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RL for plasma control in a fusion reactor (DeepMind)

Learn to control the plasma confinement magnetic field in a simulated
fusion reactor. Objective: shape and maintain high-temperature
plasma.

https://www.nature.com/articles/s41586-021-04301-9


RL for plasma control in a fusion reactor (DeepMind)

Various plasma shapes obtained by the learned controller, including a
novel “droplets” configuration.

https://www.nature.com/articles/s41586-021-04301-9


RL for manipulation of a Rubik’s Cube (OpenAI)

Learn fine control of a large number of actuators, even in the
presence of external disturbances.

https://openai.com/index/solving-rubiks-cube/


RL design of digital circuits (Nvidia)

Learn optimal placement of parallel prefix circuits such as adders
while optimising for area, delay and power.

https://arxiv.org/abs/2205.07000


Human-level Atari with DQN (DeepMind)

https://www.nature.com/articles/nature14236


Planning for a domestic robot (UTCluj)

Domestic robot ensures that switches are turned off
High-level control (actions “translated” by low-level controllers
into actuator commands)

https://ieeexplore.ieee.org/abstract/document/7759736/


Other applications

Artificial intelligence, medicine, networks of agents, economics,
etc.



Course contents

Lecture 1: Reinforcement learning problem
Optimal solution
Exact dynamic programming
Exact reinforcement learning
Approximation techniques
Approximate dynamic programming
Approximate reinforcement learning
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Part I

Reinforcement learning problem
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Lecture 1 contents

1 Introduction

2 Deterministic case

3 Stochastic case

4 Course organization



Introduction Deterministic case Stochastic case Course organization

Why learning?

Learning finds solutions that:
1 cannot be designed in advance

– the problem is too complex
(e.g., control of strongly nonlinear systems)

– the problem is incompletely known
(e.g., robotic exploration of outer space)

2 continuously improve
3 adapt to a changing environment over time

Essential for any intelligent system
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Model-based methods

We will also focus on model-based methods:
They form the basis of reinforcement learning
(e.g., dynamic programming)
Useful independently of learning, when model available,
as they address complex (e.g., nonlinear) problems
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RL principle: control view

Interact with system: measure states, apply actions
Performance feedback in the form of rewards
Inspired by human and animal learning
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RL principle: AI view

Agent embedded in an environment
that receives actions
and feeds back states and rewards
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Example: Rubik’s cube manipulation

States: joint angles, cube and
goal positions and orientations
Actions: 11 bins for each of the
20 actuated joints
Rewards:

distance to the goal state
positive reward when a goal is
reached
negative reward when a cube is
dropped
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Example: Domestic robot

States: grid coordinates, switch states
Actions: move NSEW, toggle switches
Rewards: when a switch that was on is turned off
(and penalty when an off switch is turned on!)

Example of abstraction: problem solved high-level, actions
implemented by low-level controllers
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Exact vs. approximate; deterministic vs. stochastic

Parts 1–3: exact methods – discrete states and actions
with a small number of values

intermediate step, needed to understand the more difficult
problem with approximation
useful on its own, if the problem can be abstracted into a
high-level discrete one

Parts 4 and onwards: approximate methods – states and
actions continuous, or discrete with many values

System can behave:
Deterministically – always responds the same to the same
action in the same state
Stochastically
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1 Introduction

2 Deterministic case
Markov decision process
Policy and objective

3 Stochastic case

4 Course organization
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Simple example: cleaning robot

Cleaning robot in a 1-D world
Collects trash (reward +5) or battery (reward +1)
After either object is collected, episode ends
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Cleaning robot: state & action

Robot is in a state x
and applies an action u (e.g., moves right)

State space X = {0,1,2,3,4,5}
Action space U = {−1,1} = {left, right}
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Cleaning robot: transition & reward

Robot reaches a new state x ′

and receives a reward r = quality of the transition
(here, +5 for collecting trash)
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Cleaning robot: transition & reward functions

Transition function (system behavior):

x ′ = f (x ,u) =

{
x if x terminal (0 or 5)
x + u otherwise

Reward function (immediate performance):

r = ρ(x ,u) =


1 if x = 1 and u = −1 (battery)
5 if x = 4 and u = 1 (trash)
0 otherwise

Note: Terminal states cannot be exited
and are not rewarded!
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A note on rewards

In fact, rewards depend on the transition r = ρ̃(x ,u, x ′)

But x ′ is determined by (x ,u) and can be substituted in the
formula:

ρ̃(x ,u, x ′) = ρ̃(x ,u, f (x ,u)) = ρ(x ,u)

r = ρ(x ,u) =


1 if x = 1 and u = −1 (battery)
5 if x = 4 and u = 1 (trash)
0 otherwise
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Deterministic Markov decision proces

Deterministic Markov decision process
Consists of:

1 State space X
2 Action space U
3 Transition function x ′ = f (x ,u), f : X × U → X
4 Reward function r = ρ(x ,u), ρ : X × U → R



Introduction Deterministic case Stochastic case Course organization

1 Introduction

2 Deterministic case
Markov decision process
Policy and objective

3 Stochastic case

4 Course organization



Introduction Deterministic case Stochastic case Course organization

Policy

Policy h: maps states x to actions u (state feedback)

Example: h(0) = ∗ (terminal state, action irrelevant),
h(1) = −1, h(2) = 1, h(3) = 1, h(4) = 1, h(5) = ∗
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Cleaning robot: return (value)

Take h that always goes right

V h(2) = γ0r1 + γ1r2 + γ2r3 + γ30 + γ40 + . . .

= γ2 · 5

Since x3 is terminal, all subsequent rewards are 0
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General return and objective

Find h that from any x0 maximizes the discounted return:

V h(x0) =
∞∑

k=0
γk rk+1 =

∞∑
k=0

γkρ(xk ,h(xk ))

Note: There are other types of return!
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Discount factor

Discount factor γ ∈ [0,1):
induces a “pseudo-horizon” for optimization
bounds the infinite sum
represents increasing uncertainty about the future
helps algorithm convergence

To choose γ, trade-off between:
1 Long-term solution quality (large γ)
2 Problem “simplicity” (small γ)

In practice, γ large enough to not ignore important rewards
along system trajectories
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Example: choosing γ for a first-order linear system

Step response of a first-order linear system:

Value of γ so that rewards in steady state are visible from the
initial state?



Introduction Deterministic case Stochastic case Course organization

Solution: choosing γ for a first-order linear system

For k ≈ 60, γk should not be too small, e.g.

γ60 ≥ 0.05

γ ≥ 0.051/60 ≈ 0.9513

γk for γ = 0.96:
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1 Introduction

2 Deterministic case

3 Stochastic case
Basics of probabilities
RL problem in the stochastic case

4 Course organization
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Discrete random variables

Discrete variable x can take n values, in the set
X = {x1, x2, . . . , xn}.
Each value is associated with a probability
p(x1),p(x2), . . . ,p(xn), where p(xi) ∈ [0,1],

∑
i p(xi) = 1.

p : X → [0,1] is the probability mass function (PMF).

Example: The value of a die is a discrete random variable, with
n = 6 possible values, x1 = 1, . . . , x6 = 6. For a fair die,
p(xi) =

1
6 , ∀i = 1, . . . ,6

Note: n can grow to infinity; mathematical description remains
valid
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Expected value (expectation)

Average of the values, weighted by their probabilities; the
value “expected” a priori, given the probability distribution:

E {x} =
∑
x∈X

p(x)x

Example: For a fair die, the expectation is

E {x} =
1
6

1 +
1
6

2 + . . .+
1
6

6 = 7/2

A function with a random variable as an argument,
g : X → R is itself a random variable, with expectation:

E {g(x)} =
∑
x∈X

p(x)g(x)

Example: If faces 1-4 win 1$, and faces 5-6 win 10$,

E {x} =
1
6

1 +
1
6

1 +
1
6

1 +
1
6

1 +
1
6

10 +
1
6

10 = 4$
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Independence

Random variables x , y are independent if the probability of
vector z = (x , y) is pz(z) = px(x) · py (y), where pz ,px ,py are
the PMFs of the three variables. Note: concept extends to any
number of variables

Examples:
The values of a die rolled at different times are
independent. Among others, the probability of getting a 6 is
independent of how many 6s were rolled in previous steps
Watch out for gambler’s fallacy!
Temperature values on two consecutive days are not
independent! The system is dynamic (has inertia), current
values depend on previous ones
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Stochastic case

State no longer evolves deterministically, but
stochastically

E.g. cleaning robot “slips” and:
moves in the intended direction with probability (w.p.) 0.8
stays in place w.p. 0.15
moves in the opposite direction w.p. 0.05
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Stochastic cleaning robot: transition function

f̃ (x ,u, x ′) = probability of reaching x ′

after u has been applied in x

f̃ (x ,u, x ′) =



1 if x terminal and x ′ = x
0.8 if x non-terminal, x ′ = x + u
0.15 if x non-terminal, x ′ = x
0.05 if x non-terminal, x ′ = x − u
0 otherwise
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Stochastic cleaning robot: reward function

Transition no longer fully determined by (x ,u)
⇒ the next state x ′ must be explicitly included
ρ̃(x ,u, x ′) = reward on reaching x ′

as a result of action u in x

For cleaning robot:

ρ̃(x ,u, x ′) =


5 if x ̸= 5 and x ′ = 5
1 if x ̸= 0 and x ′ = 0
0 otherwise
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Stochastic Markov decision process

Stochastic Markov decision process
1 State space X
2 Action space U
3 Transition function f̃ (x ,u, x ′), f̃ : X × U × X → [0,1]
4 Reward function ρ̃(x ,u, x ′), ρ̃ : X × U × X → R
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Objective in stochastic case

Find h that from any x0 maximizes expected discounted return:

V h(x0) = Ex1,x2,...

{ ∞∑
k=0

γk ρ̃(xk ,h(xk ), xk+1)

}
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Policy, discount in stochastic case

Policy h(x) has the same structure,
discount factor γ has the same meaning

as in the deterministic case
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Example: machine replacement

Machine with n different states = wear levels
1=pristine, n=fully degraded
Produces revenue vi operating in state i
Stochastic wear: wear level i transitions to j > i w.p. pij ,
remains i w.p. pii = 1 − pi,i+1 − ...− pi,n

Machine can be instantaneously replaced at any time,
paying cost c
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Machine replacement: State and action spaces

State space X = {1,2, . . . ,n}
Action space U = {Wait,Replace}
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Machine replacement: Transition and reward functions

Transition function:

f̃ (x = i ,u, x ′ = j) =


pij if u = W and i ≤ j
1 if u = R and j = 1
0 in any other situation

Reward function:

ρ̃(x = i ,u, x ′ = j) =

{
vi if u = W
−c + v1 if u = R
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Machine replacement: motivation

The RL framework provides a way to formalize and find
an optimal decision policy that
maximizes the long-term value of the machine

V h(x0) = Ex1,x2,...

{
∞∑

k=0
γk ρ̃(xk ,h(xk), xk+1)

}
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Key terms in this lecture

reinforcement learning, RL
state
action
reward
transition function
reward function
Markov decision process
policy
return
discount factor
random variable
probability mass function
expected value
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Bibliography

Mandatory material: course slides

Optional books:
R. Sutton, A. Barto, Reinforcement Learning: An
Introduction, ed. 2, 2018.
D. Bertsekas, Dynamic Programming and Optimal Control,
vol. 2, Athena Scientific, 2012.
D. Bertsekas, Reinforcement Learning and Optimal
Control, Athena Scientific, 2024.
L. Buşoniu, Reinforcement learning and dynamic
programming for control, 2012 (lecture notes).
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Logistics

Grading:
50% labs
50% exam
10% lecture quizzes

Lab rules:
labs mandatory before joining the exam
solution = PDF report + code: max 10p if submitted on
time, max 5p if late
solutions must be validated through discussions
any copied or LLM-generated lab ⇒ ineligible and re-enroll
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Website, contact

http://busoniu.net/teaching/rl2024
Email: lucian@busoniu.net, florin.gogianu@gmail.com

Info
Course lectures (slides)
Labs
Schedule
etc.
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Quiz

Quiz
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