Reinforcement learning
Master CPS, Year 2 Semester 1

Lucian Busoniu, Florin Gogianu

Part V

Online approximate reinforcement learning

Recap: need for approximation

@ In real applications, x, u often continuous (or discrete with
very many values)

@ Tabular representation impossible

@ Approximate functions of interest
Q(x, u), V(x), h(x) w

Recap: Part 4 — Offline approximate DP and RL

Given either:

—amodel f, p

—data (xs, Us, rs, X5), S=1,...,n;
@ find an approximate solution CA?(X, u), E(x), etc.
© control the system using the solution found

Algorithms discussed:
@ Q-iteration with interpolation
@ Fitted Q-iteration

Part V in plan

@ Reinforcement learning problem

@ Optimal solution

@ Exact dynamic programming

@ Exact reinforcement learning

@ Approximation techniques

@ Approximate dynamic programming

@ Offline approximate reinforcement learning

@ Online approximate reinforcement learning

Algorithm landscape

By model usage:
@ Model-based: f, p known a priori
@ Model-free: f, p unknown (reinforcement learning)

By interaction level:
@ Offline: algorithm runs in advance
@ Online: algorithm runs with the system

Exact vs. approximate:
@ Exact: x, u small number of discrete values
@ Approximate: x, u continuous (or many discrete values)

RL principle

Jp— —_——
- ——

reward r
Controller h
(agent)

We are now truly following, online, the RL interaction scheme

action u

Many algorithms exist; we discuss just a few

Contents of part V

0 Approximate TD methods
@ Approximate SARSA
@ Approximate Q-learning
@ Maximization and discussion

Approxmate D methods

9000000«

Recall classical SARSA

SARSA with e-greedy
for each trajectory do

initialize xg
argmax, Q(xo,u) w.p. (1 —¢&p)
| unif. random W.p. €g

repeat at each step k
apply ukx, measure xx. 1, receive ri 1
argmax, Q(xx+1,u) W.p. (1 —eks1)
unif. random W.P. €41
Q(Xk, Uk) — O(Xk./ Uk) + Q-
[rk1 + 7 Q(Xkt1, Uks1) — Q(Xk, Uk)]
until trajectory finished
end for

U1 =

Approximate TD methods
0O@00000

Recall derivation of SARSA (on-policy) update

@ Update:
Q(xk, Uk) — Q(Xk, Uk) + ak[rks1 + v Q(Xks1, Uk+1) — Q(Xk, Uk)]
= Q(X, uk) + o[Bk — Qxk, uk)]
® R isa bootstrapped estimate (which exploits the Bellman

equation) of the Monte-Carlo return Ry from (xk, ux) under
the current policy h

@ Ry is itself a sample of Q"(xx, ux), so in the end we are
running an estimated version of the ideal update:

Q(Xi, Uk) — Q(Xi, Ui) + [Q" (X, Ui) — Q(Xi, U]

Approximate TD methods
[e]e] lele]ele)

Stochastic gradient descent for approximate case

@ Extend this idea to a parametric approximator C?(x, u; 0)

@ We can no longer update Q directly, instead we update 6
using stochastic gradient descent (SGD) on the square
approximation error:

1 N
Ok1 = Ok — éakvﬁ [Qh(Xk, ux) — Q(Xk, Uk; Qk)} 2

=0k + QKVQE?(XK, Uk; Ok) {Qh(Xk, Ug) — @(xk, Uk, 9;()}

@ Replace Q"(xk, ux) by Monte Carlo sample Ry, then R
by its bootstrapped estimate R, = k1 +’yQ(Xk+1 s Uk1; Ox):
Ok 1 = Ok + ak Vo Q(Xk, Ug; Ok) [fk+1 + QXK 1, Uk y1; 0k) — Q(Xk, Uk Hk)}

u

Approximate TD methods
[e]e]e] le]ele)

Semigradient

Okt = Ok + Vo Q(Xk, U; Ok) [fk+1 Y Q(Xk 1, Ukt Ok) — QX U Hk)}

@ The final update is nota full gradient descent, because IA%’k
depends on 6 via Q(Xk.y1, Uki1; 0), but only the second
term of the error is differentiated!

= Such methods are called semigradient.

@ The term in squared brackets is an approximate temporal
difference.

Approximate TD methods
[e]e]e]e] lele)

[lllustration

Graphical illustration is similar to the classical case:

.

but now approximation requires use of gradients

* e e

Approximate TD methods
00000e0

Objective and comparison to fitted methods

~

Oki1 — Ok + OékV@Q(Xk, Uk; Ok) [Qh(Xk, Uk) — E)(xk, Ug; Qk)}

minimizes the following objective under the distribution arising
from (xk, ux) samples:

Leval = E { [Q”(X, u) — @(X, u; 9)} 2}

@ Compare to fitted Q-iteration objective, where the

distribution is implicitly also that of the samples:
Ns

PPN 2
3 [Rs — Q(Xs, Us; 9)}
s=1
@ If 3°7° ;a2 is finite and Y32 5 ax — oo, SGD converges to
a local minimum of Ly .
@ This still holds when Q"(xk, uy) is replaced by Monte Carlo
Ry, but not anymore for bootstrapped Ry, due to the
semigradient updates!

u

Approxmate D methods

0000006

Semlgradlent apprOX|mate SARSA

Approximate SARSA
for each trajectory do

initialize xg

choose uy (e.g., e-greedy from Q(xo, -; 6p))

repeat at each step k
apply ux, measure Xy 1, receive r. 1
choose uk. 1 (e.9., e-greedy from Q(Xx.1,-;0k))
Ok+1 = Ok + Vo Q(Xk, Uk; Ok)-

[fk+1 + Y QX1 U1 0k) — QX Ui ek)}
until trajectory finished
end for

Exploration is of course necessary in the approximate case as

well. i“i

Approximate TD methods
@000

o Approximate TD methods

@ Approximate Q-learning

Approximate TD methods
0e00

Semigradient Q-learning update

Recall classical Q-learning update:
QX Ui) = QXi; Uie) + e 1+ max QXky1, U') = QX U]
~ Q(Xk, Uk) + ax[Q (Xk, ux) — Q(Xk, Uk)]
In the approximate case, perform gradient descent:
Okr1 = Ok — %akv() {Q*(Xk: Uk) — QX Ug; 9k)}
= Ok + Vo Q(Xx, Uk; Ok) [Q*(xk, k) — Q(xk, Uk; ek)}
~ Oy + ax Vo Q(Xk, Uk; k)

[fk+1 +ymax Q(Xks1, U3 i) — Qxk, Ug; Gk)]

u

Approximate TD methods
[e]e] le)

[lllustration

Approxmate D methods

Semigradient, approximate Q- Iearnlng

Approximate Q-learning

for each trajectory do
initialize xg
repeat at each step k
choose uy (e.g., e-greedy from Q(x, -; 0x))
apply ux, measure Xkt receive r. 1
9k+1 =0k + CYkVQQ(Xk, Uk; (9/()-

|:rk+1 + 7y mugx Q(Xk-H , Ul; Ok) — Q(Xk, Uk; (9;()

until trajectory finished
end for

Approximate TD methods
@0000

o Approximate TD methods

@ Maximization and discussion

Approximate TD methods
0Oe000

Recall: Maximization

Solution 1: Implicit greedy policy

Solution 2: Explicitly represented (approximate) policy

Approximate TD methods
[e]e] le]e}

Maximization in approximate TD methods

@ Greedy actions are computed on demand from Q:

...argmax@(x,u;@)...
u

= Solution 1: The policy is implicitly represented

@ Q-function approximator must ensure
efficient solution for arg max

@ Ex. discrete actions & features in x

Approximate TD methods
[e]e]e] lo}

Demo: robot walking (E. Schuitema)

Method: Approximate Q-learning
Approximator: Tile coding

Approximate TD methods
[e]e]e]e]]

Discussion of approximate TD methods

@ Convergence guaranteed for modified versions
@ Low complexity

@ Exploration and learning rates must be carefully tuned for
all methods

@ Just like in the classical case, approximate TD methods
learn slowly, so they must be accelerated

@ Experience replay and n-step returns are nearly directly
applicable (the latter for SARSA, but can be extended to
off-policy Q-learning)

Policy gradient
90000000000

9 Policy gradient

Policy gradient
0@000000000

Policy representation

@ Type 2: Policy explicitly approximated
@ Recall advantages: easier to handle continuous actions,
prior knowledge

@ For example, feature-based representation:

h(x; 1) = 6i(X)mi
i—

Policy gradient
00e00000000

Policy with exploration

@ Online RL = policy gradient must explore
Prob(u)

— > U
h(x)
@ Gaussian exploration applies u in x with probability:

P(ulx) = N'(h(x;), o) =: h(x, u; 9)

with ¢ containing p as well as the covariances in matrix o

@ So a stochastic policy is represented, directly including
random exploration in the parameterization

Policy gradient
[e]e]e] lelelele]ele]e)

Trajectory
@ Trajectory 7 := (Xo, U, - - - , Xk, Uk, - - -)
generated with h; and resulting rewards
Moo e—1,. ..

@ Take deterministic MDP for simplicity.
Return along the trajectory:

(o) o0
R(T) =Y 7 et =D 7 p(xk, uk)
k=0 k=0

@ Probability of trajectory 7 under policy
parameters :

Py() = HZO:O A, ug;)

where X1 = f(Xk, Uk)

Policy gradient
0000e000000

Objective

Take Xxp fixed, for simplicity

Objective

Maximize expected return from x, under
policy h(-,-; 9):

Jy :=Eyg{R(7)} = /R(T)Pg(T)dT

Policy gradient
00000800000

Main idea

Gradient ascent on Jy:

Y — 9+ aVydy

Policy gradient
000000e0000

Gradient derivation

Vody = / R(r)VsPs(r)dr

- / R(r)Py(r) Vg log Py(r)dr

= Ey {R(T)w log [H h(xk, Uk; 19)] }

k=0

=Ey {R(T) Z V. log B(Xk, Uk, ?9)}
k=0
Where we:

@ used “likelihood ratio trick” VyPy(7) = Py(7)Vylog Py(7)
@ replaced integral by expectation, and substituted Py(7)
@ replaced log of product by sum of logs

Policy gradient
0000000e000

Gradient implementation

@ Many methods exist to estimate gradient, based e.g. on
Monte-Carlo

@ E.g. REINFORCE uses current policy to execute n-
sample trajectories, each of finite length K, and estimates:

- 1 n- [K—1
VﬁJﬂ = F Z [Z ",v’krsﬁk]

T s=1 Lk=0

K—1 .
Z Vg log h(Xs,k; Us k; 19)]
k=0

(with possible addition of a baseline to reduce variance)
@ Compare with exact formula:

V§J19 =Ey {R(T)Z Ve Iog //'\)(Xk, Uk, 19)}
k=0

@ Gradient Vylog h preferably computable in closed-form w

Policy gradient
00000000800

Power-assisted wheelchair (with Feng et al.)

@ Hybrid power source: human and battery

@ Goal: follow reference velocity, optimizing assistance to:
(i) attain desired user fatigue level
(ii) minimize battery usage

@ Challenge: user has unknown dynamics

https://ieeexplore.ieee.org/document/8667013/

Policy gradient
00000000080

PAW: Experiment setup

@ User sets velocity, pulls/pushes joystick when too
tired/wants more exercise

@ Reward penalizes velocity error, joystick signal /, and
assistance magnitude (to save energy)

r=—wi(V— Vier)? — wal? — wot/?

@ Pl-type control with gains tuned by policy gradient
(POWER)

Policy gradient
0000000000 e

PAW: Results

Trial 1

Trial 2 Trial 3 Trial 6 |

v[m/s]

Time[seconds]

Trial 21 Trial 22 Trial 23 Trial .
2
1
'
0
0.6
0.4
0.2
0
0.2 &
0 50 100
20
10 HH. o) "\"‘J""“
0| ke, .o A
-10)

0 50 100

O Ry T |
05| o

-1

50 100 0 50 100
LI :
3 A 1 0
7 p

. o 100 Push to -1 pou-uon 0 50 100

-——-—— Push to 1 position
Time[seconds]

Outlook

9 Outlook

Outlook
@00000

Open problems

RL research is ongoing

Open problems:
@ Safety and stability guarantees
@ States that cannot be measured (output feedback)
@ Exploration strategies
@ Multi-agent systems
@ Multi-task learning

Outlook
[o] lelele]e]

Deep reinforcement learning

A way to handle high-dimensional variables when they are
images (or image-like); or relatively high-dimensional variables
(~10) when they are numerical.

Outlook
[e]e] lele]e]

Deep Q-networks, DQN (DeepMind)

@ Q-function represented via a deep neural network using
e.g. convolutional layers to process images

@ All data added to a replay buffer

@ Network trained by SGD to reduce temporal differences,
like semigradient Q-learning...

... but on mini-batches of transitions from the replay buffer,
like fitted Q-iteration

= algorithm combines online and offline approximate RL

https://www.nature.com/articles/nature14236

Outlook
[e]e]e] le]e]

Deep Q-networks, DQN (DeepMind)

https://www.nature.com/articles/nature14236

Outlook
0O000e0

Key terms in this part

stochastic gradient descent
semigradient

approximate temporal difference
policy gradient

@ likelihood ratio trick

Outlook
O0000e

Exercises

@ Derive semigradient updates of the parameters 6 to
approximate V" and V*.

@ Generalize the derivation of the semigradient update in
SARSA to n-step returns.
© Try to derive a full gradient descent formula for SARSA,

which takes into account the dependence of the
bootstrapped estimate on the parameter vector.

	Approximate TD methods
	Approximate SARSA
	Approximate Q-learning
	Maximization and discussion

	Policy gradient
	Policy gradient

	Outlook
	Outlook

