Online optimistic planning for Markov decision processes

Lucian Buşoniu

ACAI SSRL, Nieuwpoort, 10 October 2017

Part I

Introduction. Deterministic case

Model-based	motivation			
ldea & background ●oooooooooo	OPD algorithm	Analysis 0000000	Application	Relation to VI

In practice, a model may be available (sometimes precise, sometimes rough)

\Rightarrow Use it!

Model-based techniques still very useful due to generality (nonlinear, stochastic problems)

At each step, use model to solve problem locally:

- 1. Explore action sequences from current state, to find a near-optimal sequence
- 2. Apply first action of this sequence, and repeat

Receding-horizon model-predictive control

- At step k, controller measures states x, applies actions u
- System: dynamics $x_{k+1} = f(x_k, u_k)$
- Performance: reward function $r_{k+1} = \rho(x_k, u_k)$
- **Objective**: find policy $u = \pi(x)$ that maximizes return

$$\sum_{k=0}^{\infty} \gamma^k r_{k+1}$$

with discount factor $\gamma \in (0, 1)$

A I	•			
000000000				
Idea & background	OPD algorithm	Analysis	Application	Relation to VI

Al perspective

- Agent observes state, applies action
- Environment changes state according to dynamics
 - ... and sends back a reward, according to reward function
- Objective: maximize discounted return

Idea & background oooo●ooooo	OPD algorithm	Analysis 0000000	Application	Relation to VI

Example: Domestic robot

A domestic robot ensures light switches are off Abstractization to high-level control (physical actions implemented by low-level controllers)

- States: grid coordinates, switch states
- Actions: movements NSEW, toggling switch
- Rewards: when switches toggled on→off

ldea & background oooooooooo	OPD algorithm	Analysis 0000000	Application	Relation to VI
Example: Rob	oot arm			

Low-level control

- States: link angles and angular velocities
- Actions: motor voltages
- Rewards: e.g. to reach a desired configuration, give larger rewards as robot gets closer to it

Artificial intelligence, medicine, multiagent systems, economics etc.

Value function and optimal solution

• V-function of policy π :

$$V^{\pi}(\boldsymbol{x}) = \sum_{k=0}^{\infty} \gamma^{k} \rho(\boldsymbol{x}_{k}, \pi(\boldsymbol{x}_{k}))$$

where $x_0 = x, x_{k+1} = f(x_k, \pi(x_k))$

- Optimal V-function: $V^*(x) = \max_{\pi} V^{\pi}(x)$
- Bellman equation for V^{π} :

$$V^{\pi}(\boldsymbol{x}) = \rho(\boldsymbol{x}, \pi(\boldsymbol{x})) + \gamma V^{\pi}(f(\boldsymbol{x}, \pi(\boldsymbol{x})))$$

• Bellman optimality equation (for V*):

$$V^*(x) = \max_{u} [\rho(x, u) + \gamma V^*(f(x, u))]$$

• Once V* available, optimal policy is:

$$\pi^*(x) = \arg\max_{u} [\rho(x, u) + \gamma V^*(f(x, u))]$$

Turn Bellman optimality equation:

$$\boldsymbol{V}^*(\boldsymbol{x}) = \max_{\boldsymbol{u}} [\rho(\boldsymbol{x}, \boldsymbol{u}) + \gamma \boldsymbol{V}^*(f(\boldsymbol{x}, \boldsymbol{u}))]$$

into an iterative assignment:

```
Value iteration

repeat at each iteration t

for all x do

V_{t+1}(x) = \max_{u}[\rho(x, u) + \gamma V_t(f(x, u))]

end for

until convergence to V*

\pi^*(x) = \arg \max_{u}[\rho(x, u) + \gamma V^*(f(x, u))]
```

Monotonic, exponential convergence

Idea & background	OPD algorithm	Analysis 0000000	Application	Relation to VI
Lecture struc	ture			

Online, optimistic planning in:

- Deterministic MDPs
- Stochastic MDPs and adversarial problems
- Ontinuous-action MDPs (+ final remarks)

Practical session: Implement & try deterministic planner

Idea & background	OPD algorithm	Analysis	Application	Relation to VI

2 Optimistic planning for deterministic systems

3 Analysis

- Example and real-time application
- 5 Relation to value-function methods

Most methods we discuss are **extensions of classical planning** (A*, AO*, B*) to solving MDPs

We provide **near-optimality guarantees** as a function of computation *n* and of complexity κ of the problem:

error = $O(g(n, \kappa))$

		1		
ldea & background	OPD algorithm	Analysis 0000000	Application	Relation to VI

- Graph with costs c(i, j) for traveling between nodes *i* and *j*
- Objective: lowest-cost path from start s to target t (1 to 4)

Uses a heuristic $\delta(i) \leq$ the lowest cost from *i* to the target *t*

A* (tree-search version) initialize tree with start node *s*, set $\ell(s) = 0$, $b(s) = \delta(s)$ **loop** select leaf *i*[†] with lowest *b* if *i*[†] = target *t*, stop expand *i*[†] with all neighbors *j* for each *j*, $\ell(j) = \ell(i) + c(i, j)$, $b(j) = \ell(j) + \delta(j)$ end loop return path from *s* to *t*

Each node evaluated by underestimate *b* of the lowest-cost path going through it – **optimism under uncertainty**

Take $\delta(i) = 1$, smallest possible cost

Idea & background	OPD algorithm ○○○○●○○○○○○	Analysis 0000000	Application 000000	Relation to VI
Applying A ³	' idea to MDP	S		

- Each tree node gets the meaning of state
- One child for each action, each transition associated with a reward (instead of cost)

Applying A* idea to MDPs (cont'd)

- Problem is infinite-horizon, tree is infinitely deep
- Optimal solution also infinitely deep in general
 must stop suboptimally
- Suboptimal solution finite in length ⇒ work in receding horizon
- Maximize discounted returns instead of minimizing costs
 ⇒ optimistic value should overestimate return

Formal set	tina			
ldea & background	OPD algorithm	Analysis 0000000	Application	Relation to VI

Assumptions

- Finite, discrete action space $U = \{u^1, \ldots, u^M\}$
- Bounded reward function $\rho(x, u) \in [0, 1], \forall x, u$

Denote current step by 0 (by convention). Then:

- Infinite action sequences: $\boldsymbol{u}_{\infty} = (u_0, u_1, \dots)$
- Solve sup_{\boldsymbol{u}_{∞}} $\boldsymbol{v}(\boldsymbol{u}_{\infty}) := \sum_{k=0}^{\infty} \gamma^{k} r_{k+1}$

Formal setting: Values

 Finite sequence u_d also seen as set of infinite sequences $(u_0, ..., u_{d-1}, \star, \star, ...)$

•
$$\ell(\boldsymbol{u}_d) = \sum_{k=0}^{d-1} \gamma^k \rho(\boldsymbol{x}_k, \boldsymbol{u}_k)$$

lower bound on returns of $\boldsymbol{u}_{\infty} \in \boldsymbol{u}_d$

- $b(\boldsymbol{u}_d) = \ell(\boldsymbol{u}_d) + \frac{\gamma^d}{1-\gamma} =: \delta(d)$, diameter optimistic upper bound on the returns
- $v(\boldsymbol{u}_d) = \sup_{\boldsymbol{u}_\infty \in \boldsymbol{u}_d} v(\boldsymbol{u}_\infty)$ value of applying \boldsymbol{u}_d and then acting optimally

Optimistic planning for deterministic systems (OPD)

initialize empty sequence u_0 (= all infinite sequences) for t = 1 to n do select optimistic leaf sequence u_t^{\dagger} , maximizing bexpand u_t^{\dagger} : children for all actions, setting ℓ and bend for return greedy $u_{d^*}^*$ maximizing ℓ

(Hren & Munos, 2008)

Besides obvious relation with RL (we solve the problem model-based), there is a deeper connection via **exploration**

At single state, exploration modeled as multi-armed bandit:

- Action j = arm with reward distribution ρ_j , expectation μ_j
- Best arm (optimal action) has expected value μ^*
- At step k, we pull arm (try action) j_k , getting $r_k \sim \rho_{j_k}$
- **Objective:** After *n* pulls, small regret: $\sum_{k=1}^{n} \mu^* \mu_{j_k}$

 Idea & background
 OPD algorithm
 Analysis
 Application
 Relation to VI

 000000000
 00000000
 0000000
 000000
 000000

Relation to bandit problems (cont'd)

Good idea: after *n* steps, pick arm with largest **upper confidence bound**:

$$b(j) = \hat{\mu}_j + \sqrt{rac{3\log n}{2n_j}}$$

where:

- $\hat{\mu}_i$ = mean of rewards observed for arm *j* so far
- *n_j* how many times arm *j* was pulled

Optimism in the face of uncertainty

- Bandits: uncertainty = unknown reward distributions
- Planning: uncertainty = incomplete (finite-horizon) solutions

ldea & background	OPD algorithm	Analysis	Application 000000	Relation to VI

Idea & background

2 Optimistic planning for deterministic systems

3 Analysis

- 4 Example and real-time application
- 5 Relation to value-function methods

Near-optimality vs. depth

- OPD returns a sequence u^{*}_{d*}, with length
 d* = the deepest expanded d
- Inis sequence is near-optimal up to deepest diameter:

$$oldsymbol{
u}^* - oldsymbol{
u}(oldsymbol{d}^*) \leq \delta(oldsymbol{d}^*) = rac{\gamma^{oldsymbol{d}^*}}{1-\gamma}$$

where v^* the optimal value (at x_0)

- For any iteration t, b(u[†]_t) ≥ v^{*} since it's larger than the b-value of any leaf (including that on the optimal path)
- At the end, $\ell(\boldsymbol{u}_{d^*}^*)$ is larger than any ℓ -value, in particular than $\ell(\boldsymbol{u}_t^{\dagger})$
- But the gap $b(\boldsymbol{u}_t^{\dagger}) \ell(\boldsymbol{u}_t^{\dagger}) = \frac{\gamma^d}{1-\gamma}$ with *d* the depth of $\boldsymbol{u}_t^{\dagger}$! This holds e.g. at d^*
- Finally, $v(\boldsymbol{u}_{d^*}^*) \geq \ell(\boldsymbol{u}_{d^*}^*)$

 Idea & background
 OPD algorithm
 Analysis
 Application
 Relation to VI

 cooccoccocco
 cooccoccocco
 cooccoccocco
 cooccoccocco
 cooccoccocco

Case 1: All paths optimal

Take a tree where all rewards are 1:

So to expand all nodes down to depth *d*, we must spend:

$$n = \sum_{i=0}^{d} M^{i} = \frac{M^{d+1} - 1}{M - 1}$$

and the tree grows very slowly with budget n

Take a tree where rewards are 1 only along a single path (thick line), and 0 everywhere else:

So to expand down to depth *d*, we must spend only n = d, and the tree grows very fast with *n*

General case: Branching factor

• Algorithm only expands in near-optimal subtree:

$$\mathcal{T}^* = \{ \boldsymbol{u}_d \mid \boldsymbol{v}^* - \boldsymbol{v}(\boldsymbol{u}_d) \leq \delta(d) \}$$

 Define κ = asymptotic branching factor of *T**: problem complexity measure, κ ∈ [1, M] (related to effective branching factor of A*)

E.g.
$$\kappa = 2, M = 3$$
:

To reach depth *d* in tree with branching factor κ , we must expand $n = O(\kappa^d)$ nodes

$$\Rightarrow \quad d^* = \Omega(\frac{\log n}{\log \kappa})$$

 Idea & background
 OPD algorithm
 Analysis
 Application
 Relation to VI

 0000000000
 0000000
 000000
 000000
 000000

Final guarantee: Near-optimality vs. budget

Theorem

- OPD returns a long sequence $\boldsymbol{u}_{d^*}^*$, $d^* = \Omega(\frac{\log n}{\log \kappa})$
- This sequence is near-optimal:

$$\boldsymbol{v}^* - \boldsymbol{v}(\boldsymbol{u}_{d^*}^*) \leq \delta(\boldsymbol{d}^*) = \frac{\gamma^{\boldsymbol{d}^*}}{1 - \gamma} = \begin{cases} O(n^{-\frac{\log 1/\gamma}{\log \kappa}}) & \text{if } \kappa > 1\\ O(\gamma^{n/C}) & \text{if } \kappa = 1 \end{cases}$$

- Generality paid by exponential computation n = O(κ^d)
- But κ can be small in interesting problems!

ldea & background	OPD algorithm	Analysis 0000000	Application	Relation to VI

1 Idea & background

2 Optimistic planning for deterministic systems

3 Analysis

- Example and real-time application
 - 5 Relation to value-function methods

- $x = [\text{angle } \alpha, \text{ velocity } \dot{\alpha}]^{\top}$
- *u* = voltage
- $\rho(\mathbf{x}, \mathbf{u}) = -\mathbf{x}^\top \mathbf{Q}\mathbf{x} \mathbf{u}^\top \mathbf{R}\mathbf{u}$
- Discount factor $\gamma = 0.98$

- Objective: stabilize pointing up
- Insufficient torque ⇒ swing-up required

 Idea & background
 OPD algorithm
 Analysis
 Application
 Relation to VI

 Simulation:
 Inverted pendulum

Demo

Swingup trajectory:

Challenge: computation time large and must be handled!

- Usually only first action of each sequence is sent to actuator
- But remember: OPD returns long sequences!
- ⇒ Send a longer subsequence (length d'), and **use the time to compute in the background**

- Compute initial sequence (system assumed stable)
- Send to buffer, and immediately start computing next sequence from predicted state

- We usually want to use all available time: $n = \left| d' \frac{T_s}{T_e} \right|$.
- \Rightarrow Select subsequence length d' so that:

$$d' rac{T_s}{T_e} - \kappa^{d'/c} - 1 \geq 0$$

• Or, when κ , *c* unknown:

$$(d' \frac{T_s}{T_e} - 1)(K - 1) - K^{d'+1} + 1 \ge 0$$

 Idea & background
 OPD algorithm
 Analysis
 Application
 Relation to VI

 000000000
 000000000
 000000
 000000
 000000

Real-time results: Inverted pendulum

Idea & background	OPD algorithm	Analysis 0000000	Application	Relation to VI

1 Idea & background

2 Optimistic planning for deterministic systems

3 Analysis

- 4 Example and real-time application
- 5 Relation to value-function methods

 V^* available: search just one step ahead:

$$u_0 = \pi^*(x_0) = \arg\max_{u} [\rho(x_0, u) + \gamma V^*(f(x_0, u))]$$
$$= \arg\max_{u} [\rho(x_0, u) + \gamma V^*(x_1)]$$

Equivalent to a simple tree:

Relation to VI: *N* steps

 V^* unavailable: search N steps ahead, $N \gg$:

Equivalent to local V-iteration (backward view):

$$V_N(x_N) \leftarrow 0$$
, for states x_N reachable from x_0
for $i = N - 1, N - 2, ..., 1$ do
 $V_i(x_i) = \max_u [\rho(x_i, u) + \gamma V_{i+1}(f(x_i, u))], \forall x_i$ reachable
end for
 $u_0 = \arg \max_u [\rho(x_0, u) + \gamma V_1(f(x_0, u))]$

		0000000	000000	00000
Relation to	VI: OPD tree			

OPD actually explores the tree optimally:

and local VI works for this tree as well:

 $V(x) \leftarrow 0$, for terminal nodes for internal nodes, back to the root **do** $V(x) = \max_{u} [\rho(x, u) + \gamma V(f(x, u))]$ end for $u_0 = \arg \max_{u} [\rho(x_0, u) + \gamma V(f(x_0, u))]$

	/1			
ldea & background	OPD algorithm	Analysis 0000000	Application	Relation to VI 000●00

- VI gives global solution, OPD just local at x_0
- OPD insensitive to the complexity of the state space, which highly influences VI
- OPD complexity grows fast with number of actions
 ⇒ appropriate for small actions spaces

Instead of uninformed upper bounds $\gamma^{d} \frac{1}{1-\gamma}$, use **good V-function estimates** at the leaves:

• Similar to informed heuristics in A*

• Estimates could come from: rough initial value or policy iteration, online learning, etc.

 $\gamma^d \widehat{V}(\mathbf{X}_d)$

- As long as $\widehat{V}(x) \ge V^*(x)$, algorithm improves (just like A*)

(EAAI 2016)

- **Textbook:** Munos, From Bandits to Monte Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning, Foundations and Trends in Machine Learning, 7, 2014.
- Hren, Munos, OP of deterministic systems, EWRL 2008.
- Wensveen, Busoniu, Babuska, *Real-Time Optimistic Planning with Action Sequences*, CSCS 2015.
- Busoniu, Daniels, Babuska, *Online Learning for Optimistic Planning*, Engineering Applications of AI, 2016.

 Stochastic: OP-MDP
 OP-MDP analysis
 OP-MDP applications
 Adversarial: OMS
 OMS analysis
 OMS applications

Part II

Stochastic and adversarial problems

Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis	OMS applications

6 Stochastic case: Optimistic planning for MDPs

- OP-MDP analysis
- OP-MDP applications
- Adversarial case: Optimistic minimax search
- 10 OMS analysis

Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis	OMS applications
Stochastic	c case				

In response to u in x, system no longer reacts deterministically – it can reach one of several states with different probabilities

 Stochastic: OP-MDP
 OP-MDP analysis
 OP-MDP applications
 Adversarial: OMS
 OMS analysis
 OMS applications

 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 <td

Stochastic MDP and objective

Stochastic MDP

- State and action spaces X, U keep their meaning
- **2** Transition function gives probabilities $\tilde{f}(x, u, x')$, $\tilde{f}: X \times U \times X \rightarrow [0, 1]$
- Solution Reward a function of the whole transition $\tilde{\rho}(x, u, x')$, $\tilde{\rho}: X \times U \times X \to \mathbb{R}$

Objective: find policy π to maximize expected return: $R^{\pi}(x_0) = E\left\{\sum_{k=0}^{\infty} \gamma^k \tilde{\rho}(x_k, \pi(x_k), x_{k+1})\right\}$

from any x_0

Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis	OMS applications
Formal se	etting				

Assumptions

- Finite, discrete action space $U = \{u^1, \ldots, u^M\}$
- Each action leads to (at most) N different next states
- 3 Bounded rewards $r \in [0, 1]$

Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis	OMS applications

Tree structure

- Each of the *M* actions gets its separate node and has its *N* possible next states as children
- Probability and reward labels on action-next state arcs

Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis	OMS applications
Algorithm	outline				

- Build tree by iteratively expanding state nodes (adding all *M* action children and *N* · *M* state children)
- Each expansion: select optimistic partial solution and its most useful leaf

Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis	OMS applications
Solution c	oncept				

- Closed-loop planning policy h: assigns action choices to all possible outcomes
- Value v(h) = expected return while following h
- Restriction to finite subtree ⇒ policy set h: all policies beginning with specified actions

Stochastic: OP-MDP
occocoOP-MDP analysis
occocoOP-MDP applications
occocoAdversarial: OMS
occocoOMS analysis
occocoOMS applications
occoco

Lower and upper bounds

For any policy $h \in h$, we have $\ell(h) \le v(h) \le b(h)$, with:

$$\ell(\boldsymbol{h}) = \sum_{x \in \mathcal{L}(\boldsymbol{h})} P(x) R(x)$$

$$b(\boldsymbol{h}) = \sum_{x \in \mathcal{L}(\boldsymbol{h})} P(x) \left[R(x) + \frac{\gamma^{d(x)}}{1 - \gamma} \right]$$

$$= \ell(\boldsymbol{h}) + \sum_{x \in \mathcal{L}(\boldsymbol{h})} P(x) \frac{\gamma^{d(x)}}{1 - \gamma} = \ell(\boldsymbol{h}) + \underbrace{\delta(\boldsymbol{h})}_{y \in \mathcal{L}(\boldsymbol{h})}$$

diameter

(uncertainty)

Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis	OMS applications
Diameter	details				

$$\delta(\boldsymbol{h}) = \sum_{x \in \mathcal{L}(\boldsymbol{h})} \underbrace{P(x) \frac{\gamma^{d(x)}}{1 - \gamma}}_{\text{contribution } c(x)}$$

- Generalizes the deterministic-case $\frac{\gamma^d}{1-\gamma}$ = uncertainty due to the single sequence of actions
- Here, uncertainty spread over the policy leaves, each contributing according to its probability and depth

 Stochastic:
 OP-MDP
 OP-MDP analysis
 OP-MDP applications
 Adversarial:
 OMS analysis
 OMS applications

 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 0000000

Algorithm: Optimistic planning for MDPs

initialize tree to root node x_0 for t = 1, ..., n do find optimistic policy $\mathbf{h}_t^{\dagger} = \arg \max_{\mathbf{h}} b(\mathbf{h})$ expand max-contrib node $x_t^{\dagger} = \arg \max_{x \in \mathcal{L}(\mathbf{h}_t^{\dagger})} c(x)$ end for output near-optimal policy $\mathbf{h}^* = \arg \max_{\mathbf{h}} \ell(\mathbf{h})$

Application of classical AO* search to MDPs

(AISTATS 2012)

OP-MDP analysis

- 3 OP-MDP applications
- Adversarial case: Optimistic minimax search

10 OMS analysis

Stochastic: OP-MDP analysis OP-MDP applications Adversarial: OMS OMS analysis OMS applications occore

Near-optimality vs. diameter

For finite sequence h, let v(h) be the optimal value among sequences starting with h.

OP-MDP returns near-optimal policy h*:

$$oldsymbol{v}^* - oldsymbol{v}(oldsymbol{h}^*) \leq \delta^*$$

where δ^* is the smallest diameter among all expanded policies

Define **near-optimal tree** T_{ε} containing only the nodes that:

- have a significant impact: $\alpha(x) \ge \varepsilon$
- ② to near-optimal policies: *x* ∈ *h* so that $v^* v(h) \le \alpha(x)$

Node impact $\alpha(x)$: greatest diameter among policies in which x is largest-contributing leaf

OP-MDP explores T_{ε} so as to always decrease ε ; and $\delta^* \leq$ smallest ε seen

Complexity measure

Near-optimality exponent $\beta \ge 0$:

$$|\mathcal{T}_{arepsilon}| = ilde{O}(arepsilon^{-eta}) \quad ext{i.e.} \quad |\mathcal{T}_{arepsilon}| \leq a (\log 1/arepsilon)^b arepsilon^{-eta} \quad a,b > 0$$

- β describes growth of $\mathcal{T}_{\varepsilon}$
- Problem is easier when β is smaller:
 - less uniform transition probabilities
 - rewards concentrated on fewer actions

Stochastic: OP-MDP

OP-MDP analysis

OP-MDP applications

Adversarial: OMS

OMS analysis

OMS applications

Final guarantee: Near-optimality vs. budget

Theorem

Policy returned is near-optimal:

$$oldsymbol{v}^* - oldsymbol{v}(oldsymbol{h}^*) \leq \delta^* = egin{cases} ilde{O}(n^{-rac{1}{eta}}) & ext{if }eta > 0 \ O(ext{exp}[-(rac{n}{oldsymbol{a}})^rac{1}{b}]) & ext{if }eta = 0 \end{cases}$$

Case 1: Uniform

Identical rewards & uniform probabilities

$$\beta = \frac{\log NM}{\log 1/\gamma} \quad \Rightarrow \quad \delta^* = \tilde{O}(n^{-\frac{\log 1/\gamma}{\log NM}})$$

- $\mathcal{T}_{\varepsilon}$ grows uniformly, covering full tree
- Algorithm explores this full tree, branching factor NM
- If deterministic N = 1, uniform OPD case: $n^{-\frac{\log 1/\gamma}{\log M}}$

 Stochastic: OP-MDP
 OP-MDP analysis
 OP-MDP applications
 Adversarial: OMS
 OMS analysis
 OMS applications

 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 <td

Case 2: Structured rewards

Rewards 1 for one policy h^* , 0 elsewhere; uniform probas

$$\beta = \frac{\log N}{\log 1/\gamma} (1 + \frac{\log M}{\log N/\gamma})$$

- *T*_ε grows uniformly in subtree of *h**, with b.f. *N* (+ some nodes below *h**)
- If N = 1, $\beta = 0$, recovering one-path OPD case

Stochastic: OP-MDP OP-MI

OP-MDP analysis

OP-MDP applications

Adversarial: OMS

OMS analysis 0

OMS applications

Case 3: Structured probabilities

Identical rewards, Bernoulli probabilities with $p \gg 1 - p$

$$\beta = \frac{\log M\eta}{\log 1/(\rho\gamma\eta)}$$

Stochastic: OP-MDP onalysis OP-MDP applications Adversarial: OMS analysis OMS applications occore

Using informative bounds

Instead of uninformed bounds $0, \frac{1}{1-\gamma}$, use **better bounds** $\underline{V}(x) \leq V^*(x) \leq \overline{V}(x)$ at the leaves:

$$\ell(\mathbf{h}) = \sum_{x \in \mathcal{L}(\mathbf{h})} P(x) \left[R(x) + \gamma^{d(x)} \underline{V}(x) \right]$$

$$b(\mathbf{h}) = \sum_{x \in \mathcal{L}(\mathbf{h})} P(x) \left[R(x) + \gamma^{d(x)} \overline{V}(x) \right]$$

- Diameters $\delta(h)$ decrease, so near-optimality improves $(\ell(h) \le v(h)$ enough, no need for $\ell(h) \le v(h) \ \forall h \in h)$
- Like for OPD, using ε -accurate upper bound still helps if ε is small enough (EAAI 2016)

Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis	OMS applications

6 Stochastic case: Optimistic planning for MDPs

- OP-MDP analysis
- OP-MDP applications
- O Adversarial case: Optimistic minimax search
- 0 OMS analysis
- 11 OMS applications

Receding horizon control

In practice, work in receding horizon: apply action u_0 given by h^* at root, then replan

Avoids "running out" of actions, and compensates for model inaccuracy

0000000000	00000000		000000	0000000	000000		
HIV treatment							

6 states:

- T_1, T_2 healthy target cells per ml (types 1 & 2)
- T_1^t , T_2^t infected target cells per ml (types 1 & 2)
 - V free virus copies per ml
 - E immune response cells per ml
- M = 2 actions u_1 , u_2 : application of RTI and PI drugs Random effectiveness among N = 2 levels for each drug
- Goal: Starting from high level of infection x_0 , optimally switch drugs on and off to:
 - maximize immune response
 - 2 minimize virus load
 - Image: March Ma

$$r = c_E E - c_V V - c_1 \epsilon_1 - c_2 \epsilon_2$$

Stochastic: OP-MDP OP-MDP analysis OP-MDP applications of OOC OMS analysis OMS applications of OOC OMS

HIV treatment results

- OP vs. full treatment
- Infection eventually controlled without drugs

 Stochastic: OP-MDP
 OP-MDP analysis
 OP-MDP applications
 Adversarial: OMS
 OMS analysis
 OMS applications

 Operational in the second operation of the second operation oper

Partially observable MDP

- In a POMDP, the state cannot be measured, instead observations *o* are made
- After each action u leading to state x',
 o is observed with probability O(x', u, o)
- E.g. robot observes switch states with uncertainty

- POMDPs often solved via belief MDP, with belief state
 s = proba distribution over underlying states x
- Each action node has *N* belief children, labeled by observations *o* and resulting belief *x*
- Arcs record expected rewards, belief transition probas

Stochastic: OP-MDP analysis OP-MDP applications Adversarial: OMS OMS analysis OMS applications OMS applications OMS OP-MDP analysis OMS Applications OMS OP-MDP Analysis OMS Applications OMS OP-MDP Analysis OP-MDP A

Apply OP-MDP to explore the tree ⇒ AEMS2 algorithm!

(Ross et al., 2007)

 Analysis above directly extends to give convergence rate as a function of POMDP complexity

(IROS 2016)

Stochastic: OP-MDP

OP-MDP analysis

OP-MDP applications

Adversarial: OMS

OMS analysis

OMS applications

Example & Demo

- Objective: domestic robot makes sure all switches are off
- Fully observable grid position, deterministic NSEW actions
- "Flip" action succeeds stochastically
- Partially observable switch states: "observe" action randomly gives opposite result depending on distance
- Low-level SLAM and control

00000000 0000000				
	0000000	000000	0000000	

- 6 Stochastic case: Optimistic planning for MDPs
- OP-MDP analysis
- OP-MDP applications
- Adversarial case: Optimistic minimax search
- 0 OMS analysis

11 OMS applications

Adversarial problem							
Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis	OMS applications		

- E.g. if we don't know the next state probas in an MDP, we may assume the worst possible next states
- Minimax idea: look for "our" actions u that maximize return assuming opponent takes actions w to minimize it
- Works also for two-player competitive games, robust control, etc.

Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis	OMS applications
Problem s	setting				

- Maximizer & minimizer agents, with actions $u \in U$ and $w \in W$; |U| = M, |W| = N
- They alternately take an infinite sequence of actions:

$$(u_0, w_0, u_1, w_1, \dots) =: (z_0, z_1, z_2, \dots) = \boldsymbol{z}_{\infty}$$

- Dynamics $x_{d+1} = f(x_d, z_d)$, rewards $r(x_d, z_d)$
- Finite sequence $\boldsymbol{z}_d = (z_0, \dots, z_{d-1})$

Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis	OMS applications
Objective					

Infinite-horizon value of sequence \boldsymbol{z}_{∞} :

$$v(\boldsymbol{z}_{\infty}) := \sum_{d=0}^{\infty} \gamma^{d} \rho(\boldsymbol{x}_{d}, \boldsymbol{z}_{d}).$$

Objective: discounted minimax-optimal solution:

$$v^* := \max_{u_0} \min_{w_0} \cdots \max_{u_k} \min_{w_k} \cdots v(\boldsymbol{z}_{\infty})$$

Stochastic: OP-MDP OP-MDP analysis OP-MDP applications occorrections occ

Formal setting: Assumptions

Assumptions

- Both agents have discrete actions (as above)
- The rewards $\rho(x, z)$ are in [0, 1] for all $x \in X, z \in U \cup W$.

\Rightarrow lower & upper bounds on all sequences z_{∞} starting with z_d :

$$\ell(\boldsymbol{z}_d) = \sum_{j=0}^{d-1} \gamma^j \rho(\boldsymbol{x}_j, \boldsymbol{z}_j), \quad b(\boldsymbol{z}_d) = \ell(\boldsymbol{z}_d) + \frac{\gamma^d}{1-\gamma} =: \ell(\boldsymbol{z}_d) + \delta(d)$$

where diameter $\delta(d) = \frac{\gamma^d}{1-\gamma}$

 Stochastic: OP-MDP
 OP-MDP analysis
 OP-MDP applications
 Adversarial: OMS
 OMS analysis
 OMS applications

 Op-time initial provides the provides of the

Optimistic minimax search

OMS expands tree of possible minmax sequences, using lower and upper bounds on node values

Application of **classical**, **best-first B* search** to infinite-horizon problems

(Berliner 1979)

Stochastic: OP-MDP OP

OP-MDP analysis

OP-MDP applications

Adversarial: OMS

OMS analysis

OMS applications

16

Optimistic minimax search (cont'd)

for t = 1, ..., n do propagate lower & upper bounds *L*, *B* at each node: $L(z) \leftarrow \begin{cases} \ell(z), & \text{if } z \text{ leaf} \\ \max / \min_{z' \in \text{children}(z)} L(z'), & \text{otherwise} \end{cases}$ $B(z) \leftarrow \begin{cases} b(z), & \text{if } z \text{ leaf} \\ \max / \min_{z' \in \text{children}(z)} B(z'), & \text{otherwise} \end{cases}$ choose node to expand: $z \leftarrow \text{root}$, and while not leaf:

$$\boldsymbol{z} \leftarrow \begin{cases} \arg \max_{\boldsymbol{z}' \in \mathsf{children}(\boldsymbol{z})} B(\boldsymbol{z}'), & \text{if } \boldsymbol{z} \max \mathsf{ node} \\ \arg \min_{\boldsymbol{z}' \in \mathsf{children}(\boldsymbol{z})} L(\boldsymbol{z}'), & \text{if } \boldsymbol{z} \min \mathsf{ node} \end{cases}$$

expand *z* end for output a maximum-depth expanded node *z**

Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis	OMS applications

- 6 Stochastic case: Optimistic planning for MDPs
- OP-MDP analysis
- OP-MDP applications
- Adversarial case: Optimistic minimax search
- 10 OMS analysis
- 11 OMS applications

Near-optimality versus diameter

For finite sequence z, let v(z) be the minimax-optimal value among sequences starting with z

If d^* is the largest depth expanded, the solution z^* returned by OMS is $\delta(d^*)$ -optimal:

$$|\boldsymbol{v}^* - \boldsymbol{v}(\boldsymbol{z}^*)| \leq \delta(\boldsymbol{d}^*) = rac{\gamma^{\boldsymbol{d}^*}}{1 - \gamma}$$

Note the sequence is already d^* steps long, by definition

Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis o●ooooo	OMS applications
Explored	tree				

• Algorithm only expands nodes in the subtree:

$$\mathcal{T}^* := \left\{ \boldsymbol{z}_{\boldsymbol{d}} \; \middle| \; \boldsymbol{v}^* - \boldsymbol{v}(\boldsymbol{z}') \right| \leq \delta(\boldsymbol{d}), \forall \boldsymbol{z}' \text{ on path from root to } \boldsymbol{z}_{\boldsymbol{d}} \right\}$$

• Intuition: From the information available down to node z_d (interval of values of width $\delta(d) = \frac{\gamma^d}{1-\gamma}$), cannot decide whether the node is (not) optimal. So it must be explored.

 Stochastic: OP-MDP
 OP-MDP analysis
 OP-MDP applications
 Adversarial: OMS
 OMS analysis
 OMS applications

 00000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 0000000

Example where the full tree is explored

- All rewards equal to 1, $v^* = \frac{1}{1-\gamma}$
- All solutions have value v^* , so T^* is the full tree
- $|\mathcal{T}_d^*| = (MN)^{d/2}$, branching factor $\kappa = \sqrt{MN}$

Stochastic: OP-MDP OP-MDP analysis OP-MDP applications Adversarial: OMS omeganizations occorrection of the stochastic operation operation of the stochastic operation op

General case: Branching factor

- Low-complexity special case more involved; in general, branching factor remains a good measure of complexity
- Let $\kappa \in [1, \sqrt{MN}]$ = asymptotic branching factor of \mathcal{T}^*
- Problem simpler when κ smaller

To reach depth *d* in tree with branching factor κ , we must expand $n = O(\kappa^d)$ nodes

$$\Rightarrow \quad d^* = \Omega(\frac{\log n}{\log \kappa})$$

Final guarantee: Near-optimality vs. budget

Theorem

Given budget n, we have:

$$|\boldsymbol{v}^* - \boldsymbol{v}(\boldsymbol{z}^*)| \le \delta(\boldsymbol{d}^*) = \frac{\gamma^{\boldsymbol{d}^*}}{1 - \gamma} = \begin{cases} O(n^{-\frac{\log 1/\gamma}{\log \kappa}}) & \text{if } \kappa > 1\\ O(\gamma^{n/C}) & \text{if } \kappa = 1 \end{cases}$$

- Faster convergence when κ smaller (simpler problem)
- Exponential convergence when $\kappa = 1$

Using informative bounds

Instead of uninformed bounds 0, $\frac{1}{1-\gamma}$, use **better bounds** $\underline{V}(x) \leq V(x) \leq \overline{V}(x)$ on minimax value V(x) at leaf states:

$$\ell(\boldsymbol{z}_d) = \sum_{j=0}^{d-1} \gamma^j \rho(x_j, z_j) + \gamma^d \underline{V}(x_d)$$
$$b(\boldsymbol{z}_d) = \sum_{j=0}^{d-1} \gamma^j \rho(x_j, z_j) + \gamma^d \overline{V}(x_d)$$

• Diameters δ decrease, so near-optimality improves

Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis	OMS applications

- 6 Stochastic case: Optimistic planning for MDPs
- OP-MDP analysis
- OP-MDP applications
- Adversarial case: Optimistic minimax search
- 0 OMS analysis

Stochastic: OP-MDP OP-MDP analysis OP-MDP applications Adversarial: OMS OMS analysis 00000000 OMS applications

Receding horizon control

In practice, work in receding horizon:

apply first max action u_0 on sequence z^* returned, then replan

Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis	OMS applications
HIV. OWS	results				

Random disturbance treated as opponent Budget of n = 4000 node expansions

Stochastic: OP-MDP OP-MDP analysis OP-MDP applications occords occords

Switched control over delayed network

• Max action = controlled "mode"

e.g. constant action or low-level controller

Min action = network delay

Stochastic: OP-MDP OP-MDP analysis OP-MDP applications

Adversarial: OMS

OMS analysis

OMS applications

Quanser inverted pendulum

System:

- x = rod angle α, base angle θ, angular velocities
- input ω = voltage
- Sampling time $T_s = 0.04$

Goal: swing up & stabilize pointing up:

- $\rho = -15\alpha^2 0.05(\theta^2 + \dot{\alpha}^2 + \dot{\theta}^2 + \omega^2)$, normalized to [0, 1]
- Discount factor $\gamma = \sqrt{0.95}$

Stochastic: OP-MDP	OP-MDP analysis	OP-MDP applications	Adversarial: OMS	OMS analysis 0000000	OMS applications 0000€0
Results					

- 3 modes: #1 constant -6 V, #3 constant 6 V, #2 a stabilizing mode ω = Kx computed with LQR
- 2 delays: 0 or 1 steps
- Use real-time framework like OPD, plan during entire T_s

000000000	00000000	0000000	000000	0000000	00000		
References for Part II							

- Berliner, *The B* Search Algorithm: A Best First Proof Procedure*, Artificial Intelligence 1979.
- Nilsson, Principles of Artificial Intelligence, 1980.
- Ross et al., AEMS: An anytime online search algorithm for approximate policy refinement in large POMDPs, IJCAI 2007.
- Busoniu, Munos, *Optimistic Planning for Markov Decision Processes*, AISTATS 2012.
- Busoniu, Daniels, Babuska, *Online Learning for Optimistic Planning*, Engineering Applications of AI, 2016.
- Pall, Tamas, Busoniu, *An Analysis and Home Assistance Application of Online AEMS2 Planning*, IROS 2016.

Continuous algo: OPC	OPC analysis	Simultaneous OPC	Application	Final remarks

Part III

Continuous-action MDPs

Continuous algo: OPC	OPC analysis	Simultaneous OPC	Application	Final remarks

12 Optimistic planning with continuous actions

13 OPC analysis

Continuous algo: OPC ●○○○○○○	OPC analysis	Simultaneous OPC	Application	Final remarks
Continuous	actions			

In control applications, *u* often **continuous**! E.g. robot arm:

Scalar actions in this talk, although algorithms can be extended to vector actions (at significantly larger computational cost)

Continuous algo: OPC o●ooooo	OPC analysis	Simultaneous OPC	Application	Final remarks
Assumptions				

- Rewards $r \in [0, 1]$
- Scalar compact action space U = [0, 1]
- Lipschitz-continuous dynamics and rewards:

$$\|f(x, u) - f(x', u')\| \le L_f(\|x - x'\| + |u - u'|)$$

 $|\rho(x, u) - \rho(x', u')| \le L_\rho(\|x - x'\| + |u - u'|)$

• $\gamma L_f < 1$: most restrictive

Continuous algo: OPC oo●oooo	OPC analysis	Simultaneous OPC	Application	Final remarks
Search refine	ement			

• Split U^{∞} iteratively, leading to a tree of hyperboxes

- Each box *i* only represents explicitly dimensions already split, k = 0,..., K_i - 1
- Box *i* has value $v(i) = \sum_{k=0}^{K_i-1} \gamma^k r_{i,k+1}$, rewards of center sequence

Lineality value function					
Continuous algo: OPC ooo●ooo	OPC analysis	Simultaneous OPC	Application	Final remarks	

Lipschitz value function

• For any two action sequences u_{∞}, u'_{∞} :

$$|\mathbf{v}(\mathbf{u}_{\infty}) - \mathbf{v}(\mathbf{u}_{\infty}')| \leq \frac{L_{
ho}}{1 - \gamma L_{f}} \sum_{k=0}^{\infty} \gamma^{k} |u_{k} - u_{k}'|$$

 Intuition: states (and so rewards) may diverge somewhat, but divergence controlled due to γL_f < 1

Continuous algo: OPC ○○○○●○○	OPC analysis	Simultaneous OPC	Application	Final remarks
Box upper bo	ound			

• For any sequence \boldsymbol{u}_{∞} in box *i*:

$$\mathbf{v}(\mathbf{u}_{\infty}) \leq \mathbf{v}(i) + \frac{\max\{1, L_{\rho}\}}{1 - \gamma L_{f}} \sum_{k=0}^{\infty} \gamma^{k} \mathbf{w}_{i,k} := b(i)$$

• *w*_{*i*,*k*} width of dimension *k*, 1 if not split yet

• b(i) b-value of box i

Diameter and dimension selection

- **Diameter** $\delta(i) := \frac{\max\{1, L_{\rho}\}}{1 \gamma L_{f}} \sum_{k=0}^{\infty} \gamma^{k} w_{i,k}$ = uncertainty on values in the box
- Impact of dimension k on uncertainty is $\gamma^k w_{i,k}$
- ⇒ when splitting a box, choose dimension with largest impact, to reduce uncertainty the most
 - Always split into odd $M > 1/\gamma$ pieces

	00000	000	00000
OPC algorith	าท		

Optimistic planning with continuous actions (OPC) initialize tree with root box U^{∞} while budget of model calls *n* not exhausted **do** select **optimistic** leaf box $i^{\dagger} = \arg \max_{i \in \mathcal{L}} b(i)$ select **max-impact** dimension $k^{\dagger} = \arg \max_{k} \gamma^{k} w_{i^{\dagger},k}$ split i^{\dagger} along k^{\dagger} , creating *M* children on the tree end while return best center sequence seen, $i^{*} = \arg \max_{i} v(i)$

(ACC 2016)

Computation measured by model calls (f, ρ) instead of node expansions, since an expansion simulates sequences of varying lengths, at varying computational costs

Continuous algo: OPC	OPC analysis	Simultaneous OPC	Application	Final remarks

Optimistic planning with continuous actions

13 OPC analysis

14 Simultaneous OPC

15 Application

		0000	000	00000
Near-ontimal	lity ve diar	notor		

OPC returns a sequence i^* that is near-optimal:

$$\mathbf{v}^* - \mathbf{v}(i^*) \leq \delta^*$$

where δ^* is the smallest diameter of any expanded node

Diamotor ve	donth			
Continuous algo: OPC	OPC analysis	Simultaneous OPC	Application	Final remarks

Given depth in tree d =total number of splits:

$$\delta(i) = \tilde{O}(\gamma \sqrt{2d \frac{\tau-1}{\tau^2}}), \text{ where } \tau = \left\lceil \frac{\log 1/M}{\log \gamma} \right\rceil$$

Diameters vary by the order of splits, but they all converge to 0 roughly exponentially in \sqrt{d} . Example:

Branching fa	actor			
Continuous algo: OPC	OPC analysis ○○●○○	Simultaneous OPC	Application	Final remarks

- OPC only expands in near-optimal subtree: $\mathcal{T}^* = \{i \in \mathcal{T} \mid v^* - v(i) \le \delta(i)\}$
- Special cases rather complicated, but asymptotic branching factor κ ∈ [1, M] of T* remains good problem complexity measure

E.g.
$$\kappa = 2, M = 3$$
:

Continuous algo: OPC	OPC analysis ○○○●○	Simultaneous OPC	Application	Final remarks
Depth vs. buc	lget n			

To reach depth *d* in tree with branching factor κ , we must expand $O(\kappa^d)$ nodes, which takes $n = O(d\kappa^d) = \tilde{O}(\kappa^d)$ model calls

$$\Rightarrow$$
 largest depth $d^* = \tilde{\Omega}(\frac{\log n}{\log \kappa})$

Continuous algo: OPC onalysis ocoo
Simultaneous OPC Application Final remarks

Final guarantee: Near-optimality vs. budget

Theorem

After spending *n* model calls, OPC suboptimality is:

$$\mathbf{v}^* - \mathbf{v}(i^*) \le \delta^* \le \delta(\mathbf{d}^*) = egin{cases} ilde{\mathrm{O}}(\gamma^{\sqrt{rac{2(\tau-1)\log n}{\tau^2\log \kappa}}}), & ext{if } \kappa > 1 \ ilde{\mathrm{O}}(\gamma^{n^{1/4}b}), & ext{if } \kappa = 1 \end{cases}$$

- Convergence faster when κ smaller
- When $\kappa = 1$, convergence is exponential in power $n^{1/4}$
- When κ > 1, we pay for generality: exponential computation κ^d to reach depth d

Continuous algo: OPC	OPC analysis	Simultaneous OPC	Application	Final remarks

Optimistic planning with continuous actions

13 OPC analysis

- Maintaineous OPC
 - 15 Application
- 6 Final remarks

Continuous algo: OPC	OPC analysis	Simultaneous OPC ●ooo	Application	Final remarks
Idea				

- Avoid using Lipschitz constants (i.e. diameters) altogether
- \Rightarrow Split a **potentially optimistic** box at each depth:

$$b_d^{\dagger} = \underset{i \text{ at } d}{\operatorname{arg max}} v(i); \text{ proxy for unknown } b(i) = v(i) + \delta(i)$$

Depth cutoff at d_{max}(n) to avoid indefinite expansion

Continuous algo: OPC	OPC analysis	Simultaneous OPC ○●○○	Application	Final remarks
SOPC algori	ithm			

initialize tree with root box while *n* not exhausted do for *d* = first unexpanded to $d_{\max}(n)$ do potentially optimistic leaf $i_d^{\dagger} = \arg \max_{i \in \mathcal{L}_d} v(i)$ max-impact dimension $k_d^{\dagger} = \arg \max_k \gamma^k w_{i_d^{\dagger},k}$ split i_d^{\dagger} along k_d^{\dagger} end for end while return best sequence seen $i^* = \arg \max_i v(i)$

Continuous algo: OPC	OPC analysis	Simultaneous OPC ○○●○	Application	Final remarks
Depth vs. buc	dget n			

SOPC may expand outside T^* but not too much After spending *n* it reaches d^* where:

$$n = \mathcal{O}(d_{\max}^2(n) \sum_{k=1}^{d^*} \kappa^k)$$

(or $d_{\max}(n)$ if it is smaller)

0000000	00000		000	00000
Continuous algo: OPC	OPC analysis	Simultaneous OPC	Application	Final remarks

Performance guarantee

Theorem

For budget n, SOPC suboptimality is:

$$\mathbf{v}^* - \mathbf{v}(i^*) = \begin{cases} \tilde{O}(\gamma^{\sqrt{\frac{2(1-2\varepsilon)(\tau-1)\log n}{\tau^2\log \kappa}}}), & \text{if } \kappa > 1 \text{ and } d_{\max}(n) = n^{\varepsilon} \\ \tilde{O}(\gamma^{n^{1/6}b}), & \text{if } \kappa = 1 \text{ and } d_{\max}(n) = n^{1/3} \end{cases}$$

- When $\kappa > 1$, with small ε nearly same bound as OPC
- When $\kappa = 1$, $n^{1/6}$ instead of $n^{1/4}$ slower but similar
- All this while adapting to unknown smoothness

000000 00000			0000
	0000	000	00000

Optimistic planning with continuous actions

- OPC analysis
- 14 Simultaneous OPC

Continuous algo: OPC	OPC analysis	Simultaneous OPC	Application ●○○	Final remarks

Recall: Quanser pendulum

System:

- x = rod angle α, base angle θ, angular velocities
- Input ω = voltage
- Sampling time $T_{\rm s} = 0.05$

Goal: swing up & stabilize pointing up:

- $\rho = -\alpha^2 \theta^2 .005(\dot{\alpha}^2 + \dot{\theta}^2) .05u^2$, normalized to [0, 1]
- Discount factor $\gamma = 0.85$

Controlled traied	otory			
Continuous algo: OPC OF	PC analysis	Simultaneous OPC	Application ○●○	Final remarks

n = 5000 model calls; note adaptive discretization of control magnitude, and no access to stabilizing mode

1

Continuous algo: OPC	OPC analysis	Simultaneous OPC	Application	Final remarks
Real-time con	trol			

Uses parallelized real-time framework similar to OPD

Continuous algo: OPC	OPC analysis	Simultaneous OPC	Application	Final remarks

Optimistic planning with continuous actions

- OPC analysis
- M Simultaneous OPC

15 Application

00000 000 000 000 000 000 000 000 000

Other optimistic planners

- Search open-loop sequences in stochastic MDPs: OLOP (Bubeck & Munos, 2010)
- Learn the MDP model while searching: BOP (Fonteneau et al., 2013)
- Sample-based continuous-action planning

(Mansley et al., 2010)

• etc.

Deleted field				
Continuous algo: OPC	OPC analysis	Simultaneous OPC	Application	Final remarks o●ooo

Monte Carlo tree search

- Selects leaf to expand according to bandit UCBs; prototypical algorithm UCT
- Estimates leaf values by running long random simulations

(Browne et al., 2012)

Planning and scheduling

 Different formalism but algorithms often applicable to MDPs

Nonlinear model-predictive control

Focus on stability and exploiting dynamics knowledge

(Grune & Pannek, 2016)

Nonlinear co	ontrol appli	rations		
Continuous algo: OPC	OPC analysis	Simultaneous OPC	Application	Final remarks 00●00

Switched systems = natural discrete-action MDPs

(Automatica 2017)

Nonlinear networked control via sequences

(TAC 2016)

Cooperative control in multiagent systems

(CTT 2015)

Conclusion				
Continuous algo: OPC	OPC analysis	Simultaneous OPC	Application	Final remarks

Optimistic planning

Online model-based, good convergence guarantees

Works for complex dynamics & states, but simple actions

Thank you!

Continuous algo: OPC	OPC analysis	Simultaneous OPC	Application	Final remarks 0000●

- Bubeck, Munos, Open Loop Optimistic Planning, COLT 2010.
- Mansley et al., Sampled-Based Planning for Continuous-Action MDPs, ICAPS 2011.
- Fonteneau et al., *Optimistic Planning for Belief-Augmented MDPs*, ADPRL 2013.
- Browne et al., A Survey of Monte-Carlo Tree Search Methods, IEEE Trans on Computational Intelligence and AI in Games 2012.
- Grune, Pannek, Nonlinear Model-Predictive Control, 2016.
- Busoniu, Morarescu, Topology Preserving Flocking of Nonlinear Agents using Optimistic Planning, Control Theory & Technology 2015.
- Busoniu, Pall, Munos, Discounted Near-Optimal Control of General Continuous-Action Nonlinear Systems [...], ACC 2016.
- Busoniu, Postoyan, Daafouz, Near-Optimal Strategies for Nonlinear and Uncertain Networked Control Systems, IEEE TAC 2016.
- Busoniu, Daafouz, Bragagnolo, Morarescu, *Planning [...] in Nonlinear* Systems with Controlled or Uncontrolled Switches, Automatica 2017.