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Part I

Introduction. Deterministic case
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Model-based motivation

In practice, a model may be available
(sometimes precise, sometimes rough)

⇒ Use it!

Model-based techniques still very useful due to generality
(nonlinear, stochastic problems)
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Online planning idea

At each step, use model to solve problem locally:
1. Explore action sequences from current state,

to find a near-optimal sequence
2. Apply first action of this sequence, and repeat

Receding-horizon model-predictive control
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Deterministic MDP: Control perspective

At step k , controller measures states x , applies actions u
System: dynamics xk+1 = f (xk , uk )

Performance: reward function rk+1 = ρ(xk , uk )

Objective: find policy u = π(x) that maximizes return∑∞

k=0
γk rk+1

with discount factor γ ∈ (0, 1)
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AI perspective

Agent observes state, applies action
Environment changes state according to dynamics
... and sends back a reward, according to reward function
Objective: maximize discounted return
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Example: Domestic robot

A domestic robot ensures light switches are off
Abstractization to high-level control (physical actions
implemented by low-level controllers)

States: grid coordinates, switch states
Actions: movements NSEW, toggling switch
Rewards: when switches toggled on→off
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Example: Robot arm

Low-level control
States: link angles and angular velocities
Actions: motor voltages
Rewards: e.g. to reach a desired configuration,
give larger rewards as robot gets closer to it
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Many other applications

Artificial intelligence, medicine, multiagent systems, economics
etc.
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Value function and optimal solution

V-function of policy π:

V π(x) =
∞∑

k=0

γkρ(xk , π(xk ))

where x0 = x , xk+1 = f (xk , π(xk ))

Optimal V-function: V ∗(x) = maxπ V π(x)

Bellman equation for V π:

V π(x) = ρ(x , π(x)) + γV π(f (x , π(x)))

Bellman optimality equation (for V ∗):

V ∗(x) = max
u

[ρ(x , u) + γV ∗(f (x , u))]

Once V ∗ available, optimal policy is:

π∗(x) = arg max
u

[ρ(x , u) + γV ∗(f (x , u))]
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Value iteration

Turn Bellman optimality equation:

V ∗(x) = max
u

[ρ(x , u) + γV ∗(f (x , u))]

into an iterative assignment:

Value iteration
repeat at each iteration t

for all x do
Vt+1(x) = maxu[ρ(x , u) + γVt(f (x , u))]

end for
until convergence to V ∗

π∗(x) = arg maxu[ρ(x , u) + γV ∗(f (x , u))]

Monotonic, exponential convergence
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Lecture structure

Online, optimistic planning in:
1 Deterministic MDPs
2 Stochastic MDPs and adversarial problems
3 Continuous-action MDPs (+ final remarks)

Practical session: Implement & try deterministic planner
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1 Idea & background

2 Optimistic planning for deterministic systems

3 Analysis

4 Example and real-time application

5 Relation to value-function methods
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Relation to classical planning

Most methods we discuss are extensions of classical
planning (A*, AO*, B*) to solving MDPs

We provide near-optimality guarantees as a function of
computation n and of complexity κ of the problem:

error = O(g(n, κ))
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Shortest-path graph search

Graph with costs c(i , j) for traveling between nodes i and j
Objective: lowest-cost path from start s to target t (1 to 4)
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Classical A*

Uses a heuristic δ(i) ≤ the lowest cost from i to the target t

A* (tree-search version)

initialize tree with start node s, set `(s) = 0, b(s) = δ(s)
loop

select leaf i† with lowest b
if i† = target t , stop
expand i† with all neighbors j
for each j , `(j) = `(i) + c(i , j), b(j) = `(j) + δ(j)

end loop
return path from s to t

Each node evaluated by underestimate b of the lowest-cost
path going through it – optimism under uncertainty
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A* on example graph

Take δ(i) = 1, smallest possible cost
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Applying A* idea to MDPs

Each tree node gets the meaning of state
One child for each action, each transition associated with a
reward (instead of cost)
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Applying A* idea to MDPs (cont’d)

Problem is infinite-horizon, tree is infinitely deep
Optimal solution also infinitely deep in general
⇒ must stop suboptimally
Suboptimal solution finite in length
⇒ work in receding horizon
Maximize discounted returns instead of minimizing costs
⇒ optimistic value should overestimate return
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Formal setting

Assumptions

Finite, discrete action space U =
{

u1, . . . , uM}
Bounded reward function ρ(x , u) ∈ [0, 1],∀x , u

Denote current step by 0 (by convention). Then:
Infinite action sequences: u∞ = (u0, u1, . . . )

Solve supu∞ v(u∞) :=
∑∞

k=0 γk rk+1
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Formal setting: Values

Finite sequence ud also seen as set of infinite
sequences (u0, . . . , ud−1, ?, ?, . . . )

`(ud) =
∑d−1

k=0 γkρ(xk , uk )
lower bound on returns of u∞ ∈ ud

b(ud) = `(ud) + γd

1−γ =: δ(d), diameter
optimistic upper bound on the returns

v(ud) = supu∞∈ud
v(u∞)

value of applying ud and then acting optimally
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Optimistic planning for deterministic systems (OPD)

initialize empty sequence u0 (= all infinite sequences)
for t = 1 to n do

select optimistic leaf sequence u†t , maximizing b
expand u†t : children for all actions, setting ` and b

end for
return greedy u∗d∗ maximizing `

(Hren & Munos, 2008)
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Relation to bandit problems

Besides obvious relation with RL (we solve the problem
model-based), there is a deeper connection via exploration

At single state, exploration modeled as multi-armed bandit:
Action j = arm with reward distribution ρj , expectation µj

Best arm (optimal action) has expected value µ∗

At step k , we pull arm (try action) jk , getting rk ∼ ρjk

Objective: After n pulls, small regret:
∑n

k=1 µ∗ − µjk
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Relation to bandit problems (cont’d)

Good idea: after n steps, pick arm with
largest upper confidence bound:

b(j) = µ̂j +

√
3 log n

2nj

where:
µ̂j = mean of rewards observed for arm j so far
nj how many times arm j was pulled

Optimism in the face of uncertainty
Bandits: uncertainty = unknown reward distributions
Planning: uncertainty = incomplete (finite-horizon)
solutions
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Near-optimality vs. depth

1 OPD returns a sequence u∗d∗ , with length
d∗ = the deepest expanded d

2 This sequence is near-optimal up to deepest diameter:

v∗ − v(u∗d∗) ≤ δ(d∗) =
γd∗

1− γ

where v∗ the optimal value (at x0)
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Near-optimality proof

For any iteration t , b(u†t ) ≥ v∗ since it’s larger than the
b-value of any leaf (including that on the optimal path)
At the end, `(u∗d∗) is larger than any `-value,
in particular than `(u†t )

But the gap b(u†t )− `(u†t ) = γd

1−γ with d the depth of u†t !
This holds e.g. at d∗

Finally, v(u∗d∗) ≥ `(u∗d∗)
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Case 1: All paths optimal

Take a tree where all rewards are 1:

b(ud) = 1
1−γ , ∀ud ⇒ OPD expands uniformly, breadth-first

So to expand all nodes down to depth d , we must spend:

n =
d∑

i=0

M i =
Md+1 − 1

M − 1

and the tree grows very slowly with budget n
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Case 2: One path optimal

Take a tree where rewards are 1 only along a single path (thick
line), and 0 everywhere else:

b(ud) = 1
1−γ only on optimal path, γd

1−γ elsewhere
⇒ OPD expands only the optimal path

So to expand down to depth d , we must spend only n = d , and
the tree grows very fast with n
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General case: Branching factor

Algorithm only expands in near-optimal subtree:
T ∗ = {ud | v∗ − v(ud) ≤ δ(d)}

Define κ = asymptotic branching factor of T ∗:
problem complexity measure, κ ∈ [1, M]
(related to effective branching factor of A*)

E.g. κ = 2, M = 3:
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Depth vs. budget n

To reach depth d in tree with branching factor κ,
we must expand n = O(κd) nodes

⇒ d∗ = Ω(
log n
log κ

)
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Final guarantee: Near-optimality vs. budget

Theorem

OPD returns a long sequence u∗d∗ , d∗ = Ω( log n
log κ)

This sequence is near-optimal:

v∗ − v(u∗d∗) ≤ δ(d∗) =
γd∗

1− γ
=

{
O(n−

log 1/γ
log κ ) if κ > 1

O(γn/C) if κ = 1

Generality paid by exponential computation n = O(κd)

But κ can be small in interesting problems!

(Hren & Munos, 2008)
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Example: Inverted pendulum

x = [angle α, velocity α̇]>

u = voltage
ρ(x , u) = −x>Qx − u>Ru
Discount factor γ = 0.98

Objective: stabilize pointing up
Insufficient torque⇒ swing-up required
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Simulation: Inverted pendulum

Demo
Swingup trajectory:
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Real-time idea

Challenge: computation time large and must be handled!

Usually only first action of each sequence is sent to
actuator
But remember: OPD returns long sequences!

⇒ Send a longer subsequence (length d ′),
and use the time to compute in the background
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Real-time architecture

Compute initial sequence (system assumed stable)
Send to buffer, and immediately start computing
next sequence from predicted state

(CSCS 2015)



Idea & background OPD algorithm Analysis Application Relation to VI

Setting up real-time OPD

We usually want to use all available time: n =
⌊
d ′ Ts

Te

⌋
.

⇒ Select subsequence length d ′ so that:

d ′
Ts

Te
− κd ′/c − 1 ≥ 0

Or, when κ, c unknown:

(d ′
Ts

Te
− 1)(K − 1)− K d ′+1 + 1 ≥ 0
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Real-time results: Inverted pendulum
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Relation to VI: 1 step

V ∗ available: search just one step ahead:

u0 = π∗(x0) = arg max
u

[ρ(x0, u) + γV ∗(f (x0, u))]

= arg max
u

[ρ(x0, u) + γV ∗(x1)]

Equivalent to a simple tree:
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Relation to VI: N steps

V ∗ unavailable: search N steps ahead, N �:

Equivalent to local V-iteration (backward view):

VN(xN)← 0, for states xN reachable from x0
for i = N − 1, N − 2, . . . , 1 do

Vi(xi) = maxu[ρ(xi , u) + γVi+1(f (xi , u))], ∀xi reachable
end for
u0 = arg maxu[ρ(x0, u) + γV1(f (x0, u))]
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Relation to VI: OPD tree

OPD actually explores the tree optimally:

and local VI works for this tree as well:

V (x)← 0, for terminal nodes
for internal nodes, back to the root do

V (x) = maxu[ρ(x , u) + γV (f (x , u))]
end for
u0 = arg maxu[ρ(x0, u) + γV (f (x0, u))]
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Relation to VI

VI gives global solution, OPD just local at x0

OPD insensitive to the complexity of the state space,
which highly influences VI
OPD complexity grows fast with number of actions
⇒ appropriate for small actions spaces
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Using V-functions in OPD

Instead of uninformed upper bounds γd 1
1−γ ,

use good V-function estimates at the leaves:

γd V̂ (xd)

Similar to informed heuristics in A*
Estimates could come from: rough initial value or policy
iteration, online learning, etc.
As long as V̂ (x) ≥ V ∗(x), algorithm improves (just like A*)

Even if V̂ underestimates V ∗ by ε, algorithm improved
when ε is small

(EAAI 2016)
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Part II

Stochastic and adversarial problems
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Stochastic case

In response to u in x , system no longer reacts deterministically
– it can reach one of several states with different probabilities
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Stochastic MDP and objective

Stochastic MDP
1 State and action spaces X , U keep their meaning
2 Transition function gives probabilities f̃ (x , u, x ′),

f̃ : X × U × X → [0, 1]

3 Reward a function of the whole transition ρ̃(x , u, x ′),
ρ̃ : X × U × X → R

Objective: find policy π to maximize expected return:

Rπ(x0) = E
{ ∞∑

k=0
γk ρ̃(xk , π(xk ), xk+1)

}
from any x0
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Formal setting

Assumptions
1 Finite, discrete action space U = {u1, . . . , uM}
2 Each action leads to (at most) N different next states
3 Bounded rewards r ∈ [0, 1]
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Tree structure

Each of the M actions gets its separate node
and has its N possible next states as children
Probability and reward labels on action-next state arcs
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Algorithm outline

Build tree by iteratively expanding state nodes
(adding all M action children and N ·M state children)
Each expansion: select optimistic partial solution
and its most useful leaf
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Solution concept

Closed-loop planning policy h:
assigns action choices to all possible outcomes
Value v(h) = expected return while following h

Restriction to finite subtree⇒ policy set h:
all policies beginning with specified actions



Stochastic: OP-MDP OP-MDP analysis OP-MDP applications Adversarial: OMS OMS analysis OMS applications

Lower and upper bounds

For any policy h ∈ h, we have `(h) ≤ v(h) ≤ b(h), with:

`(h) =
∑

x∈L(h) P(x) R(x)

b(h) =
∑

x∈L(h) P(x)
[
R(x) + γd(x)

1−γ

]
= `(h) +

∑
x∈L(h) P(x) γd(x)

1−γ = `(h) + δ(h)︸︷︷︸
diameter

(uncertainty)
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Diameter details

δ(h) =
∑

x∈L(h)

P(x)
γd(x)

1− γ︸ ︷︷ ︸
contribution c(x)

Generalizes the deterministic-case γd

1−γ
= uncertainty due to the single sequence of actions
Here, uncertainty spread over the policy leaves,
each contributing according to its probability and depth
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Algorithm: Optimistic planning for MDPs

initialize tree to root node x0
for t = 1, . . . , n do

find optimistic policy h†t = arg maxh b(h)

expand max-contrib node x†t = arg maxx∈L(h†t )
c(x)

end for
output near-optimal policy h∗ = arg maxh `(h)

(AISTATS 2012)

Application of classical AO* search to MDPs (Nilsson, 1980)
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Near-optimality vs. diameter

For finite sequence h, let v(h) be the optimal value among
sequences starting with h.

OP-MDP returns near-optimal policy h∗:

v∗ − v(h∗) ≤ δ∗

where δ∗ is the smallest diameter among all expanded policies
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Explored tree

Define near-optimal tree Tε containing only the nodes that:
1 have a significant impact: α(x) ≥ ε

2 to near-optimal policies: x ∈ h so that v∗ − v(h) ≤ α(x)

Node impact α(x): greatest diameter among
policies in which x is largest-contributing leaf

OP-MDP explores Tε so as to always decrease ε;
and δ∗ ≤ smallest ε seen
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Complexity measure

Near-optimality exponent β ≥ 0:

|Tε| = Õ(ε−β) i.e. |Tε| ≤ a(log 1/ε)bε−β a, b > 0

β describes growth of Tε
Problem is easier when β is smaller:

– less uniform transition probabilities
– rewards concentrated on fewer actions
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Final guarantee: Near-optimality vs. budget

Theorem

Policy returned is near-optimal:

v∗ − v(h∗) ≤ δ∗ =

{
Õ(n−

1
β ) if β > 0

O(exp[−(n
a )

1
b ]) if β = 0
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Case 1: Uniform

Identical rewards & uniform probabilities

β =
log NM
log 1/γ

⇒ δ∗ = Õ(n−
log 1/γ
log NM )

Tε grows uniformly, covering full tree
Algorithm explores this full tree, branching factor NM

If deterministic N = 1, uniform OPD case: n−
log 1/γ
log M
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Case 2: Structured rewards

Rewards 1 for one policy h∗, 0 elsewhere; uniform probas

β =
log N

log 1/γ
(1 +

log M
log N/γ

)

Tε grows uniformly in subtree of h∗, with b.f. N
(+ some nodes below h∗)
If N = 1, β = 0, recovering one-path OPD case
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Case 3: Structured probabilities

Identical rewards, Bernoulli probabilities with p � 1− p

β =
log Mη

log 1/(pγη)

Tε grows in an asymmetric way
If p → 1⇒ η → 1, β = log M

log 1/γ

– recover again deterministic case
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Using informative bounds

Instead of uninformed bounds 0, 1
1−γ ,

use better bounds V (x) ≤ V ∗(x) ≤ V (x) at the leaves:

`(h) =
∑

x∈L(h) P(x) [R(x) + γd(x)V (x)]

b(h) =
∑

x∈L(h) P(x) [R(x) + γd(x)V (x)]

Diameters δ(h) decrease, so near-optimality improves
(`(h) ≤ v(h) enough, no need for `(h) ≤ v(h) ∀h ∈ h)
Like for OPD, using ε-accurate upper bound
still helps if ε is small enough (EAAI 2016)
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Receding horizon control

In practice, work in receding horizon:
apply action u0 given by h∗ at root, then replan

Avoids “running out” of actions,
and compensates for model inaccuracy
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HIV treatment

6 states:
T1, T2 – healthy target cells per ml (types 1 & 2 )
T t

1, T t
2 – infected target cells per ml (types 1 & 2)

V – free virus copies per ml
E – immune response cells per ml

M = 2 actions u1, u2: application of RTI and PI drugs
Random effectiveness among N = 2 levels for each drug

Goal: Starting from high level of infection x0,
optimally switch drugs on and off to:

1 maximize immune response
2 minimize virus load
3 minimize drug use

r = cEE − cV V−c1ε1 − c2ε2
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HIV treatment results

OP vs. full treatment
Infection eventually controlled without drugs
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Partially observable MDP

In a POMDP, the state cannot be measured,
instead observations o are made
After each action u leading to state x ′,
o is observed with probability O(x ′, u, o)

E.g. robot observes switch states with uncertainty
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Solution using planning

POMDPs often solved via belief MDP, with belief state
s = proba distribution over underlying states x

Each action node has N belief children, labeled by
observations o and resulting belief x
Arcs record expected rewards, belief transition probas
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Applying OP-MDP

Apply OP-MDP to explore the tree
⇒ AEMS2 algorithm!

(Ross et al., 2007)

Analysis above directly extends to give
convergence rate as a function of POMDP complexity

(IROS 2016)
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Example & Demo

Objective: domestic robot makes sure all switches are off
Fully observable grid position, deterministic NSEW actions
“Flip” action succeeds stochastically
Partially observable switch states: “observe” action
randomly gives opposite result depending on distance
Low-level SLAM and control
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Adversarial problem

E.g. if we don’t know the next state probas in an MDP,
we may assume the worst possible next states

Minimax idea: look for “our” actions u that maximize return
assuming opponent takes actions w to minimize it

Works also for two-player competitive games, robust
control, etc.
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Problem setting

Maximizer & minimizer agents,
with actions u ∈ U and w ∈W ; |U| = M, |W | = N
They alternately take an infinite sequence of actions:

(u0, w0, u1, w1, . . . ) =: (z0, z1, z2, . . . ) = z∞

Dynamics xd+1 = f (xd , zd), rewards r(xd , zd)

Finite sequence zd = (z0, . . . , zd−1)
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Objective

Infinite-horizon value of sequence z∞:

v(z∞) :=
∞∑

d=0

γdρ(xd , zd).

Objective: discounted minimax-optimal solution:

v∗ := max
u0

min
w0
· · ·max

uk
min
wk
· · · v(z∞)
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Formal setting: Assumptions

Assumptions
Both agents have discrete actions (as above)
The rewards ρ(x , z) are in [0, 1] for all x ∈ X , z ∈ U ∪W .

⇒ lower & upper bounds on all sequences z∞ starting with zd :

`(zd) =
∑d−1

j=0 γ jρ(xj , zj), b(zd) = `(zd) + γd

1−γ =: `(zd) + δ(d)

where diameter δ(d) = γd

1−γ
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Optimistic minimax search

OMS expands tree of possible minmax sequences,
using lower and upper bounds on node values

Application of classical, best-first B* search
to infinite-horizon problems (Berliner 1979)
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Optimistic minimax search (cont’d)

for t = 1, . . . , n do
propagate lower & upper bounds L, B at each node:

L(z)←

{
`(z), if z leaf
max / minz ′∈children(z) L(z ′), otherwise

B(z)←

{
b(z), if z leaf
max / minz ′∈children(z) B(z ′), otherwise

choose node to expand: z ← root, and while not leaf:

z ←

{
arg maxz ′∈children(z) B(z ′), if z max node
arg minz ′∈children(z) L(z ′), if z min node

expand z
end for
output a maximum-depth expanded node z∗
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6 Stochastic case: Optimistic planning for MDPs

7 OP-MDP analysis

8 OP-MDP applications

9 Adversarial case: Optimistic minimax search

10 OMS analysis

11 OMS applications
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Near-optimality versus diameter

For finite sequence z, let v(z) be the minimax-optimal value
among sequences starting with z

If d∗ is the largest depth expanded, the solution z∗ returned by
OMS is δ(d∗)-optimal:

|v∗ − v(z∗)| ≤ δ(d∗) =
γd∗

1− γ

Note the sequence is already d∗ steps long, by definition
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Explored tree

Algorithm only expands nodes in the subtree:

T ∗ :=
{

zd

∣∣∣ ∣∣v∗ − v(z ′)
∣∣ ≤ δ(d),∀z ′ on path from root to zd

}
Intuition: From the information available down to node zd

(interval of values of width δ(d) = γd

1−γ ), cannot decide
whether the node is (not) optimal. So it must be explored.
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Example where the full tree is explored

All rewards equal to 1, v∗ = 1
1−γ

All solutions have value v∗, so T ∗ is the full tree∣∣T ∗d ∣∣ = (MN)d/2, branching factor κ =
√

MN



Stochastic: OP-MDP OP-MDP analysis OP-MDP applications Adversarial: OMS OMS analysis OMS applications

General case: Branching factor

Low-complexity special case more involved; in general,
branching factor remains a good measure of complexity
Let κ ∈ [1,

√
MN] = asymptotic branching factor of T ∗

Problem simpler when κ smaller
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Depth vs. budget n

To reach depth d in tree with branching factor κ,
we must expand n = O(κd) nodes

⇒ d∗ = Ω(
log n
log κ

)
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Final guarantee: Near-optimality vs. budget

Theorem
Given budget n, we have:

|v∗ − v(z∗)| ≤ δ(d∗) =
γd∗

1− γ
=

{
O(n−

log 1/γ
log κ ) if κ > 1

O(γn/C) if κ = 1

Faster convergence when κ smaller (simpler problem)
Exponential convergence when κ = 1
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Using informative bounds

Instead of uninformed bounds 0, 1
1−γ , use better bounds

V (x) ≤ V (x) ≤ V (x) on minimax value V (x) at leaf states:

`(zd) =
d−1∑
j=0

γ jρ(xj , zj) + γdV (xd)

b(zd) =
d−1∑
j=0

γ jρ(xj , zj) + γdV (xd)

Diameters δ decrease, so near-optimality improves
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Receding horizon control

In practice, work in receding horizon:
apply first max action u0 on sequence z∗ returned, then replan
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HIV: OMS results

Random disturbance treated as opponent
Budget of n = 4000 node expansions
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Switched control over delayed network

Max action = controlled “mode”
e.g. constant action or low-level controller
Min action = network delay
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Quanser inverted pendulum

System:
x = rod angle α, base angle θ,
angular velocities
input ω = voltage
Sampling time Ts = 0.04

Goal: swing up & stabilize pointing up:
ρ = −15α2−0.05(θ2 + α̇2 + θ̇2 +ω2),
normalized to [0, 1]

Discount factor γ =
√

0.95
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Results

3 modes: #1 constant −6 V, #3 constant 6 V,
#2 a stabilizing mode ω = Kx computed with LQR
2 delays: 0 or 1 steps
Use real-time framework like OPD, plan during entire Ts
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Part III

Continuous-action MDPs
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Continuous actions

In control applications, u often continuous! E.g. robot arm:

Scalar actions in this talk, although algorithms can be extended
to vector actions (at significantly larger computational cost)
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Assumptions

Rewards r ∈ [0, 1]

Scalar compact action space U = [0, 1]

Lipschitz-continuous dynamics and rewards:∥∥f (x , u)− f (x ′, u′)
∥∥ ≤ Lf (

∥∥x − x ′
∥∥ +

∣∣u − u′
∣∣)∣∣ρ(x , u)− ρ(x ′, u′)

∣∣ ≤ Lρ(
∥∥x − x ′

∥∥ +
∣∣u − u′

∣∣)
γLf < 1: most restrictive
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Search refinement

Split U∞ iteratively, leading to a tree of hyperboxes

Each box i only represents explicitly
dimensions already split, k = 0, . . . , Ki − 1

Box i has value v(i) =
∑Ki−1

k=0 γk ri,k+1,
rewards of center sequence



Continuous algo: OPC OPC analysis Simultaneous OPC Application Final remarks

Lipschitz value function

For any two action sequences u∞, u′∞:∣∣v(u∞)− v(u′∞)
∣∣ ≤ Lρ

1− γLf

∞∑
k=0

γk ∣∣uk − u′k
∣∣

Intuition: states (and so rewards) may diverge somewhat,
but divergence controlled due to γLf < 1
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Box upper bound

For any sequence u∞ in box i :

v(u∞) ≤ v(i) +
max{1, Lρ}

1− γLf

∞∑
k=0

γkwi,k := b(i)

wi,k width of dimension k , 1 if not split yet

b(i) b-value of box i
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Diameter and dimension selection

Diameter δ(i) :=
max{1,Lρ}

1−γLf

∑∞
k=0 γkwi,k

= uncertainty on values in the box

Impact of dimension k on uncertainty is γkwi,k

⇒ when splitting a box, choose dimension with largest
impact, to reduce uncertainty the most

Always split into odd M > 1/γ pieces
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OPC algorithm

Optimistic planning with continuous actions (OPC)
initialize tree with root box U∞

while budget of model calls n not exhausted do
select optimistic leaf box i† = arg maxi∈L b(i)
select max-impact dimension k† = arg maxk γkwi†,k
split i† along k†, creating M children on the tree

end while
return best center sequence seen, i∗ = arg maxi v(i)

(ACC 2016)

Computation measured by model calls (f , ρ) instead of node
expansions, since an expansion simulates sequences of
varying lengths, at varying computational costs
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Near-optimality vs. diameter

OPC returns a sequence i∗ that is near-optimal:

v∗ − v(i∗) ≤ δ∗

where δ∗ is the smallest diameter of any expanded node
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Diameter vs. depth

Given depth in tree d =total number of splits:

δ(i) = Õ(γ

q
2d τ−1

τ2 ), where τ =
⌈

log 1/M
log γ

⌉

Diameters vary by the order of splits, but they all converge to 0
roughly exponentially in

√
d . Example:
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Branching factor

OPC only expands in near-optimal subtree:
T ∗ = {i ∈ T | v∗ − v(i) ≤ δ(i)}

Special cases rather complicated, but
asymptotic branching factor κ ∈ [1, M] of T ∗
remains good problem complexity measure

E.g. κ = 2, M = 3:
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Depth vs. budget n

To reach depth d in tree with branching factor κ,
we must expand O(κd) nodes,
which takes n = O(dκd) = Õ(κd) model calls

⇒ largest depth d∗ = Ω̃(
log n
log κ

)
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Final guarantee: Near-optimality vs. budget

Theorem
After spending n model calls, OPC suboptimality is:

v∗ − v(i∗) ≤ δ∗ ≤ δ(d∗) =

Õ(γ

r
2(τ−1) log n

τ2 log κ ), if κ > 1
Õ(γn1/4b), if κ = 1

Convergence faster when κ smaller
When κ = 1, convergence is exponential in power n1/4

When κ > 1, we pay for generality: exponential
computation κd to reach depth d
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Idea

Avoid using Lipschitz constants (i.e. diameters) altogether
⇒ Split a potentially optimistic box at each depth:

i†d = arg max
i at d

v(i); proxy for unknown b(i) = v(i) + δ(i)

Depth cutoff at dmax(n) to avoid indefinite expansion
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SOPC algorithm

initialize tree with root box
while n not exhausted do

for d = first unexpanded to dmax(n) do
potentially optimistic leaf i†d = arg maxi∈Ld

v(i)
max-impact dimension k†d = arg maxk γkwi†d ,k

split i†d along k†d
end for

end while
return best sequence seen i∗ = arg maxi v(i)
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Depth vs. budget n

SOPC may expand outside T ∗ but not too much
After spending n it reaches d∗ where:

n = O(d2
max(n)

∑d∗
k=1 κk )

(or dmax(n) if it is smaller)
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Performance guarantee

Theorem
For budget n, SOPC suboptimality is:

v∗−v(i∗) =

Õ(γ

r
2(1−2ε)(τ−1) log n

τ2 log κ ), if κ > 1 and dmax(n) = nε

Õ(γn1/6b), if κ = 1 and dmax(n) = n1/3

When κ > 1, with small ε nearly same bound as OPC
When κ = 1, n1/6 instead of n1/4 – slower but similar
All this while adapting to unknown smoothness
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Recall: Quanser pendulum

System:
x = rod angle α, base angle θ,
angular velocities
Input ω = voltage
Sampling time Ts = 0.05

Goal: swing up & stabilize pointing up:
ρ = −α2−θ2− .005(α̇2 + θ̇2)− .05u2,
normalized to [0, 1]

Discount factor γ = 0.85
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Controlled trajectory

n = 5000 model calls; note adaptive discretization
of control magnitude, and no access to stabilizing mode



Continuous algo: OPC OPC analysis Simultaneous OPC Application Final remarks

Real-time control

Uses parallelized real-time framework similar to OPD
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Other optimistic planners

Search open-loop sequences in stochastic MDPs:
OLOP (Bubeck & Munos, 2010)

Learn the MDP model while searching:
BOP (Fonteneau et al., 2013)

Sample-based continuous-action planning
(Mansley et al., 2010)

etc.
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Related fields

Monte Carlo tree search
Selects leaf to expand according to bandit UCBs;
prototypical algorithm UCT
Estimates leaf values by running long random simulations

(Browne et al., 2012)

Planning and scheduling
Different formalism but algorithms
often applicable to MDPs

Nonlinear model-predictive control
Focus on stability and exploiting dynamics knowledge

(Grune & Pannek, 2016)
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Nonlinear control applications

Switched systems = natural discrete-action MDPs
(Automatica 2017)

Nonlinear networked control via sequences
(TAC 2016)

Cooperative control in multiagent systems
(CTT 2015)
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Conclusion

Optimistic planning

Online model-based, good convergence guarantees

Works for complex dynamics & states, but simple actions

Thank you!



Continuous algo: OPC OPC analysis Simultaneous OPC Application Final remarks

References for Part III

Bubeck, Munos, Open Loop Optimistic Planning, COLT 2010.

Mansley et al., Sampled-Based Planning for Continuous-Action MDPs,
ICAPS 2011.

Fonteneau et al., Optimistic Planning for Belief-Augmented MDPs,
ADPRL 2013.

Browne et al., A Survey of Monte-Carlo Tree Search Methods, IEEE
Trans on Computational Intelligence and AI in Games 2012.

Grune, Pannek, Nonlinear Model-Predictive Control, 2016.

Busoniu, Morarescu, Topology Preserving Flocking of Nonlinear Agents
using Optimistic Planning, Control Theory & Technology 2015.

Busoniu, Pall, Munos, Discounted Near-Optimal Control of General
Continuous-Action Nonlinear Systems [...], ACC 2016.

Busoniu, Postoyan, Daafouz, Near-Optimal Strategies for Nonlinear and
Uncertain Networked Control Systems, IEEE TAC 2016.

Busoniu, Daafouz, Bragagnolo, Morarescu, Planning [...] in Nonlinear
Systems with Controlled or Uncontrolled Switches, Automatica 2017.


	Idea & background
	Introduction

	Optimistic planning for deterministic systems
	OPD Algorithm

	Analysis
	Analysis

	Example and real-time application
	Application

	Relation to value-function methods
	Relation to VI

	Stochastic case: Optimistic planning for MDPs
	Stochastic: OP-MDP

	OP-MDP analysis
	OP-MDP analysis

	OP-MDP applications
	OP-MDP applications

	Adversarial case: Optimistic minimax search
	Adversarial: OMS

	OMS analysis
	OMS analysis

	OMS applications
	OMS applications

	Optimistic planning with continuous actions
	OPC
	Setting and algorithm

	OPC analysis
	OPC analysis

	Simultaneous OPC
	SOPC
	Algorithm and guarantee

	Application
	Application

	Final remarks
	Final remarks


