
Reinforcement learning
Master CPS, Year 2 Semester 1
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Part V

Online approximate reinforcement learning
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Recap: need for approximation

In real applications, x , u often continuous (or discrete with
very many values)

Tabular representation impossible
Approximate functions of interest
Q(x , u), V (x), h(x)
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Recap: Part 4 – Offline approximate DP and RL

Given either:
– a model f , ρ
– data (xs, us, rs, x ′s), s = 1, . . . , ns

1 find an approximate solution Q̂(x , u), ĥ(x), etc.
2 control the system using the solution found

Algorithms discussed:
Q-iteration with interpolation
Fitted Q-iteration
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Part V in plan

Reinforcement learning problem
Optimal solution
Exact dynamic programming
Exact reinforcement learning
Approximation techniques
Approximate dynamic programming
Offline approximate reinforcement learning
Online approximate reinforcement learning
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Algorithm landscape

By model usage:
Model-based: f , ρ known a priori
Model-free: f , ρ unknown (reinforcement learning)

By interaction level:
Offline: algorithm runs in advance
Online: algorithm runs with the system

Exact vs. approximate:
Exact: x , u small number of discrete values
Approximate: x , u continuous (or many discrete values)
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RL principle

We are now truly following, online, the RL interaction scheme

Many algorithms exist; we discuss just a few



Approximate TD methods Policy gradient Outlook

Contents of part V

1 Approximate TD methods
Approximate SARSA
Approximate Q-learning
Maximization and discussion

2 Policy gradient

3 Outlook



Approximate TD methods Policy gradient Outlook

Recall classical SARSA

SARSA with ε-greedy
for each trajectory do

initialize x0

u0 =

{
arg maxu Q(x0, u) w.p. (1− ε0)

unif. random w.p. ε0
repeat at each step k

apply uk , measure xk+1, receive rk+1

uk+1 =

{
arg maxu Q(xk+1, u) w.p. (1− εk+1)

unif. random w.p. εk+1

Q(xk , uk )← Q(xk , uk ) + αk ·
[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )]

until trajectory finished
end for
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Recall derivation of SARSA (on-policy) update

Update:

Q(xk , uk )← Q(xk , uk ) + αk [rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )]

= Q(xk , uk ) + αk [R̂k −Q(xk , uk )]

R̂k is a bootstrapped estimate (which exploits the Bellman
equation) of the Monte-Carlo return Rk from (xk , uk ) under
the current policy h
Rk is itself a sample of Qh(xk , uk ), so in the end we are
running an estimated version of the ideal update:

Q(xk , uk )← Q(xk , uk ) + αk [Qh(xk , uk )−Q(xk , uk )]
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Stochastic gradient descent for approximate case

Extend this idea to a parametric approximator Q̂(x , u; θ)

We can no longer update Q directly, instead we update θ
using stochastic gradient descent (SGD) on the square
approximation error:

θk+1 = θk −
1
2
αk∇θ

[
Qh(xk , uk )− Q̂(xk , uk ; θk )

]
2

= θk + αk∇θQ̂(xk , uk ; θk )
[
Qh(xk , uk )− Q̂(xk , uk ; θk )

]
Replace Qh(xk , uk ) by Monte Carlo sample Rk , then Rk

by its bootstrapped estimate R̂k = rk+1+γQ̂(xk+1, uk+1; θk ):
θk+1 = θk + αk∇θQ̂(xk , uk ; θk )

[
rk+1 + γQ̂(xk+1, uk+1; θk )− Q̂(xk , uk ; θk )

]
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Semigradient

θk+1 = θk + αk∇θQ̂(xk , uk ; θk )
[
rk+1 + γQ̂(xk+1, uk+1; θk )− Q̂(xk , uk ; θk )

]

The final update is not a full gradient descent, because R̂k

depends on θk via Q̂(xk+1, uk+1; θk ), but only the second
term of the error is differentiated!

⇒ Such methods are called semigradient.

The term in squared brackets is an approximate temporal
difference.
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Illlustration

Graphical illustration is similar to the classical case:

but now approximation requires use of gradients
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Objective and comparison to fitted methods

θk+1 ← θk + αk∇θQ̂(xk , uk ; θk )
[
Qh(xk , uk )− Q̂(xk , uk ; θk )

]
minimizes the following objective under the distribution arising
from (xk , uk ) samples:

Leval = E
{[

Qh(x , u)− Q̂(x , u; θ)
]2

}
Compare to fitted Q-iteration objective, where the
distribution is implicitly also that of the samples:

ns∑
s=1

[
R̂s − Q̂(xs, us; θ)

]2

If
∑∞

k=0 α2
k is finite and

∑∞
k=0 αk →∞, SGD converges to

a local minimum of Leval.
This still holds when Qh(xk , uk ) is replaced by Monte Carlo
Rk , but not anymore for bootstrapped R̂k , due to the
semigradient updates!
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Semigradient, approximate SARSA

Approximate SARSA
for each trajectory do

initialize x0
choose u0 (e.g., ε-greedy from Q(x0, ·; θ0))
repeat at each step k

apply uk , measure xk+1, receive rk+1
choose uk+1 (e.g., ε-greedy from Q(xk+1, ·; θk ))
θk+1 = θk + αk∇θQ̂(xk , uk ; θk )·[

rk+1 + γQ̂(xk+1, uk+1; θk )− Q̂(xk , uk ; θk )
]

until trajectory finished
end for

Exploration is of course necessary in the approximate case as
well.
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Semigradient Q-learning update

Recall classical Q-learning update:

Q(xk , uk )← Q(xk , uk ) + αk [rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )]

≈ Q(xk , uk ) + αk [Q∗(xk , uk )−Q(xk , uk )]

In the approximate case, perform gradient descent:

θk+1 = θk −
1
2
αk∇θ

[
Q∗(xk , uk )− Q̂(xk , uk ; θk )

]
2

= θk + αk∇θQ̂(xk , uk ; θk )
[
Q∗(xk , uk )− Q̂(xk , uk ; θk )

]
≈ θk + αk∇θQ̂(xk , uk ; θk )·[

rk+1 + γ max
u′

Q̂(xk+1, u′; θk )− Q̂(xk , uk ; θk )

]
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Illlustration
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Semigradient, approximate Q-learning

Approximate Q-learning
for each trajectory do

initialize x0
repeat at each step k

choose uk (e.g., ε-greedy from Q(xk , ·; θk ))
apply uk , measure xk+1, receive rk+1

θk+1 = θk + αk∇θQ̂(xk , uk ; θk )·[
rk+1 + γ max

u′
Q̂(xk+1, u′; θk )− Q̂(xk , uk ; θk )

]
until trajectory finished

end for
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Recall: Maximization

Solution 1: Implicit greedy policy

Solution 2: Explicitly represented (approximate) policy
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Maximization in approximate TD methods

Greedy actions are computed on demand from Q̂:

. . . arg max
u

Q̂(x , u; θ) . . .

⇒ Solution 1: The policy is implicitly represented

Q-function approximator must ensure
efficient solution for arg max
Ex. discrete actions & features in x
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Demo: robot walking (E. Schuitema)

Method: Approximate Q-learning
Approximator: Tile coding



Approximate TD methods Policy gradient Outlook

Discussion of approximate TD methods

Convergence guaranteed for modified versions
Low complexity
Exploration and learning rates must be carefully tuned for
all methods
Just like in the classical case, approximate TD methods
learn slowly, so they must be accelerated
Experience replay and n-step returns are nearly directly
applicable (the latter for SARSA, but can be extended to
off-policy Q-learning)
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Policy representation

Type 2: Policy explicitly approximated
Recall advantages: easier to handle continuous actions,
prior knowledge
For example, feature-based representation:

h̄(x ;µ) =
n∑

i=1

φi(x)µi
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Policy with exploration

Online RL⇒ policy gradient must explore

Gaussian exploration applies u in x with probability:

P(u|x) = N (h̄(x ;µ), σ) =: ĥ(x , u;ϑ)

with ϑ containing µ as well as the covariances in matrix σ

So a stochastic policy is represented, directly including
random exploration in the parameterization
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Trajectory

Trajectory τ := (x0, u0, . . . , xk , uk , . . . )

generated with ĥ; and resulting rewards
r1, . . . , rk−1, . . .

Take deterministic MDP for simplicity.
Return along the trajectory:

R(τ) =
∞∑

k=0

γk rk+1 =
∞∑

k=0

γkρ(xk , uk )

Probability of trajectory τ under policy
parameters ϑ:

Pϑ(τ) =
∏∞

k=0
ĥ(xk , uk ;ϑ)

where xk+1 = f (xk , uk )
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Objective

Take x0 fixed, for simplicity

Objective
Maximize expected return from x0 under
policy ĥ(·, ·;ϑ):

Jϑ := Eϑ {R(τ)} =

∫
R(τ)Pϑ(τ)dτ
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Main idea

Gradient ascent on Jϑ:

ϑ← ϑ + α∇ϑJϑ
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Gradient derivation

∇ϑJϑ =

∫
R(τ)∇ϑPϑ(τ)dτ

=

∫
R(τ)Pϑ(τ)∇ϑ log Pϑ(τ)dτ

= Eϑ

{
R(τ)∇ϑ log

[ ∞∏
k=0

ĥ(xk , uk ;ϑ)

]}

= Eϑ

{
R(τ)

∞∑
k=0

∇ϑ log ĥ(xk , uk ;ϑ)

}
Where we:

used “likelihood ratio trick” ∇ϑPϑ(τ) = Pϑ(τ)∇ϑ log Pϑ(τ)

replaced integral by expectation, and substituted Pϑ(τ)

replaced log of product by sum of logs
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Gradient implementation

Many methods exist to estimate gradient, based e.g. on
Monte-Carlo
E.g. REINFORCE uses current policy to execute nτ

sample trajectories, each of finite length K , and estimates:

∇̂ϑJϑ =
1
nτ

nτ∑
s=1

[
K−1∑
k=0

γk rs,k

] [
K−1∑
k=0

∇ϑ log ĥ(xs,k , us,k ;ϑ)

]
(with possible addition of a baseline to reduce variance)
Compare with exact formula:

∇ϑJϑ = Eϑ

{
R(τ)

∞∑
k=0

∇ϑ log ĥ(xk , uk ;ϑ)

}

Gradient ∇ϑ log ĥ preferably computable in closed-form
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Power-assisted wheelchair (with Feng et al.)

Hybrid power source: human and battery
Goal: follow reference velocity, optimizing assistance to:

(i) attain desired user fatigue level
(ii) minimize battery usage

Challenge: user has unknown dynamics

https://ieeexplore.ieee.org/document/8667013/
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PAW: Experiment setup

User sets velocity, pulls/pushes joystick when too
tired/wants more exercise
Reward penalizes velocity error, joystick signal I, and
assistance magnitude (to save energy)

r = −w1(v − vref)
2 − w2I2 − w2u2

PI-type control with gains tuned by policy gradient
(POWER)
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PAW: Results
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Open problems

RL research is ongoing

Open problems:
Safety and stability guarantees
States that cannot be measured (output feedback)
Exploration strategies
Multi-agent systems
Multi-task learning
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Deep reinforcement learning

A way to handle high-dimensional variables when they are
images (or image-like); or relatively high-dimensional variables
(∼10) when they are numerical.
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Deep Q-networks, DQN (DeepMind)

Q-function represented via a deep neural network using
e.g. convolutional layers to process images
All data added to a replay buffer
Network trained by SGD to reduce temporal differences,
like semigradient Q-learning...
... but on mini-batches of transitions from the replay buffer,
like fitted Q-iteration

⇒ algorithm combines online and offline approximate RL

https://www.nature.com/articles/nature14236
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Deep Q-networks, DQN (DeepMind)

https://www.nature.com/articles/nature14236
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Key terms in this part

stochastic gradient descent
semigradient
approximate temporal difference
policy gradient
likelihood ratio trick

wiki
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Exercises

1 Derive semigradient updates of the parameters θ to
approximate V h and V ∗.

2 Generalize the derivation of the semigradient update in
SARSA to n-step returns.

3 Try to derive a full gradient descent formula for SARSA,
which takes into account the dependence of the
bootstrapped estimate on the parameter vector.
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