Reinforcement Learning for Robot Control

Lucian Busoniu
DCSC, TUDelft

SC4240TU Lecture 7
1 March 2011

%
TUDelft

RL for a robot goalkeeper

Learn how to catch ball, using video camera image

%
TUDelft

Learn to perform aerobatics from expert demonstrations

5
TUDelft

Outline

o Reinforcement learning
9 Classical algorithms

Q Need for approximation
@ Approximate Q-learning

Q Actor-critic

%
TUDelft

Reinforcement learning
[Jelele}

Why learning?

Learning can find solutions that:
@ cannot be found in advance

— environment or robot too complex
— problem not fully known beforehand

© steadily improve
© adapt to time-varying environments

Essential for any intelligent robot |

%
TUDelft

Reinforcement learning
0000

Principle of RL

Reward function

RL Algorithm

@ Interact with a system through states and actions
@ Receive rewards as performance feedback
@ Inspired by human and animal learning

%
TUDelft

Reinforcement learning
0000

RL for robot control

Reward function

reward

Environment

RL Controller

action

@ Algorithm = controller
@ System = robot + environment
@ Adaptive, model-free, optimal control

%
TUDelft

Reinforcement learning
ocooe

Part |: Classical RL
Discrete states and actions

%
TUDelft

Reinforcement learning
©0000

A simple cleaning robot example

o Ol

power cleaning
pack robot oo

@ Cleaning robot in a 1-D world
@ Either pick up trash (reward +5) or power pack (reward +1)
@ After picking up item, trial terminates

%
TUDelft

Reinforcement learning
0®000

Cleaning robot: State, action, transition, & reward

action u

o O+

state x

@ Robot in given state x (cell)
@ and takes action u (e.g., move right)
reward
¢
-)
T
next state x’

@ Robot reaches next state x’

@ and receives reward r = quality of transition
(here, +5 for collecting trash) FUDelft

Reinforcement learning
00®00

Cleaning robot: State & action space

x=0 1 2 3 4 5

@ State space X ={0,1,2,3,4,5}
@ Action space U = {—1,1} = {left, right}

%
TUDelft

Cleaning robot: Transition & reward functions
1

0 0
v oov
—_ — > — >
— e __"O
@ Transition function (process behavior):

X' =f(x,u) = {

X if x is terminal (0 or 5)
X + u otherwise

@ Reward function (immediate performance):
1 if x=1and u= —1 (powerpack)
r=px,u)=<¢5 ifx=4andu=1 (trash)
0 otherwise

@ Note: terminal states cannot be left P
& do not accumulate rewards! TU Delft

Reinforcement learning
0000e

Markov decision process

@ State space X

@ Action space U

© Transition function x’ = f(x, u)
@ Reward function r = p(x, u)

... form a Markov decision process

Note: stochastic formulation possible

%
TUDelft

Reinforcement learning
©00000

Policy

@ Policy h: mapping from x to u (state feedback)
@ Determines controller behavior

Example h(O) termmal state, action is |rreIevant)
h(1) = -1, h(2) =1, h(3) =1, h(4) =1, h(5) =

%
TUDelft

Reinforcement learning
0®0000

Cleaning robot: Return

Assume h always goes right

R'(2) =°rn + 7'+ 4% +%0 + 70 + ..
:72-5

Because x3 is terminal, all remaining rewards are 0

%
TUDelft

Reinforcement learning
00®000

Learning goal

Find h that maximizesogliscounted rg(t)urn:

R(x0) = Y ¥ et = X v*p(xk, h(xk))
k=0 k=0
from any xg

Discount factor v € [0, 1):
@ induces a “pseudo-horizon” for optimization
@ bounds infinite sum
@ encodes increasing uncertainty about the future

%
TUDelft

Reinforcement learning
000800

Q-function

@ Q-function of policy h:
Q" (o, Uo) = p(Xo, Uo) + YR"(x1)

(return after taking ug in xg and then following h)

@ Why Q-function? Useful to choose actions

%
TUDelft

Reinforcement learning
000000

Optimal solution

@ Optimal Q-function:
Q" =max Q"
= Greedy policy in Q*:

h*(x) = argmax Q*(x, u)
u

is optimal (achieves maximal returns)

Bellman optimality equation
Q*(x,u) = p(x,u) +~ymax Q*(f(x,u), V)
ul

%
TUDelft

Reinforcement learning
00000®

Cleaning robot: Optimal solution

Discount factor v = 0.5

: — ||| 8

Qix, left)
4L ———0Q(x, right)

%
TUDelft

Classical algorithms

9 Classical algorithms

%
TUDelft

Classical algorithms

Classical algorithms presented

@ Q-iteration
Model-based: f, p known

@ Q-learning
Model-free & online: f, p unknown,
learn by interacting online with the system

%
TUDelft

Classical algorithms
®0

Q-iteration

@ Turn Bellman optimality equation:
Q*(x, u) = p(x, u) +ymax Q*(f(x, u), u')
u/
into an iterative update:

Q-iteration
repeat at each iteration ¢
for all x,u do
QZ-H (X7 U) — p(X, U) + 7y maXy Q@(f(X, U): Ul)
end for
until convergence to Q*

@ Q.1 closer to Q" than Qy; convergence to Q* guaranteed

@ Once Q* available: h*(x) = argmax, Q*(x, u) P
TUDelft

Classical algorithms
oe

Cleaning robot: Q-iteration demo

Discount factor: v = 0.5

Q-iteration, ell=4

: —|—|—|— 8

——rer
oLt ngny

%
TUDelft

Classical algorithms
[Jelelele}

Q-learning

@ Take Q-iteration update:
QZ-H (Xa U) — p(X7 U) + 7y maxy Q@(f(X7 U)7 Ul)

@ Instead of model, use transition sample
(Xk, Uk, Xk+1, I'k+1) at each step k:
Q(Xk, Uk) < ki1 +ymaxy Q(Xyiq,U)
Note: X1 = f(Xk, Uk), Ik+1 = p(Xk, Uk)

© Make update incremental:
Q(X, Uk) QX Ux) + v

[Fic1 + v max QX1 u') = Q(xk, uk)]

temporal difference

ak € (0, 1] learning rate

%
TUDelft

Classical algorithms Approximation
000@0000 000

Q-learning algorithm

Q-learning
initialize xg
for each step k do
take action vy
measure X, 1, receive ri 1
Q(Xk, k) — Q(X, Uk) + v

[Fk1 + max Q(Xk+1, U") — Q(xx, uk)]
end for

@ Learns by online interaction

e
TUDelft

Classical algorithms
[e]e] lele}

Exploration-exploitation tradeoff

@ Essential condition for convergence to Q*:
all (x, u) pairs must be visited infinitely often
= Exploration necessary:
sometimes, choose actions randomly
@ Exploitation of current knowledge is also necessary:

sometimes, choose actions greedily:
ux = argmax, Q(x, u)

Exploration-exploitation tradeoff crucial
for performance of online RL

%
TUDelft

Classical algorithms
[e]e]e] o}

Exploration-exploitation: e-greedy strategy

@ Simple solution: e-greedy

~Jargmax, Q(xk, u) with probability (1 — &)
| arandom action with probability

@ Exploration probability £, € (0,1)
is usually decreased over time

%
TUDelft

Classical algorithms
[e]e]e]e] }

Cleaning robot: Q-learning demo

Parameters: o = 0.2, ¢ = 0.3 (constant)
Xo = 2 or 3 (randomly)

Q-learning, trial 8, step 3

— O, left) ‘
25| sseeesens Qpx, right)

%
TUDelft

Classical algorithms
°

Summary

Summary

@ Reinforcement learning =
adaptive, model-free, optimal control

@ Part I: small, discrete X and U — tabular representation:
separate Q-value for each x and u

@ But in real-life robot control, X, U continuous
= cannot store Q-function!

@ How to solve? Part Il

e
TUDelft

Approximation

Part Il: Approximate RL

Continuous states and actions

%
TUDelft

Approximation

Recall: Reinforcement learning

Reward function p
RL Controller

@ Interact with a system through states and actions

reward r

@ Receive rewards as performance feedback

%
TUDelft

Approximation
000

Need for approximation

@ Classical RL — tabular representation

@ But in real-life control, x, u continuous!

: o

5 J

@ Tabular representation impossible

e
TUDelft

Approximation
0®0

Need for approximation (cont'd)

In real-life (robot) control,
must use approximation

Note: Approximation required
even if not using Q-functions

%
TUDelft

Approximation
ooe

Approximate algorithms presented

@ Approximate Q-learning
Representative for algorithms that use greedy policies

© Actor-critic
Representative for policy-gradient algorithms

Both algorithms work online

%
TUDelft

Approx. Q-learning

0 Approximate Q-learning

%
TUDelft

Approx. Q-learning
€0000

Greedy-policy algorithms

@ Policy not explicitly represented
@ Instead, greedy actions computed on demand from Q:

h(x) = argmax @(X, u)
u

@ Approximator must ensure efficient arg max solution

%
TUDelft

Approx. Q-learning
0@000

Action discretization

@ Approximator must ensure efficient “arg max” solution
= Typically: action discretization

@ Choose M discrete actions uq,...,uy € U
Solve “arg max” by explicit enumeration

@ Example: grid discretization

action space

%
TUDelft

State space

@ Typically: basis functions

¢17""¢N:X—>[07OO)

@ Examples: fuzzy approximation, RBF approximation

()

el
TUDelft

Approx. Q-learning
00000

Linear Q-function parametrization

Given:
@ N basis functions ¢1, ..., ¢n
@ M discrete actions uy, ..., uy
Store:

© N - M parameters 6
(one for each pair basis function—discrete action)

%
TUDelft

Approx. Q-learning
0000®

Linear Q-function parametrization (cont’d)

Approximate Q-function:

xu] Zgb,)i

%
TUDelft

Approx. Q-learning
©0000

Approximate Q-learning

Recall classical Q-learning:

In approximate Q-learning:
@ update parameters
@ use approximate Q-values
@ update along gradient of Q R
0Q(Xk, ux; 0)

0 — O+ | rcy1 + max @(xk+1 LU 0) — @(xk, Uk; 0) 50
u/

%
TUDelft

Approx. Q-learning
0®000

Approximate Q-learning algorithm

Approximate Q-learning
initialize xg, 0
for each step k do
take action ug
measure X1, receive rj 1

0 — 0+ ag- ~
(M1 + maxy Q(xiy1, U5 6) — Q(Xk, Ug; 6)] 290k Ul)
end for

e
TUDelft

Approx. Q-learning
00®00

Demo: Q-learning for walking robot (Erik Schuitema)

5
TUDelft

Approx. Q-learning
00080

Experience replay

@ Reuse data (experience) to accelerate learning

@ Store each transition sample (xk, Uk, Xk+1, fk+1)
into a database

 Xun
o
"

@ At every step, replay n transitions from the database
(in addition to regular updates)

%
TUDelft

Approx. Q-learning
0000e

Demo: ER RL for goalkeeper robot (Sander Adam)

Real-life RL control with experience replay

RBF approximation:

%
TUDelft

e Actor-critic

%
TUDelft

Actor-critic
@®0000000000

Policy gradient algorithms

@ Policy explicitly represented: E(x; V)
@ Parameters ¢ updated using gradient methods

Advantages in robotics:
@ Continuous actions easy to use
@ Representation can incorporate prior knowledge

%
TUDelft

Actor-critic
0000000000

Actor-critic scheme

N
\

action

/
.~ RL controller

’
N

@ Actor: policy E(x; 9)
@ Critic: value function V(x; 6)
Greedy actions not needed, so action factored out:
V(x) = Q"(x, h(x))

%
TUDelft

Actor-critic
[e]e] lelelelelelele]e)

Critic update

Gradient on the temporal difference:

0 — 0+ Oécrmc[rk+1 + V(Xk+1 ; 9) _ V(Xk; 0)]()\/(());’(’9)
()V(Xk 9)

— 9 crch
+« 7()9

Recall approximate Q-learning:

%
TUDelft

Actor-critic
[ee]e] lelelelelele]e)

Exploration

@ Being online RL, actor-critic must explore

@ Example: Gaussian exploration

U = h(xg;9) + U

where exploration v’ zero-mean Gaussian

Prob(u)

%
TUDelft

Actor-critic
[ee]ele] Telelelele]e)

Actor update

Actor update:
Oh(xx; V)

9 — 9+ 2 Uk — h(xk; 9)]Ax 50

o If Ax > 0, thatis les1 + V(Xk+1 ; 0) > V(Xk; 9),
performance better than predicted
= adjust toward exploratory uy

@ If Ax < 0, performance worse than predicted
= adjust away from uy

%
TUDelft

Approximatior g Actor-critic

[e]e]e]e]e] leleleleloNele)

Actor-critic algorithm

Actor-critic
initialize xg, 6, ¥
for each step k do
Uk < h(xx;)+ exploration
measure xk+1kreceive Tk1_
DAy — Iks1 + V(Xk+1 9) V(Xk; 9)

OV (xk:6)
9 - 9 e acrltch 80k

9 — 0 + Al uy — R(xe; 0)] A 2080
end for

@ Note different learning rates for actor & critic

e
TUDelft

Actor-critic
00000080000

Demo: Actor-critic for the inverted pendulum

— Both actor and critic:
fuzzy approximation

, ~ u (force)
® O
-
X dousdt o

5
TUDelft

Actor-critic
[e]e]ele]elele] lelele)

Control scheme

Reference p{ Position T
controller: p Angle | inverted
PID controller: P cendulum

§]

@ Outer, position loop: classical PID
@ Inner, angle loop: actor-critic

%
TUDelft

Actor-critic
00000000800

Results

Critic surface Actor surface

-0 2 “

doe/dt da/dt

%
TUDelft

Actor-critic
00000000080

Results (cont'd)

Trajectory while learning

E T
: w
:_g 0- - ..u——.—.,_l.‘—(.;'u.\.'
& |
5-5 ; q ; = ; ~ | i
0 10 20 30 40 5 6 70 8 %0 100
2 ‘ i ‘ timg[s]
e | Il | |
g Oy iy Wi M\ | A I e i =2
CELIT LA
20 10 m 0 40 5 & W0 80 w0 10
10 ;] time [s])
3 i l‘ ‘ I
E‘ 0 ‘1']"‘:1’&"‘fl‘l\‘1\'-""' ‘J.‘;h WLh '“.' 5
£ I "’1”"“ - ‘ ‘ '
8 . | | .
Mo = % 4 s e 7 8 0 10

%
TUDelft

Actor-critic
0000000000 e

Actor-critic enhancements

@ Natural policy gradient to speed up learning
@ Compatible BFs for the critic to guarantee convergence

@ Learn model of system to:

e generate new data
e improve gradient updates

%
TUDelft

Conclusion
[le]

Learn system model & trajectory from expert demonstrations
Specialized RL algorithm to track trajectory

5
TUDelft

Conclusion
oe

Conclusion

Reinforcement learning =
Enabling intelligent robots to
learn from experience

%
TUDelft

	Reinforcement learning
	Classical algorithms
	Need for approximation
	Approximate Q-learning
	Actor-critic
	Conclusion

