
Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Reinforcement Learning for Robot Control

Lucian Buşoniu
DCSC, TUDelft

SC4240TU Lecture 7
1 March 2011



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

RL for a robot goalkeeper

Learn how to catch ball, using video camera image



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

RL for helicopter control (Stanford)

Learn to perform aerobatics from expert demonstrations



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Outline

1 Reinforcement learning

2 Classical algorithms

3 Need for approximation

4 Approximate Q-learning

5 Actor-critic



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Why learning?

Learning can find solutions that:
1 cannot be found in advance

– environment or robot too complex
– problem not fully known beforehand

2 steadily improve
3 adapt to time-varying environments

Essential for any intelligent robot



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Principle of RL

Interact with a system through states and actions
Receive rewards as performance feedback
Inspired by human and animal learning



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

RL for robot control

Algorithm = controller
System = robot + environment
Adaptive, model-free, optimal control



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Part I: Classical RL
Discrete states and actions



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

A simple cleaning robot example

Cleaning robot in a 1-D world
Either pick up trash (reward +5) or power pack (reward +1)
After picking up item, trial terminates



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Cleaning robot: State, action, transition, & reward

Robot in given state x (cell)
and takes action u (e.g., move right)

Robot reaches next state x ′

and receives reward r = quality of transition
(here, +5 for collecting trash)



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Cleaning robot: State & action space

State space X = {0, 1, 2, 3, 4, 5}
Action space U = {−1, 1} = {left, right}



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Cleaning robot: Transition & reward functions

Transition function (process behavior):

x ′ = f (x , u) =

{
x if x is terminal (0 or 5)
x + u otherwise

Reward function (immediate performance):

r = ρ(x , u) =


1 if x = 1 and u = −1 (powerpack)
5 if x = 4 and u = 1 (trash)
0 otherwise

Note: terminal states cannot be left
& do not accumulate rewards!



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Markov decision process

1 State space X
2 Action space U
3 Transition function x ′ = f (x , u)

4 Reward function r = ρ(x , u)

... form a Markov decision process

Note: stochastic formulation possible



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Policy

Policy h: mapping from x to u (state feedback)
Determines controller behavior

Example: h(0) = ∗ (terminal state, action is irrelevant),
h(1) = −1, h(2) = 1, h(3) = 1, h(4) = 1, h(5) = ∗



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Cleaning robot: Return

Assume h always goes right

Rh(2) = γ0r1 + γ1r2 + γ2r3 + γ30 + γ40 + . . .

= γ2 · 5

Because x3 is terminal, all remaining rewards are 0



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Learning goal

Find h that maximizes discounted return:
Rh(x0) =

∞∑
k=0

γk rk+1 =
∞∑

k=0
γkρ(xk , h(xk ))

from any x0

Discount factor γ ∈ [0, 1):
induces a “pseudo-horizon” for optimization
bounds infinite sum
encodes increasing uncertainty about the future



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Q-function

Q-function of policy h:

Qh(x0, u0) = ρ(x0, u0) + γRh(x1)

(return after taking u0 in x0 and then following h)

Why Q-function? Useful to choose actions



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Optimal solution

Optimal Q-function:

Q∗ = max
h

Qh

⇒ Greedy policy in Q∗:

h∗(x) = arg max
u

Q∗(x , u)

is optimal (achieves maximal returns)

Bellman optimality equation

Q∗(x , u) = ρ(x , u) + γ max
u′

Q∗(f (x , u), u′)



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Cleaning robot: Optimal solution

Discount factor γ = 0.5



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

1 Reinforcement learning

2 Classical algorithms

3 Need for approximation

4 Approximate Q-learning

5 Actor-critic



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Classical algorithms presented

1 Q-iteration
Model-based: f , ρ known

2 Q-learning
Model-free & online: f , ρ unknown,
learn by interacting online with the system



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Q-iteration

Turn Bellman optimality equation:

Q∗(x , u) = ρ(x , u) + γ max
u′

Q∗(f (x , u), u′)

into an iterative update:

Q-iteration
repeat at each iteration `

for all x , u do
Q`+1(x , u)← ρ(x , u) + γ maxu′ Q`(f (x , u), u′)

end for
until convergence to Q∗

Q`+1 closer to Q∗ than Q`; convergence to Q∗ guaranteed
Once Q∗ available: h∗(x) = arg maxu Q∗(x , u)



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Cleaning robot: Q-iteration demo

Discount factor: γ = 0.5



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Q-learning

1 Take Q-iteration update:
Q`+1(x , u)← ρ(x , u) + γ maxu′ Q`(f (x , u), u′)

2 Instead of model, use transition sample
(xk , uk , xk+1, rk+1) at each step k :

Q(xk , uk )← rk+1 + γ maxu′ Q(xk+1, u′)
Note: xk+1 = f (xk , uk ), rk+1 = ρ(xk , uk )

3 Make update incremental:
Q(xk , uk )←Q(xk , uk ) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )]︸ ︷︷ ︸
temporal difference

αk ∈ (0, 1] learning rate



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Q-learning algorithm

Q-learning
initialize x0
for each step k do

take action uk
measure xk+1, receive rk+1
Q(xk , uk )← Q(xk , uk ) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )]

end for

Learns by online interaction



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Exploration-exploitation tradeoff

Essential condition for convergence to Q∗:
all (x , u) pairs must be visited infinitely often

⇒ Exploration necessary:
sometimes, choose actions randomly
Exploitation of current knowledge is also necessary:
sometimes, choose actions greedily:

uk = arg maxu Q(xk , u)

Exploration-exploitation tradeoff crucial
for performance of online RL



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Exploration-exploitation: ε-greedy strategy

Simple solution: ε-greedy

uk =

{
arg maxu Q(xk , u) with probability (1− εk )

a random action with probability εk

Exploration probability εk ∈ (0, 1)
is usually decreased over time



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Cleaning robot: Q-learning demo

Parameters: α = 0.2, ε = 0.3 (constant)
x0 = 2 or 3 (randomly)



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Summary

Summary
Reinforcement learning =
adaptive, model-free, optimal control
Part I: small, discrete X and U – tabular representation:
separate Q-value for each x and u

But in real-life robot control, X , U continuous
⇒ cannot store Q-function!

How to solve? Part II



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Part II: Approximate RL
Continuous states and actions



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Recall: Reinforcement learning

Interact with a system through states and actions
Receive rewards as performance feedback



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Need for approximation

Classical RL – tabular representation
But in real-life control, x , u continuous!

Tabular representation impossible



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Need for approximation (cont’d)

In real-life (robot) control,
must use approximation

Note: Approximation required
even if not using Q-functions



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Approximate algorithms presented

1 Approximate Q-learning
Representative for algorithms that use greedy policies

2 Actor-critic
Representative for policy-gradient algorithms

Both algorithms work online



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

1 Reinforcement learning

2 Classical algorithms

3 Need for approximation

4 Approximate Q-learning

5 Actor-critic



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Greedy-policy algorithms

Policy not explicitly represented
Instead, greedy actions computed on demand from Q̂:

h(x) = arg max
u

Q̂(x , u)

Approximator must ensure efficient arg max solution



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Action discretization

Approximator must ensure efficient “arg max” solution

⇒ Typically: action discretization

Choose M discrete actions u1, . . . , uM ∈ U
Solve “arg max” by explicit enumeration

Example: grid discretization



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

State space

Typically: basis functions

φ1, . . . , φN : X → [0,∞)

Examples: fuzzy approximation, RBF approximation



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Linear Q-function parametrization

Given:
1 N basis functions φ1, . . . , φN
2 M discrete actions u1, . . . , uM

Store:
3 N ·M parameters θ

(one for each pair basis function–discrete action)



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Linear Q-function parametrization (cont’d)

Approximate Q-function:

Q̂(x , uj ; θ) =
N∑

i=1

φi(x)θi,j = [φ1(x) . . . φN(x)]

θ1,j
...

θN,j





Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Approximate Q-learning

Recall classical Q-learning:

Q(xk , uk )← Q(xk , uk )+αk [rk+1 +γ max
u′

Q(xk+1, u′)−Q(xk , uk )]

In approximate Q-learning:
update parameters
use approximate Q-values
update along gradient of Q

θ ← θ+αk

[
rk+1 + max

u′
Q̂(xk+1, u′; θ)− Q̂(xk , uk ; θ)

]
∂Q̂(xk , uk ; θ)

∂θ



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Approximate Q-learning algorithm

Approximate Q-learning
initialize x0, θ
for each step k do

take action uk
measure xk+1, receive rk+1
θ ← θ + αk ·[

rk+1 + maxu′ Q̂(xk+1, u′; θ)− Q̂(xk , uk ; θ)
]∂ bQ(xk ,uk ;θ)

∂θ
end for



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Demo: Q-learning for walking robot (Erik Schuitema)



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Experience replay

Reuse data (experience) to accelerate learning
Store each transition sample (xk , uk , xk+1, rk+1)
into a database

At every step, replay n transitions from the database
(in addition to regular updates)



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Demo: ER RL for goalkeeper robot (Sander Adam)

Real-life RL control with experience replay

RBF approximation:



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

1 Reinforcement learning

2 Classical algorithms

3 Need for approximation

4 Approximate Q-learning

5 Actor-critic



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Policy gradient algorithms

Policy explicitly represented: ĥ(x ;ϑ)

Parameters ϑ updated using gradient methods

Advantages in robotics:
Continuous actions easy to use
Representation can incorporate prior knowledge



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Actor-critic scheme

Actor: policy ĥ(x ;ϑ)

Critic: value function V̂ (x ; θ)

Greedy actions not needed, so action factored out:

V h(x) = Qh(x , h(x))



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Critic update

Gradient on the temporal difference:

θ ← θ + αcritic
k [rk+1 + V̂ (xk+1; θ)− V̂ (xk ; θ)]

∂ V̂ (xk ; θ)

∂θ

= θ + αcritic
k ∆k

∂ V̂ (xk ; θ)

∂θ

Recall approximate Q-learning:

θ ← θ+αk ·
[
rk+1+max

u′
Q̂(xk+1, u′; θ)−Q̂(xk , uk ; θ)

]∂Q̂(xk , uk ; θ)

∂θ



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Exploration

Being online RL, actor-critic must explore

Example: Gaussian exploration

uk = ĥ(xk ;ϑ) + u′

where exploration u′ zero-mean Gaussian



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Actor update

Actor update:

ϑ← ϑ + αactor
k [uk − ĥ(xk ;ϑ)]∆k

∂ ĥ(xk ;ϑ)

∂ϑ

If ∆k > 0, that is rk+1 + V̂ (xk+1; θ) > V̂ (xk ; θ),
performance better than predicted
⇒ adjust toward exploratory uk

If ∆k < 0, performance worse than predicted
⇒ adjust away from uk



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Actor-critic algorithm

Actor-critic
initialize x0, θ, ϑ
for each step k do

uk ← ĥ(xk ;ϑ)+ exploration
measure xk+1, receive rk+1

∆k ← rk+1 + V̂ (xk+1; θ)− V̂ (xk ; θ)

θ ← θ + αcritic
k ∆k

∂ bV (xk ;θ)
∂θ

ϑ← ϑ + αactor
k [uk − ĥ(xk ;ϑ)]∆k

∂bh(xk ;ϑ)
∂ϑ

end for

Note different learning rates for actor & critic



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Demo: Actor-critic for the inverted pendulum

Both actor and critic:
fuzzy approximation



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Control scheme

Outer, position loop: classical PID
Inner, angle loop: actor-critic



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Results

Critic surface Actor surface



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Results (cont’d)

Trajectory while learning



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Actor-critic enhancements

Natural policy gradient to speed up learning

Compatible BFs for the critic to guarantee convergence

Learn model of system to:
generate new data
improve gradient updates



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Model learning for helicopter control (Stanford)

Learn system model & trajectory from expert demonstrations
Specialized RL algorithm to track trajectory



Reinforcement learning Classical algorithms Approximation Approx. Q-learning Actor-critic Conclusion

Conclusion

Reinforcement learning =
Enabling intelligent robots to

learn from experience


	Reinforcement learning
	Classical algorithms
	Need for approximation
	Approximate Q-learning
	Actor-critic
	Conclusion

