
System Identification – Practical Assignment 4
Linear Regression for Function Approximation

Logistics

This practical assignment should very preferably be carried out by each student separately. Otherwise,
if there are more students than computers, with the explicit agreement of the lab teacher for each group,
students may team up in groups of 2.

The assignment solution consists of Matlab code. Develop this code in a single Matlab script. If you
need to create functions, they can be local to the script, see local functions in scripts.

The overall rules for labs are described on the website. For each particular lab, your attendance will
only be registered if you have a working, original solution. The teacher will check that your code works
during the lab class. Only after this has been done, for the originality check, upload your solution here:

https://www.dropbox.com/request/6BHcqHFYZ5fsJBFXC2cl
Upload only once, a single m-file, named exactly according to the following pattern:

L4 ENgh LastnameFirstname.m
where g is your group, h your halfgroup, and your last and first names follow. E.g., L4 EN32 PopAlex.m.
If you worked in a group per the above, only upload one file with both student names included. Any files
that are duplicate, nonstandard, inappropriately named, or corresponding to unchecked solutions will not
be considered. Files will be automatically tested for plagiarism, and any solution that fails this test will
be marked copied; only solutions that pass both the working and the originality test are definitively vali-
dated. Therefore, while you are encouraged to discuss ideas and algorithms amongst colleagues, sharing
and borrowing pieces of code is forbidden.

Assignment description

In this assignment we will perform function approximation with linear regression and polynomial ap-
proximators, see Linear Regression in the course material Part 3 – Mathematical Background.

A data set of input-output pairs is given, where the outputs are generated by an unknown function g. The
function has one input variable and one output variable, and the output measurements are affected by
noise. You will develop an approximator of this function, using a linear model with polynomial terms
(basis functions). The parameters of the model will be found using the identification data set. A second
data set is provided for validating the developed model. The two data sets are given in a MATLAB data
file, containing one structure for each set. The training data set is named id and the validation data
set val. Each of these structures contains a vector X of input samples, and the corresponding output
samples in vector Y .

Each student is assigned an index number. Then, the student downloads the data file that form the basis
of the assignment from the course webpage.

Requirements:

• Plot the identification data to get an idea of the function shape.

• Create a polynomial approximator of degree n − 1, where n is the number of parameters / basis
functions. Here, n should be tunable. Note there is one extra parameter for the constant term,
which is why the degree is just n− 1. For example, when n = 4, the polynomial has degree 3 and

1

https://www.mathworks.com/help/matlab/matlab_prog/local-functions-in-scripts.html�
https://www.dropbox.com/request/6BHcqHFYZ5fsJBFXC2cl�


the approximator is:
ĝ(x) = θ1 + xθ2 + x2θ3 + x3θ4

• For any value of n, create a system of linear equations for linear regression, using the identifica-
tion data. Use the matrix representation explained in the lecture. Solve this system using matrix
left division, operator \ in Matlab (or alternatively with linsolve). Report the MSE on the
identification data.

• Validate the model on the different, validation data set: compute the approximated outputs and
from those the MSE on the validation data. Show a plot of the approximated function on the
validation data set, comparing to the actual outputs.

• Tune n for good performance (by trying values up to, say, 20). Performance should be evaluated by
the MSE on the different, validation data set to avoid overfitting. Produce a plot of the MSE versus
n and find the point where the MSE is minimal, which corresponds to the optimal polynomial
degree.

Your plots will look similar to those exemplified in the next figure (except your data and fit quality
may be different, of course). It is normal, and expected, to see a poor validation fit when n is too
low (underfitting, approximator not powerful enough to model the dataset), and when n is too large
(overfitted, approximator too powerful so it starts modeling noise, and the MSE on the validation data
increases while the MSE on the identification data keeps going down).

x
-3 -2 -1 0 1 2 3

y

-2

0

2

4

6

8

10

12

True values
Approximated

2


