reached
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