Reinforcement learning
Master CPS, Year 2 Semester 1

Lucian Busoniu, Florin Gogianu

Part IV

Approximate dynamic programming and
offline approximate reinforcement learning

RL for manipulation of a Rubik’s Cube (OpenAl)

u

https://openai.com/index/solving-rubiks-cube/

The need for approximation

@ Classical RL — representation in tabular form, e.g., Q(x, u)
separately for all values of x and u

@ In real applications, x, u often continuous (or discrete with
very many values)!

@ Tabular representation is impossible 01

The need for approximation (continued)

In real applications, the functions of interest must often be
approximated

Part IV in plan

Reinforcement learning problem
Optimal solution
Exact dynamic programming

Approximation techniques

Approximate dynamic programming

Offline approximate reinforcement learning
@ Online approximate reinforcement learning

°
°
°
@ Exact reinforcement learning
°
°
°

Contents of part IV

0 Approximation techniques
9 Approximation in DP&RL
Q Q-iteration with interpolation

0 Fitted Q-iteration

Approximation techniques
®000000000000

Approximation

Approximation:
a function with (uncountably) infinitely many values
must be represented using a small number of values

f(x) F(x)

True values y

2000 9

1500 : . u
1000

Approximation techniques
0O@00000000000

Parametric approximation

Parametric approximation: 7 has a fixed form,
its output is determined by a vector of parameters 6:

~

f(x;0)

@ Linear approximation — weighted combination
of features (basis functions) ¢;:

F(x;0) = 61(x)01 + d2(X)02 + . . . $n(X)0n
= di(x)0i = ¢ (x)0
i=1

Note: linear in parameters, can be nonlinear in x

© Nonlinear approximation: stays in the general form

Approximation techniques
0O0@0000000000

Linear parametric approximation: Interpolation

Interpolation:
@ D-dimensional grid of points
@ Multilinear interpolation between points
@ Equivalent to pyramidal features

05

u

Approximation techniques
000@000000000

Linear parametric approximation: RBF

Radial basis function (Gaussian):

IPRY:
o(x) =exp [—(szc)} (1-dim);

2. (Xg — Cg)? ,
=exp |- e (D-dim)
d=1 d
- atian: g(y) — _ @i(X)
Optionally, normalization: ¢;(x) = S 60

o(x)

Approximation techniques
0O000@00000000

Training linear approximators: least squares

@ n, points (x;, f(x;)), objective described by system of
equations:

o~

f(x1;0) = $1(x1)01 + ¢2(X1)02 + ... on(X1)0n = f(x1)

~

f(an; 9) = 1 (an)91 + ¢2(an)92 + ... ¢n(an)9n = f(an)
@ Matrix form:
o1(x1) pa(x1) ... ¢n(X1)} {f()ﬂ)]
0= .. Ab

. =b
¢1(Xn) P2(Xn) .- én(Xn) f(xn,)

@ Linear regression

Approximation techniques
[e]e]e]e]e] lelelelelele]e]

Least squares (continued)

@ Overdetermined system (n, > n), equations cannot all be
satisfied with equality.
= Solve in the least-squares sense:

...linear algebra and analysis...

0 0=(ATA'ATb (< (ATA)¥ =ATb)

Approximation techniques
[e]e]e]ele]e] lelelelele]e]

Example: Rosenbrock’s “banana” function

True values y

@ f(x)=(1—x)2+100[(x2 + 1.5) — x2]2, x=[x1,x]"
@ Training: 200 points, uniformly randomly distributed
@ Validation: 31 x 31 point grid

Approximation techniques
0O000000e00000

Rosenbrock function: Linear approximator results

Interpolation on a 6x6 grid: 6x6 RBFs:

linearinterp output; MSE=4175 RBFs output; MSE=5399

2000 : 2000
1500 R 1500
1000 1000

\’\\ < o
S A
% 2 2

@ Interpolation = collection of multilinear surfaces
@ RBF approximation is smoother (wide RBFs)

Approximation techniques
0O0000000e0000

Nonlinear parametric approximation: neural network

Neural network:
@ Neurons with (non)linear activation functions

@ Interconnected in multiple layers, through weighted
connections + biases

OO

o0 O -
O“O@"

Approximation techniques
0000000008000

Rosenbrock function: Neural network result

One hidden layer with 10 neurons and tangent-sigmoid
activation functions + linear output layer. 500 training epochs.

NN output, MSE=300.83

Thanks to the greater flexibility of the neural network, the
results are better than those with linear approximators.

Approximation techniques
0000000000800

Neural network to find features
Usually, the last layer of a neural network is linear, leading
again to the feature-based approximator:

7(x; 0) = ¢ (X; Otear)Orin

where 6 =[], 0] 1.

Key difference from linear approximation: features ¢ are now
themselves parametrized — by 6, — and automatically found
by the neural network. In linear approximation, the features

are manually designed.

Note that overall the approximator is nonlinear!

Approximation techniques
000000000000

Neural network features
Example: Convolutional neural net features:

N\ -
Edges (layer conv2do) Textures (layer mixed3a) Patterns (yer mixedds) o

Details to follow later (with Florin)

u

Approximation techniques
000000000000 e

Comparison between approximators

@ Linear approximators are easier to handle theoretically
than nonlinear ones

@ Nonlinear approximators are more flexible than linear ones

Approximation in DP&RL

9 Approximation in DP&RL

Approximation in DP&RL
©0000000000

Approximation in RL

Problems to be solved:

@ Representation: Q(x, u), V(x), h(x)
Using the approximation techniques discussed earlier

@ Maximization: e.g., max, Q(x, u)

Approximation in DP&RL
08000000000

Option 1: A implicit

@ The policy is implicitly represented...
@ ...by computing greedy actions on demand from Q:

h(x) = argmax (AD(X, u)
u

= Main problem: approximating the Q-function
@ Approximator must ensure efficient solution for arg max
@ Will be the focus in this lecture

Approximation in DP&RL
0000000000

Option 2: h explicit

@ The policy is explicitly approximated: B(x)

Advantages:
@ Continuous actions are easier to handle

@ The representation can more easily incorporate prior
knowledge

Approximation in DP&RL
000@0000000

Action discretization

@ Approximator must ensure efficient solution for arg max
= Typically: discretize actions

@ Select M discrete actions uy, ..., u;,...,uy € U
Compute “arg max” using explicit enumeration

@ Example: discretization on a grid
u1 u2 R ulvi
+—FtFt

action space U

State-space approximation

@ Often features ¢1,...,¢n: X — [0,00)

@ Ex. pyramidal, RBF

" AN A N
\ .
2o CADON 7\ 2
Py . N O <
AN 2 ‘/“{\“' N~/
05 O\ V0 Y \\“;;;;/‘

S
N

S 1
N

NE

or perhaps found by neural network

u

Approximation in DP&RL
00000@00000

Approximating Q with discrete actions

Given:

@ N features ¢1,..., 05

@ M discrete actions uy, ..., uy
Store:

© N - M parameters 6
(for each feature—discrete action pair)

Approximation in DP&RL
00000080000

Approximating Q with discrete actions (continued)

Approximate Q-function:

Q(x, u;; 0 Zqi), Oij =[o1(x) ... on(xX)]

Approximation in DP&RL
00000008000

Benefit of approximation in RL

Approximation allows applying RL
to realistic problems

Approximation in DP&RL
00000000800

Simple control example: Inverted pendulum

@ State x = [o,)" with
angle o € [—m, m)rad,
velocity & € [—15m, 157] rad/s
@ Action u € [-3,3]V
@ Dynamics:

2

a=1/J-|mglsin(a) — (b+ ﬁ)d + gu_

@ Objective: stabilize pointing up, encoded by reward:

p(x,u) = =502 — 0.16% — 12

normalized to [0, 1]
@ Discount factor v = 0.98
@ Insufficient power = swing back & forth before stabilizing

u

Approximation in DP&RL
00000000080

Inverted pendulum: Optimal solution

Left: Q-function for u =0 Right: policy

h(a,a') V]

Q(oc’,0)
o [rad/s]

o [radis] o lrad]

Approximation in DP&RL
00000000000

New questions raised by approximation

@ Convergence: does the algorithm remain convergent?

© Near-optimality: is the solution at a controlled distance
from the optimum?

© Consistency: for an ideal approximator with infinite
precision, is the optimal solution recovered?

Q-iteration with interpolation

Algorithm landscape

By model usage:
@ Model-based: f, p known a priori
@ Model-free: f, p unknown (reinforcement learning)

By interaction level:
@ Offline: algorithm runs in advance
@ Online: algorithm runs with the system

Exact vs. approximate:
@ Exact: x, u small number of discrete values
@ Approximate: x, u continuous (or many discrete values)

Q-iteration with interpolation

e Q-iteration with interpolation

Q-iteration with interpolation
®000000000

Q-function approximator

@ Interpolation = pyramidal features

AN
2o NN

N~
YN 7/ &\
oS

o>

0.3333

@ Each feature i has center x;

@ 0;; can be viewed as E?(x,-, up), since: ¢i(x;) = 1,¢i(x;) =0
fori’ #£i

u

Q-iteration with interpolation
O®00000000

Q-iteration with interpolation

Recall classical Q-iteration:

Qey1(x,) max,s Qy u

Q-iteration with interpolation

repeat at each iteration /¢
for all centers x;, discrete actions u; do

Ovi1,ij < p(Xi, Up) + -y maxy Q(F(X;, up), uy; 0:)
end for
until convergence

Stochastic version exists, but here we only consider the
deterministic case up

Q-iteration with interpolation
[e]e] le]e]ele]ele]e)

lllustration

Q-iteration with interpolation
[e]e]e] lelele]elele)

Policy

@ Recall the optimal policy:

h*(x) = arg max Q*(x, u)
u

@ When Q is approximated using action discretization (e.g.
the interpolating approximator above):

E*(X) = argmax @(x, uj; 0%)
uj, j=1,....M

0* = parameters at convergence

Q-iteration with interpolation
[e]e]e]e] lelelelele)

Q-iteration w/ interpolation: Illustration of properties

Monotonic convergence to a near-optimal solution

A

Q*

Q-iteration with interpolation
[e]e]e]e]e] lelelele)

Convergence

Similar to classical Q-iteration:
@ Each iteration is a contraction with factor ~:

10011 — 0o < Y1160 — 07|

= Monotonic convergence to §*

1y

1 |
| i
|

I

|

S
a=]16,-6|l.. '

Q-iteration with interpolation
0O00000e000

Near-optimality

Characterize approximator by the minimum distance to Q*:

space of
representable_

Q-functions Q

e = min Ho*(x, u) — Q(x, u; e)H

o

Then:
@ Suboptimality of resulting a(x, u; 6*) is bounded:
2¢c
<

00 1*’\,’

HQ*(X, u)— @(x, u; 6%)

© Suboptimality of policy h* is bounded: by

HQ*(X7 u) — Q" (x, u)HOO < -7 o

Q-iteration with interpolation
0000000800

Consistency

@ Consistency: Q" — Q* as resolution increases

dx = maxmin ||x — x;||» . _

@ Resolution: o X7

Sy = maxmin ||lu — uj|, . .
uoj

@ Given certain technical conditions,
= lims, 0,0 Q" = Q* — consistency

Q-iteration with interpolation
0000000080

Inverted pendulum: Q-iteration w/ interpolation, demo

Features: equidistant grid 41 x 21
Discretization: 5 actions, distributed around 0

u

Q-iteration with interpolation
000000000

Inverted pendulum: Q-iteration w/ interpolation, demo

Fuzzy Q-iteration, ell=161

h,a)

—_—, 0,

ell+1 " Vell

0 20 40 60 80 100 120

ell

n
140

L
160

180

Fitted Q-iteration

0 Fitted Q-iteration

Fitted Q-iteration
0000000000

Fitted Q-iteration

Extend Q-iteration with interpolation so that it works:
@ with other approximators
@ model-free — RL

Fitted Q-iteration
0e00000000

Intermediate model-based algorithm

Recall Q-iteration with interpolation:

@ Use arbitrary state-action samples
@ Extend to generic approximator
© Find parameters using least-squares

get state-action samples (xs, us), s=1,..., 1
repeat at each iteration ¢
fors=1,...,n,do
compute bootstrapped target for Q(xs, Us; 0):
RS — p(X37 US) arF Y max, Q(f(Xs, US); U 9[)
end for
Op1 < argmin 22;1 Rs — Q(xs, Us; 0)
until termination

2

Q-iteration with interpolation is equivalent to this generalized [1/[J
alaorithm if eambnlec = all combinations x: (J:

Fitted Q-iteration
00e0000000

Fitted Q-iteration: Algorithm

© Use transitions instead of model

Fitted Q-iteration

get or collect dataset D = {(xs, Us, Is, X5), s =1,...,ng}
repeat at each iteration ¢
fors=1,...,n,do R
compute bootstrapped target for Q(xs, us; 0):
Rs — rs + v maxy a(xg, u'; 6y)
end for ,
01 —argmin 3% |Rs — Q(xs, us; 0)| =: L(0)
until termination

L is called the loss function

Fitted Q-iteration
0008000000

Deterministic versus stochastic

@ In the deterministic case, x; = f(Xs, Us), s = p(Xs, Us)
— substitutions are exact

@ In the stochastic case, x; ~ ?(XS, Us,), I's = p(Xs, Us, Xg)
= Algorithm remains valid; intuition:
o Ideally, Q(x,u) < Ex {r + v maxy (AQ(XQ u'; 9[)}

@ Assuming for the moment all samples are at
(Xs, Us) = (x, u),

N
min Z
o s=1
leads to @(x, u;0) ~E{...} (like in Monte-Carlo)

e Even if (xs, us) do not repeat, least-squares still
approximate the expected value

2
rs +ymax Q(xg, u'; 6,) — Q(x, u;)
u/

Fitted Q-iteration
0000e00000

lllustration

Targets are bootstrapping estimates for Q*:

g

and therefore related to temporal differences.

Fitted Q-iteration in the unified perspective
Belongs in the TD corner, but similar to DP in that it updates

synchronously the complete Q-function across the entire
state-action space.

Temporal difference Dynamic programming
W|dth of estimates
1 sample expected value;
model-free model-based
1 step
depth 2| |2
of estimates a “g’
[0}

full trajectory

andn T i

Monte Carlo Exhaustive search
(graph search, online planning) Ii

Fitted Q-iteration
[e]e]eleele] lolele]

Fitted Q-iteration: lllustration of properties

Convergence to a sequence of solutions,
each of them near-optimal

A

Fitted Q-iteration
0000000800

Inv. pend.: Fitted Q-iteration w/ interpolation, demo

Features: equidistant grid 11 x 9

Action discretization: 3 values, +/- max voltage and 0
Dataset: 10000 samples, uniformly distributed in the
continuous x - discretized u space

Fitted Q-iteration, ell=381 h{a,a’)
40

o 50 100 150 200 250 300 350 400

Fitted Q-iteration
0000000080

Key terms in this part

@ function approximation

features / basis functions and parameters

linear and nonlinear approximation

interpolation, radial basis functions, neural network
action discretization

approximate dynamic programming

fitted Q-iteration

convergence, near-optimality, consistency

Fitted Q-iteration
000000000

Exercises

@ Prove that the updates of Q-iteration with interpolation:

9g+1’,'7j — p(X,', Uj) + 7y mjgx Q(f(X,', Uj), upr; 9@)

are contractive with factor ~. Hint: it is essential that the
features sum up to 1, and therefore the approximate
Q-value is an average of the parameters!

@ What is the limit of the distance « between Q* and the
space of representable Q-functions when §, — 0,6, — 07?
Explain why.

© Write an approximate V-iteration method with interpolation
and prove that its updates are contractive.

© Write a fitted V-iteration method. Is this method

free?
model-free” w

	Approximation techniques
	Approximation techniques

	Approximation in DP&RL
	Approximation in DP&RL

	Q-iteration with interpolation
	Q-iteration with interpolation

	Fitted Q-iteration
	Fitted Q-iteration

