

Reinforcement learning

Master CPS, Year 2 Semester 1

Lucian Buşoniu, Florin Gogianu

Part VIII

Deep Reinforcement Learning

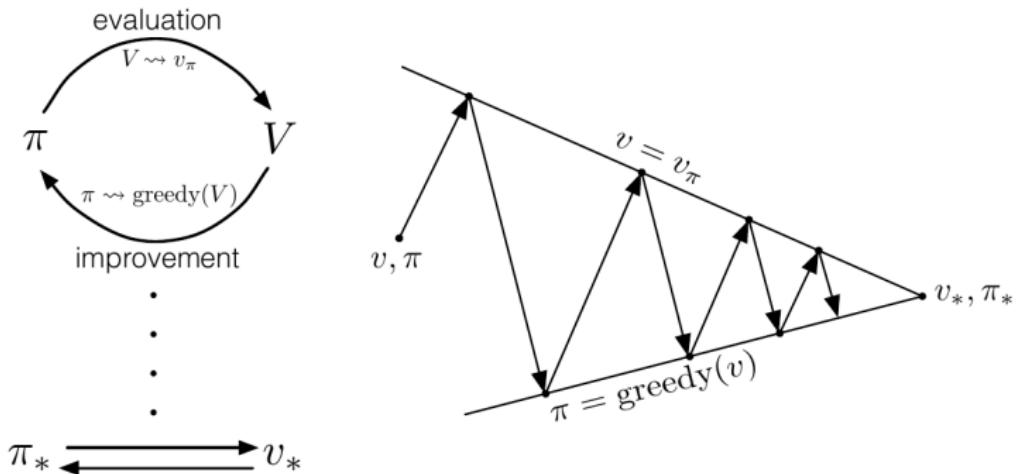
Recap

- The two fundamental problems of RL-based control:
 - Policy **evaluation**
 - Policy **improvement**

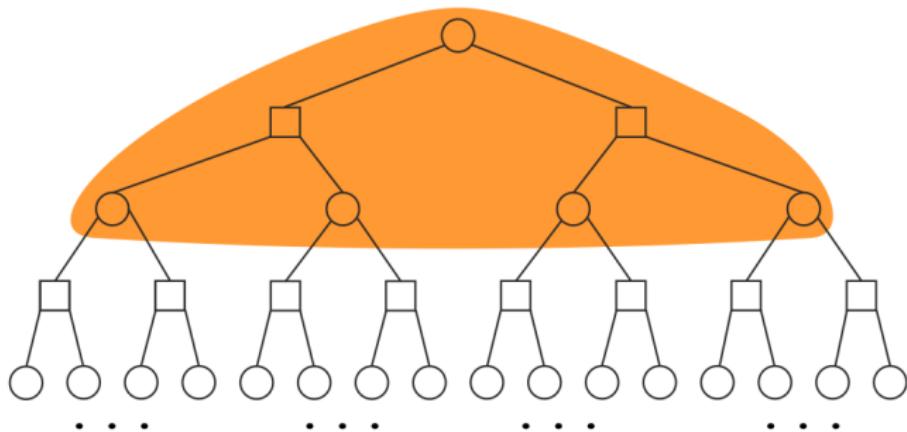
Generalized Policy Iteration

Generalized Policy Iteration demo

Generalized Policy Iteration



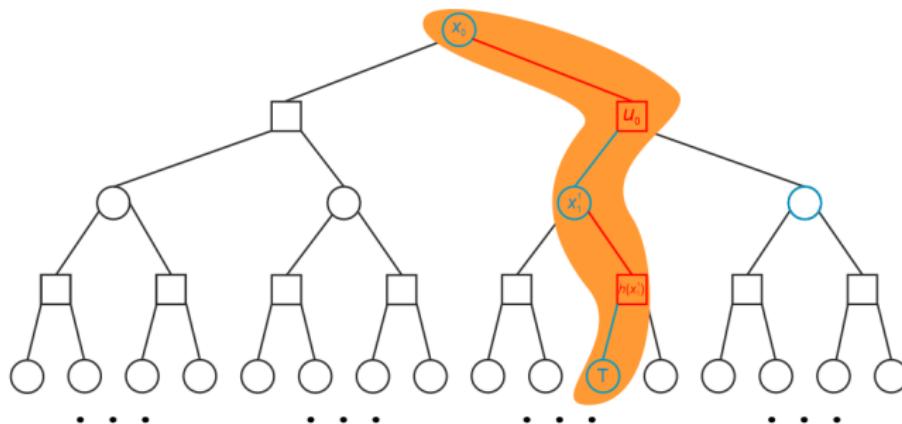
Dynamic Programming



$$V(x) \leftarrow \sum_u h(x, u) \sum_{x'} f(x, u, x') [r + \gamma V(x')]$$

Problem: we need access to $f(x, u, x')$.

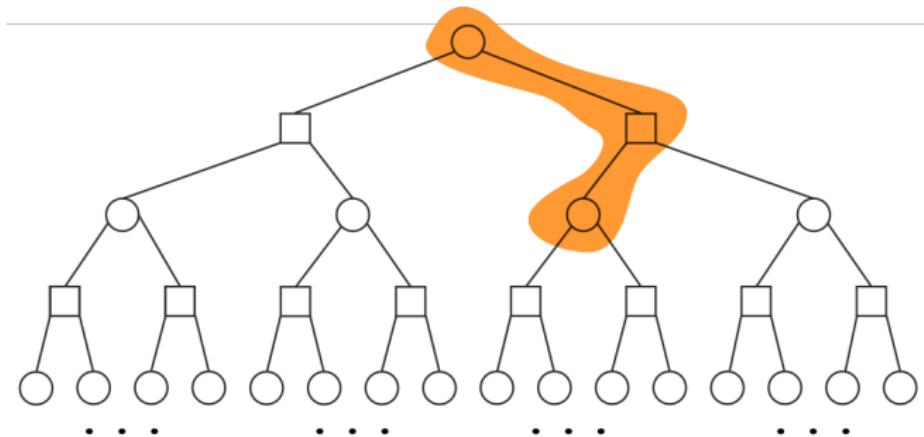
Monte Carlo Estimation



$$V(x) \leftarrow V(x) + \alpha [R - V(x)]$$

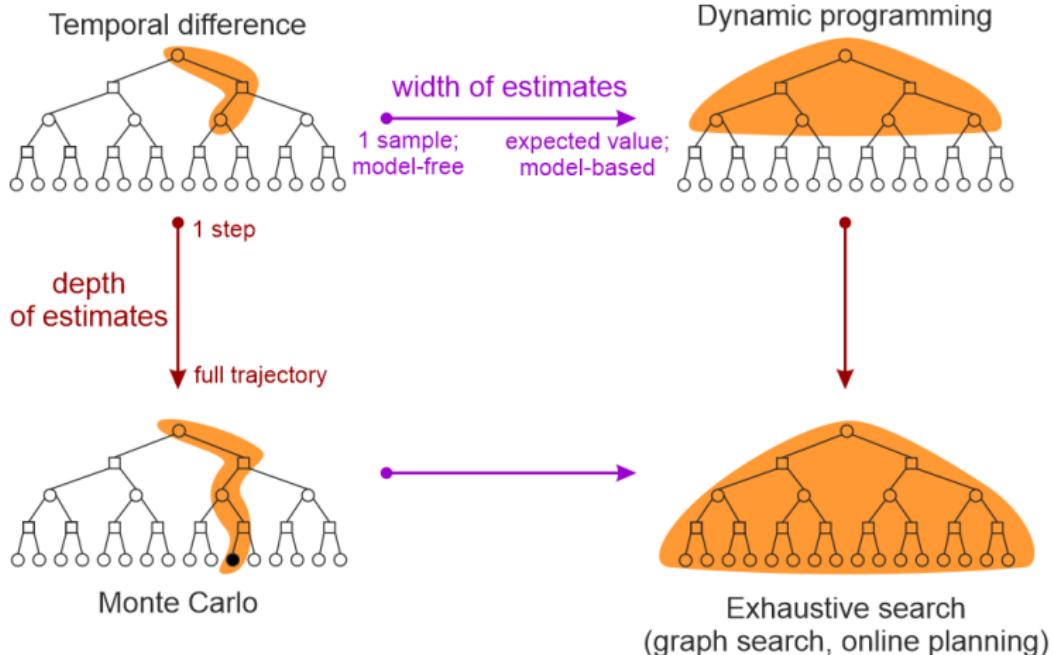
Problem: we need to wait until the end of the episode.

Temporal Differences



$$V(x) \leftarrow V(x) + \alpha [r + \gamma V(x') - V(x)]$$

Unified Perspective



Recap

- The two fundamental problems in RL-based control:
 - Policy evaluation
 - Policy improvement
- Evaluation (and control) with **function approximation**.

Learning with Approximation

We approximate $V^h(x) \approx \hat{V}^h(x; \theta)$ and minimize the objective:

$$\mathcal{L}(\theta) = \sum_{x \in \mathcal{X}} \mu(x) \left[V^h(x) - \hat{V}^h(x; \theta) \right]^2,$$

where $\mu(x)$ is the state distribution.

- converges to a **local** minimum in the general case,
- in the **linear** case, there is a single minimum point.

Learning with Approximation

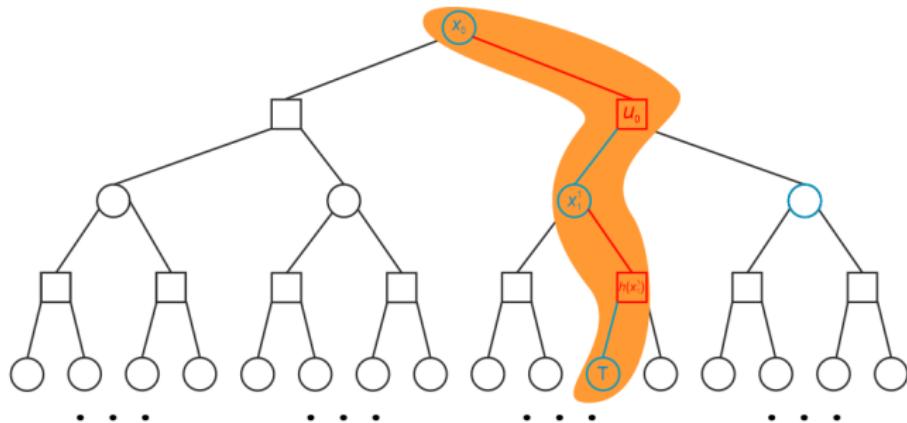
Iterative parameter update rule (gradient descent) for $\mathcal{L}(\theta)$:

$$\begin{aligned}\theta_{t+1} &= \theta_t - \frac{1}{2}\alpha \nabla \left[V^h(x) - \hat{V}^h(x; \theta) \right]^2 \\ &= \theta_t + \alpha \left[V^h(x) - \hat{V}^h(x; \theta) \right] \nabla \hat{V}^h(x, \theta)\end{aligned}$$

Converges with $\alpha \rightarrow 0$ under relatively strict conditions (e.g., linearity).

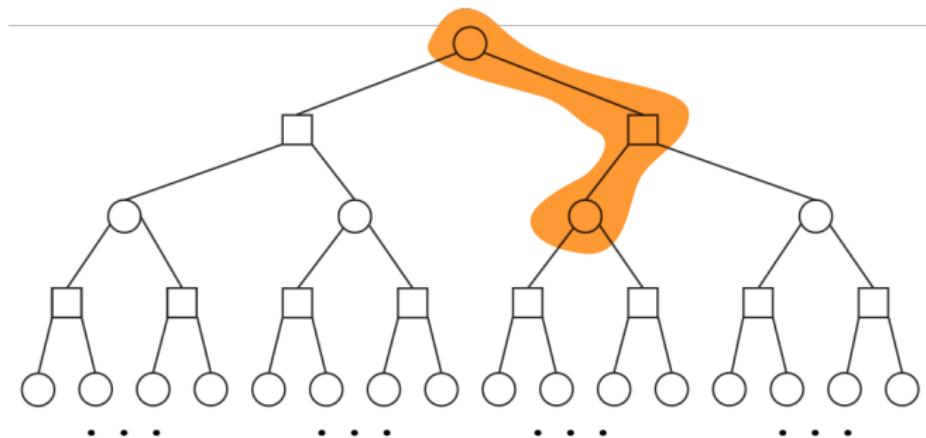
Problem: we do not know $V^h(x)$!

Approximation with MC Regression Targets



$$\theta_{t+1} = \theta_t + \alpha \left[R - \hat{V}^h(x; \theta) \right] \nabla \hat{V}^h(x, \theta)$$

Approximation with the Temporal Difference Objective



$$\theta_{t+1} = \theta_t + \alpha \left[r + \gamma \hat{V}^h(x'; \theta) - \hat{V}^h(x; \theta) \right] \nabla \hat{V}^h(x, \theta)$$

Problem: this is no longer the true gradient!

R++

oooooooooooo

NN Function Approximation

●○○

NFQ

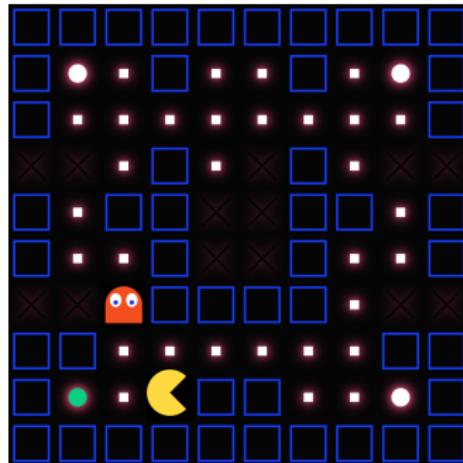
○○

DQN

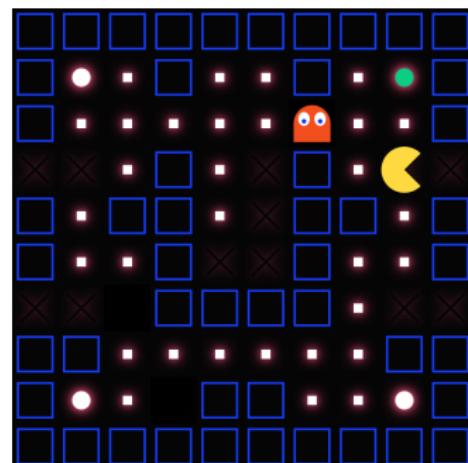
oooooooooooo

Why neural networks in reinforcement learning?

Motivation



We want $\hat{V}(x; \theta)$ trained on x ...

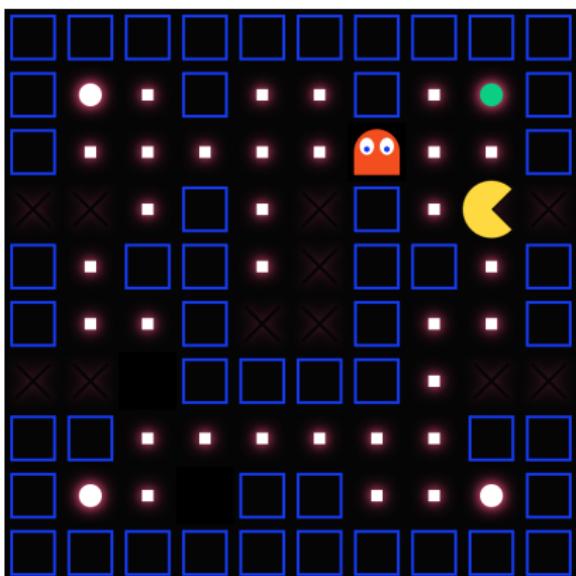


... to be similar for a new x .

Motivation

Even with access to the internal state of the game, we would need to extract various attributes:

- distances to the ghosts
- distance to the nearest power-up
- distance to the walls
- whether Pac-Man is in a bottleneck
- distance to the nearest dots
- dots already consumed



Attributes that are relevant only for a single *MDP*.

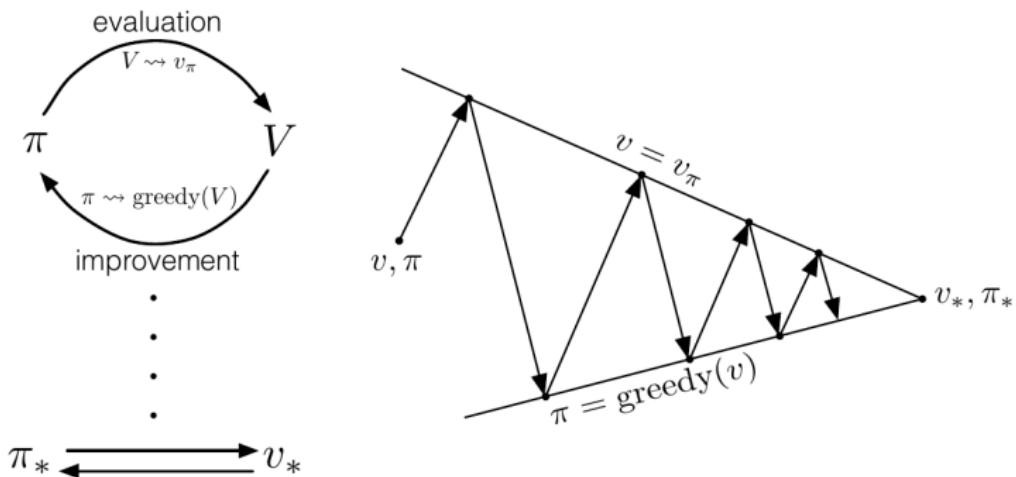
(Neural) Fitted Q-Learning

Strategy: approximate $Q(x, u)$ with a neural network $Q(x, u; \theta)$ and attempt to implement an algorithm that solves the policy evaluation problem.

- 1 initialize $Q(x, u; \theta)$ such that $Q(x, u; \theta) \approx 0, \forall \{x, u\}$.
- 2 collect a dataset $\mathcal{D} = \{(x, u, r, x'), \dots\}$
- 3 construct regression targets $Y_k^Q = r + \gamma \max_u Q(x', u'; \theta)$
- 4 minimize $\mathcal{L}(\theta) = [Q(x, u; \theta) - Y_k^Q]^2$ using minibatch gradient descent
- 5 repeat from (3)
- 6 repeat from (2)

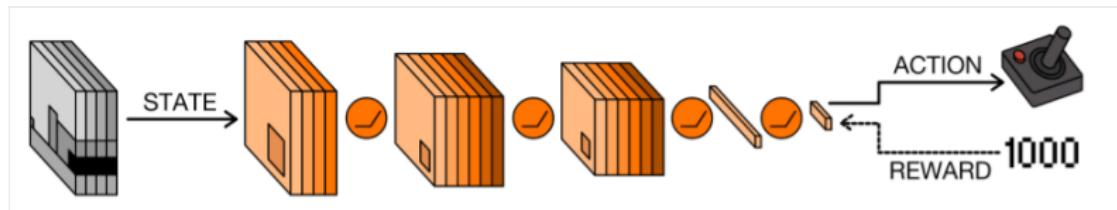
Problem: updating θ changes the targets in a correlated way; for expressive estimators like neural networks, this leads to error accumulation.

(Neural) Fitted Q-Learning



NFQ alternates infrequently between the two problems, and as a result, converges slowly.

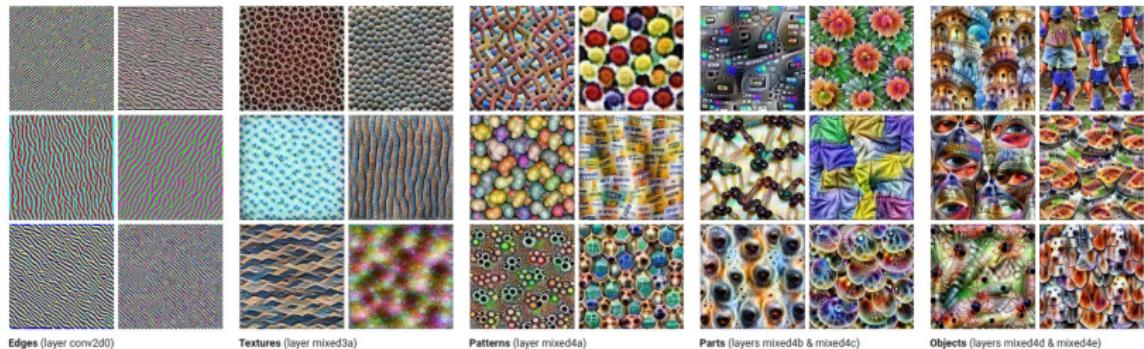
Neural Network Architecture



Deep Q-Networks architecture

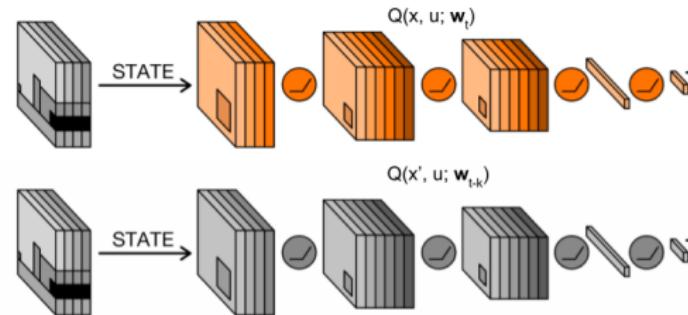
- receives the last 4 greyscaled game screens
- three hidden convolutional layers
- one hidden linear layer
- one linear output layer (sometimes with a shared bias for all actions)
- one output for every action
- RELU activations

Convolutional Networks



Hierarchical representations learned by a convolutional network from a natural image dataset.

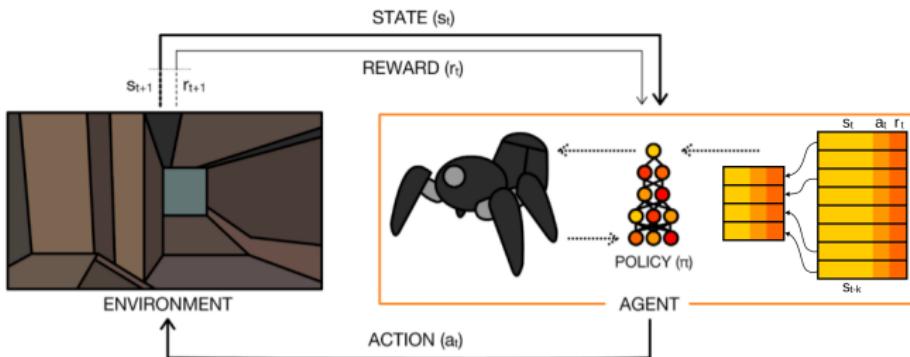
Deep Q-Networks. Fix #1: Target Network



DQN introduces an additional network for computing the regression target, which ‘tracks’ the online estimator.

The target network is not trained — its weights are copied from the online network every C steps.

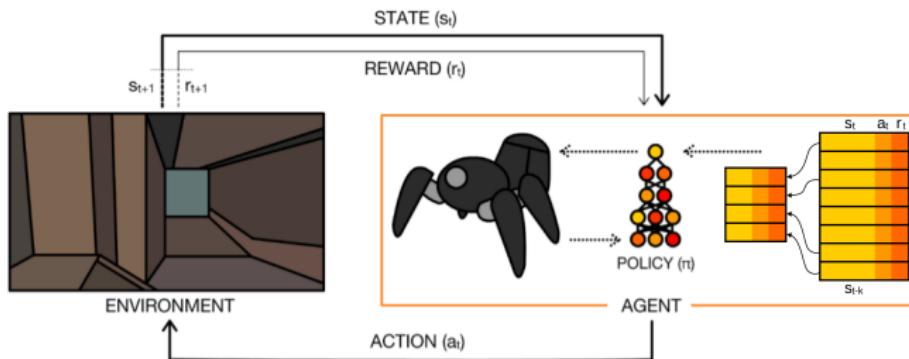
Deep Q-Networks. Fix #2: Experience Replay



DQN uses a cyclic buffer, which allows simultaneously:

- training estimators with mini-batch stochastic gradient descent (as in NFQI),
- and enabling rapid iteration of policy improvement.

Other Important Adjustments



- rewards are clipped to $[-1, 1]$,
- the optimizer used is RMSprop (more recently, Adam),
- the loss function is Huber/Smooth L1 (L2 near 0, L1 for large values),
- in some implementations, gradient norm clipping is used.

Algorithm

Deep Q-Networks

init replay buffer D with capacity N

init action-value function Q with random weights θ

init target action-value function \bar{Q} with weights $\bar{\theta} = p$

for each episode **do**

 receive initial state $x_0 \leftarrow \text{env}()$

for $t = 1, T$ **do**

$u_t \leftarrow \text{epsilon-greedy}(Q(x_t, u; \theta), \varepsilon)$

$r_t, x_{t+1} \leftarrow \text{env}(u_t)$

$D \leftarrow (x_t, u_t, r_t, x_{t+1})$

 sample batch of K transitions (x_j, u_j, r_j, x_{j+1}) from D

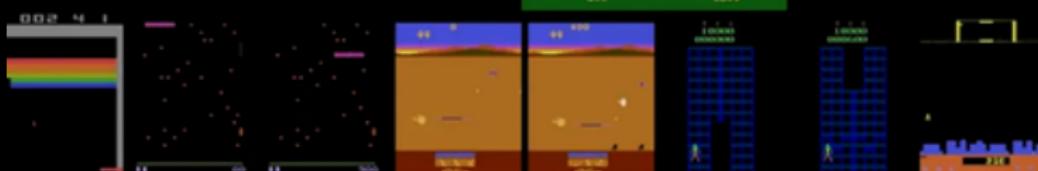
$y_j = \begin{cases} r_j & \text{if episode is terminal} \\ r_j + \gamma \max_u \bar{Q}(x_{t+1}, u; \bar{\theta}) & \text{otherwise} \end{cases}$

 Do gradient descent on $(y_j - Q(x_t, u_t; \theta))^2$ w.r.t weights θ

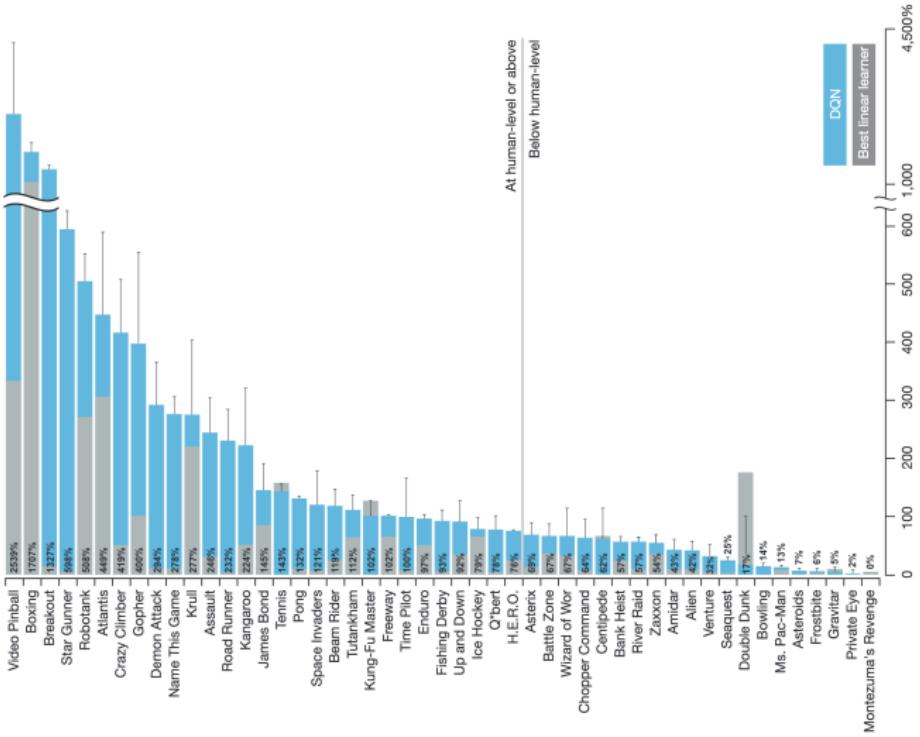
 Every C steps $\bar{\theta} = \theta$

end for

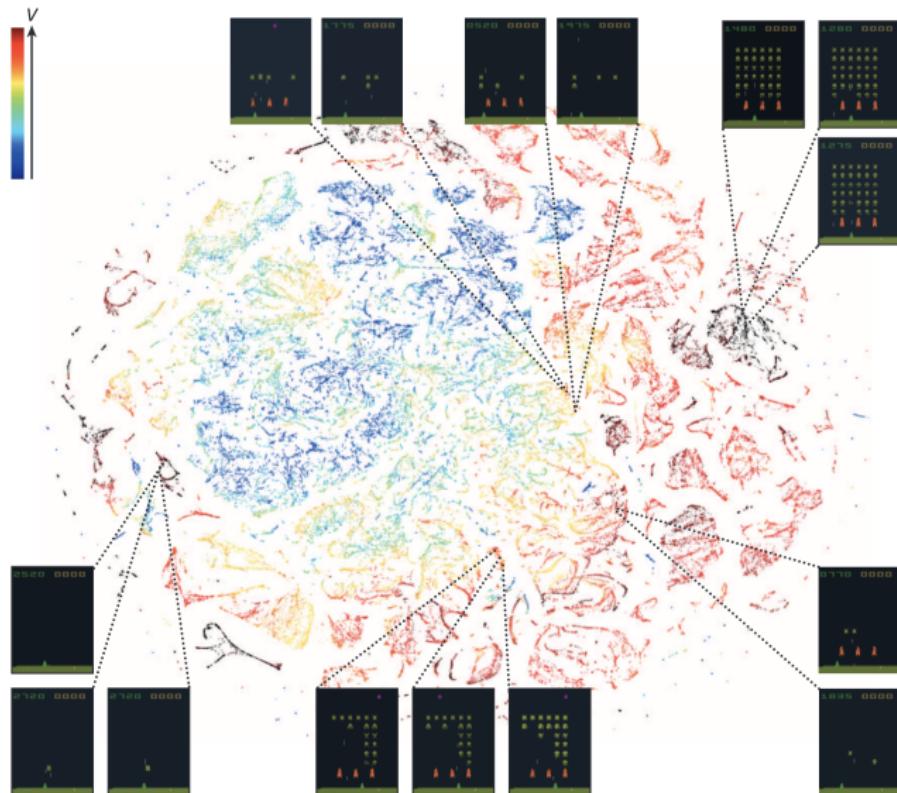
end for



Deep Q-Networks. Perf. Relative to a Human Player



Deep Q-Networks. Representation Learning



Beyond Deep Q-Networks

Several directions for improving DQN:

- improved objectives: Double-DQN, Dueling DQN, Munchausen-DQN, n-step TD
- distributions instead of point estimates: Categorical DQN, IQM
- improved sampling: Prioritized Experience Replay
- improved exploration: Random Network Distillation, Go-Explore, Bootstrapped DQN

Open Problems in Deep RL

- Exploration is an open problem (not only with function approximation)
- Scaling deep neural networks
- Transfer and continual learning