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Recap

The two fundamental problems of RL-based control:
Policy evaluation
Policy improvement
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Generalized Policy Iteration

Generalized Policy Iteration demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html


R++ NN Function Approximation NFQ DQN

Generalized Policy Iteration
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Dynamic Programming

V (x)←
∑

u

h(x , u)
∑
x ′

f
(
x , u, x ′) [

r + γV
(
x ′)]

Problem: we need access to f (x , u, x ′).
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Monte Carlo Estimation

V (x)← V (x) + α [R − V (x)]

Problem: we need to wait until the end of the episode.
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Temporal Differences

V (x)← V (x) + α
[
r + γV

(
x ′)− V (x)

]
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Unified Perspective
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Recap

The two fundamental problems in RL-based control:
Policy evaluation
Policy improvement

Evaluation (and control) with function approximation.
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Learning with Approximation

We approximate V h (x) ≈ V̂ h (x ; θ) and minimize the objective:

L (θ) =
∑
x∈X

µ(x)
[
V h (x)− V̂ h (x ; θ)

]2
,

where µ(x) is the state distribution.
converges to a local minimum in the general case,
in the linear case, there is a single minimum point.
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Learning with Approximation

Iterative parameter update rule (gradient descent) for L (θ):

θt+1 = θt −
1
2
α∇

[
V h (x)− V̂ h (x ; θ)

]2

= θt + α
[
V h (x)− V̂ h (x ; θ)

]
∇V̂ h (x , θ)

Converges with α→ 0 under relatively strict conditions (e.g.,
linearity).

Problem: we do not know V h (x)!
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Approximation with MC Regression Targets

θt+1 = θt + α
[
R − V̂ h (x ; θ)

]
∇V̂ h (x , θ)
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Approximation with the Temporal Difference Objective

θt+1 = θt + α
[
r + γV̂ h (x ′; θ

)
− V̂ h (x ; θ)

]
∇V̂ h (x , θ)

Problem: this is no longer the true gradient!
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Why neural networks in reinforcement learning?
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Motivation

We want V̂ (x ; θ) trained on x ... ... to be similar for a new x .
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Motivation

Even with access to the internal state of the game, we would
need to extract various attributes:

distances to the ghosts

distance to the nearest
power-up

distance to the walls

whether Pac-Man is in a
bottleneck

distance to the nearest
dots

dots already consumed

Attributes that are relevant only for a single MDP.
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(Neural) Fitted Q-Learning

Strategy: approximate Q (x , u) with a neural network Q (x , u; θ)
and attempt to implement an algorithm that solves the policy
evaluation problem.

1 initialize Q (x , u; θ) such that Q(x , u; θ) ≈ 0, ∀ {x , u}.
2 collect a dataset D = {(x , u, r , x ′) , ...}
3 construct regression targets Y Q

k = r + γmaxu Q(x ′, u′; θ)

4 minimize L (θ) =
[
Q (x , u; θ)− Y Q

k

]2
using minibatch

gradient descent
5 repeat from (3)
6 repeat from (2)

Problem: updating θ changes the targets in a correlated way;
for expressive estimators like neural networks, this leads to
error accumulation.
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(Neural) Fitted Q-Learning

NFQI alternates infrequently between the two problems, and
as a result, converges slowly.
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Neural Network Architecture

Deep Q-Networks architecture

receives the last 4 greyscaled game screens
three hidden convolutional layers
one hidden linear layer
one linear output layer (sometimes with a shared bias for
all actions)
one output for every action
RELU activations
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Convolutional Networks

Hierarchical representations learned by a convolutional network from
a natural image dataset.
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Deep Q-Networks. Fix #1: Target Network

DQN introduces an additional network for computing the
regression target, which ‘tracks’ the online estimator.

The target network is not trained — its weights are copied from
the online network every C steps.
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Deep Q-Networks. Fix #2: Experience Replay

DQN uses a cyclic buffer, which allows simultaneously:
training estimators with mini-batch stochastic gradient
descent (as in NFQI),
and enabling rapid iteration of policy improvement.
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Other Important Adjustments

rewards are clipped to [−1,1],
the optimizer used is RMSprop (more recently, Adam),
the loss function is Huber/Smooth L1 (L2 near 0, L1 for
large values),
in some implementations, gradient norm clipping is used.
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Algorithm

Deep Q-Networks
init replay buffer D with capacity N
init action-value function Q with random weights θ
init target action-value function Q̄ with weights θ̄ = p
for each episode do

receive initial state x0 ← env()
for t = 1,T do

ut ← epsilon-greedy (Q(xt , u; θ), ε)
rt , xt+1 ← env (ut)
D ← (xt , ut , rt , xt+1)
sample batch of K transitions

(
xj , uj , rj , xj+1

)
from D

yj =

{
rj if episode is terminal
rj + γmaxu Q̄

(
xt+1, u; θ̄

)
otherwise

Do gradient descent on
(
yj −Q (xt , ut ; θ)

)2 w.r.t weights θ

Every C steps θ̄ = θ
end for

end for
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Deep Q-Networks. Perf. Relative to a Human Player
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Deep Q-Networks. Representation Learning
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Beyond Deep Q-Networks

Several directions for improving DQN:
improved objectives: Double-DQN, Dueling DQN,
Munchausen-DQN, n-step TD
distributions instead of point estimates: Categorical DQN,
IQM
improved sampling: Prioritized Experience Replay
improved exploration: Random Network Distillation,
Go-Explore, Bootstrapped DQN
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Open Problems in Deep RL

Exploration is an open problem (not only with function
approximation)
Scalling deep neural networks
Transfer and continual learning
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