
Neural Networks
Florin Gogianu, Lucian Bușoniu

Technical University of Cluj-Napoca
Bitdefender

* slides, illustrations and ideas adapted from: prof. Simon Prince UDLB, Stanford CS231n, LeCun, Canziani, NYU Deep Learning
** this lecture can be considered a complementary view of the Neural Networks course taught by prof. Vlad Miclea.

https://udlbook.github.io/udlbook/
http://cs231n.stanford.edu/
https://atcold.github.io/NYU-DLSP21/

Recap. Function approximation

1. What is function approximation (in control / RL)?

2. Why bother with function approximation?

3. What types of function approximation are out there?

Generalization with linear function approximation

Feature design for function approximation affects the generalization of the estimator (Sutton, 2019).

High-level goal

Represent and learn from data V(x), Q(x, u) and even h(x) using neural networks:

● Ṽ(x; 𝜽)
● Q̃(x, u; 𝜽)
● h̃(x; 𝜽)

Be able to compute the terms required to update the weights 𝜽:

* Notation will be slightly different for this course, eg. tilde instead of hat.

Shallow neural networks

Consider a shallow neural network

Let’s go from a two-parameter linear model:

To something just a bit more complicated:

Shallow neural network

Shallow neural network
activation function

Rectified Linear Unit
(particular kind of activation function)

Shallow neural network

• Represents a family of functions
• Parameters determine particular function
• Given parameters can perform inference (run equation)
• Given training dataset:

○ Define loss function (eg.: least squares)
○ Change parameters to minimize loss function

This model has 10 parameters:

Shallow neural network

Piecewise linear functions with three joints

Shallow neural network

Break it down into two parts:

where:

hidden units

1. Compute three linear functions

2. Pass through ReLU activations (hidden units)

3. Weigh the hidden units

4. Sum the weighted activations

Shallow neural network

Piecewise linear functions

Activation pattern: which hidden units are activated

Shaded region: unit 1 active, unit 2 inactive, unit 3 active

?

Depicting neural networks

Each parameter multiplies its sources and adds to its target

Universal approximation theorem

Arbitrary number of hidden units

From 3 hidden units:

To D hidden units:

With enough hidden units…

… we can describe any 1D function to arbitrary accuracy!

Universal approximation theorem

“a formal proof that, with enough hidden units, a shallow
neural network can describe any continuous function on a

compact subset of ℝD to arbitrary precision”

* without guaranteeing a construction though!

Hornik, 1990

Multivariate inputs

2 inputs, 3 hidden units, 1 output

? Convex polygons

O
ut

pu
t,

 y
Input, x1

In
pu

t,
 x 2

Function space / Data space

Multivariate outputs

?

Functional vs. Representational

The representation view. Linear model

y1x1

x2 y1

A linear model with four weights.
Also can be seen as two stacked ”neurons” without activation functions.

y = 𝚹x, that is y1 = 𝜃11x1 + 𝜃12x2 , …

The representation view. Linear model

The representation view. Linear model

● Our model is: y = 𝚹x
● What is 𝚹 doing to x ?
● Let’s perform singular value decomposition* for some intuition:

𝚹 = U S VT

 0.19 1.84
-0.97 -0.93

 0.83 -0.55
-0.55 -0.83

 2.17 0.00
 0.00 0.74

 0.32 0.94
 0.94 -0.32✕= ✕

rotation scale reflection

* Deisenroth, Mathematics for Deep Learning, ch. 4.

The representation view. Linear model

The representation view. Linear model

The representation view. Activation functions

The representation view. Non-linear model | ReLU

ReLU(Sx) activation function with two different scale factors S

The representation view. Non-linear model | tanh

tanh(Sx) activation function with two different scale factors S

The representation view. Warping space

A neural network with two inputs, two hidden units and one output “warps”
space so that data can become linearly separable.

Functional view

● Not well defined (in general)

● Many methods in the literature describe
themselves as “learning
representations”

● Drove the research in transfer and
self-supervised learning for some time

● Shows up in natural language
processing also, see “thought vectors”

● Neural network depth associated with
learning hierarchical representations

Representation view

● Usually well defined (eg. “linear regions”)

● Useful for the theory of neural networks

● Better at explaining the preference for
deep neural networks

Deep Neural Networks

Reading suggestion

Check 4.1 and 4.2 in your textbook* for a discussion on a special case of deep
neural networks not covered in these slides.

* Simon J.D. Prince, Understanding Deep Learning.

https://udlbook.github.io/udlbook/

Two-layer networks

Remember shallow network with two outputs

Deep networks are just function composition!

Consider the pre-activations at the second hidden units.
At this point, it’s a one-layer network with three outputs.

Hyperparameters

● K layers: network depth

● Dk hidden units / layer: network width

● We choose these hyperparameters before training.

● And we usually search for the best values by retraining with different
hyperparameters.

Notation change #1

Notation change #1

Notation change #1

Notation change #2

Notation change #3 (multivariate inputs)

Bias
vector

Weight
matrix

Notation change #3

General equation for deep networks

…also known as an MLP (multi-layer perceptron)

Activation functions

Depth efficiency of neural networks

Shallow vs. deep networks

Shallow vs. deep networks

The best results are obtained by deep networks with many layers:

● 50-1000 layers for most applications

● Over ~10-15 layers additional tricks are required (normalisation, residual connections)

● Best results in:

○ Computer vision

○ Natural language processing

○ Graph neural networks

○ Generative models

○ Reinforcement learning (ongoing research)

1. Function approximation capacity

● Both shallow and deep neural networks obey the universal approximation
theorem.

● Does it mean that one layer is enough?!

2. Number of linear regions per parameter

5 layers (up to)
marker: 10 hidden units per layer
471 parameters
161,501 linear regions

5 layers (up to)
marker: 50 hidden units per layer
10,801 parameters
10134 linear regions

Loss functions

Training a simple model

1. Define a loss function

2. Compute the change in
parameters required to
make the loss smaller

3. Apply the change and get
new parameters

4. Repeat from (2)

Loss function

● Training dataset of I pairs of input/output examples:

● Loss function or cost function measures how bad the model is:

Loss function

● Training dataset of I pairs of input/output examples:

● Loss function or cost function measures how bad model is:

L[𝜙]
Returns a scalar that is smaller
when model maps inputs to
outputs better

Loss function as an optimization objective

Find the parameters that minimize the loss:

𝜙 = argmin𝜙 [L(𝜙)]

Example:

L(𝜙) = 𝔼[r + 𝛾 maxu Q̃(x’, u’; 𝜙) - Q̃(x, u; 𝜙)]2

target current estimate

Computing gradients

Training a simple model

1. Define a loss function

2. Compute the change in
parameters required to
make the loss smaller

3. Apply the change and get
new parameters

4. Repeat from (2)

Neural network

Setup

Loss, sum of individual terms:

SGD algorithm

Parameters

How to compute gradients?

Big deal?

Huge equation, and we need to compute derivatives:

● for every parameter
● for every point in the batch
● for every iteration of SGD

Backpropagation algorithm. Forward pass

● Blue weight multiplies activation (ReLU output) in previous layer
● We want to know how change in blue weight affects loss
● If we double activation in previous layer, weight will have twice the effect
● Conclusion: we need to know the activations at each layer.

Backpropagation algorithm. Backward pass

To compute how a small change in a weight feeding into h3 modifies the loss, we need:
● How h3 changes the model output
● How the output changes the loss

Backpropagation algorithm. Backward pass

To compute how a small change in a weight feeding into h2 modifies the loss, we need:
● How a change in layer h2 affects h3
● How h3 changes the model output
● How the output changes the loss

Backpropagation algorithm. Backward pass

To compute how a small change in a weight feeding into h2 modifies the loss, we need:
● How a change in layer h1 affects h2
● How a change in layer h2 affects h3
● How h3 changes the model output
● How the output changes the loss

Toy example

● A series of functions composed with each other

● Unlike in neural networks it consists of scalars and not vectors and matrices

● The “activation functions” are just sin, exp, cos

Toy example

Derivatives of the activation functions

Warmup! Derivative of ReLU

Rectified Linear Unit

?

Toy example

We want to compute:

How does a small change in
𝛽2 change the loss ℓi for the
i’th example?

Gradients of composite functions

Calculating expressions by hand:

● Some expressions are very complicated
● There are some redundancies

Forward pass

1. Write this as series of
intermediate calculations

2. Compute these
intermediate quantities

Backward pass

1. Compute the derivatives of
the loss with respect to these
intermediate quantities, in
reverse order.

Backward pass

1. Compute the derivatives of
the loss with respect to these
intermediate quantities, in
reverse order.

The first are easy:

Backward pass

1. Compute the derivatives of
the loss with respect to these
intermediate quantities, in
reverse order.

The rest are computed using
the chain rule.

How does a small
change in f3 change ℓi?

How does a small
change in h3 change f3?

How does a small
change in h3 change ℓi?

Backward pass

1. Compute the derivatives of
the loss with respect to these
intermediate quantities, in
reverse order.

The rest are computed using
the chain rule.

Already computed!

𝑤3

How does a small
change in h3 change ℓi?

?

Backward pass

1. Compute the derivatives of
the loss with respect to these
intermediate quantities, in
reverse order.

The rest are computed using
the chain rule.

Already computed! -sin(f2)

?

Backward pass

1. Compute the derivatives of
the loss with respect to these
intermediate quantities, in
reverse order.

The rest are computed using
the chain rule.

Backward pass

1. Compute the derivatives of
the loss with respect to these
intermediate quantities, in
reverse order.

The rest are computed using
the chain rule.

Backward pass

1. Compute the derivatives of
the loss with respect to these
intermediate quantities, in
reverse order.

The rest are computed using
the chain rule.

Backward pass

1. Compute the derivatives of
the loss with respect to these
intermediate quantities, in
reverse order.

Chain rule all the way down!

Backward pass

2. Find how the loss changes as
a function of the parameters β
and ω.

Chain rule all the way down! Same recipe for weight and bias terms too!

Backward pass

2. Find how the loss changes as
a function of the parameters β
and ω.

Chain rule all the way down! Same recipe for weight and bias terms too!

Reading suggestion

Check 7.4 in your textbook for a discussion on the extension to matrix calculus.

Automatic (or algorithmic) differentiation

● Modern deep learning frameworks compute derivatives automatically

● You just have to specify the model and the loss

● How?
○ Each component knows how to compute its own derivative

■ ReLU knows how to compute deriv of output w.r.t. input

■ Linear function knows how to compute deriv of output w.r.t. input

■ Linear function knows how to compute deriv of output w.r.t. parameter

○ You specify the order of the components

○ It can compute the chain of derivatives

● Works with branches as long as it’s still an acyclic graph

● In a nutshell: AD takes a program which computes a value and automatically constructs a

procedure for computing derivatives of that value.

Optimisation

Training a simple model

1. Define a loss function

2. Compute the change in
parameters required to
make the loss smaller

3. Apply the change and get
new parameters

4. Repeat from (2)

Step 1: Compute derivatives (slopes of function)
with
Respect to the parameters

Gradient descent

Step 1: Compute derivatives (slopes of function)
with
Respect to the parameters

Gradient descent

Step 1: Compute derivatives (slopes of function)
with
Respect to the parameters

Gradient descent

Step 1: Compute derivatives (slopes of function)
with
Respect to the parameters

Gradient descent

Step 1: Compute derivatives (slopes of function)
with
Respect to the parameters

Step 2: Update parameters according to
rule

Gradient descent

Step 1: Compute derivatives (slopes of function)
with
Respect to the parameters

Step 2: Update parameters according to
rule

Gradient descent

Gradient descent

Step 1: Compute derivatives (slopes of function)
with
Respect to the parameters

Step 2: Update parameters according to
rule

Gradient descent

Step 1: Compute derivatives (slopes of function)
with
Respect to the parameters

Step 2: Update parameters according to
rule

Gradient descent

Gradient descent

Gradient descent

Gradient descent

Non-convex case. Gabor model

Gabor model

● Gradient descent gets to the
global minimum if we start in
the right “valley”

● Otherwise, descent to a local
minimum

● Or get stuck near a saddle
point

Solution: add noise!

● Stochastic gradient descent

● Compute gradient based on
only a subset of points – a
mini-batch

● Work through dataset
sampling without
replacement

● One pass though the data is
called an epoch

● Can escape from local minima
● Adds noise, but still sensible updates as based on part of data
● Uses all data equally
● Less computationally expensive
● Seems to find better solutions

● Doesn’t converge in traditional sense
● Learning rate schedule – decrease learning rate over time

Properties of SGD

Momentum

Goh, Why momentum really works

https://distill.pub/2017/momentum/

Weighted sum of this gradient and previous gradient

Momentum

Adaptive moment estimation. Adam

●Measure mean and pointwise squared gradient

●Normalize:

Normalized gradients

●Measure mean and pointwise squared gradient

●Normalize:

Normalized gradients

●Measure mean and pointwise squared gradient

●Normalize:

Normalized gradients

Compute mean and pointwise squared
gradients with momentum

Moderate near start of the sequence

Update the parameters

Normalized gradients

Adaptive moment estimation. Adam

Compute mean and pointwise
squared gradients with
momentum

Update the parameters

RMSprop (precursor to Adam)

How to reach me:

florin.gogianu@gmail.com

Please send unstructured feedback, since this is a new version of the lecture!

mailto:florin.gogianu@gmail.com

