Training Neural Networks

Florin Gogianu, Technical University of Cluj-Napoca, Bitdefender

April 13, 2022

Inspired by CS231n - Stanford, CS421 - University of Toronto, NYU-DLSP21 - University of New York. Some slides adapted from Stefan Postăvaru.

Before we begin, some useful resources

- ► Learn X in Y minutes, X=Python
- Learn what tensors are in PyTorch
- ► Watch this tutorial.

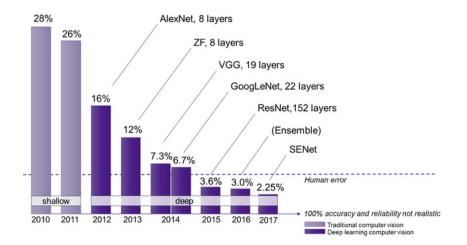
1. Optimize large, deep neural networks...

- 1. Optimize large, deep neural networks...
- 2. ...for learning *useful* representations.

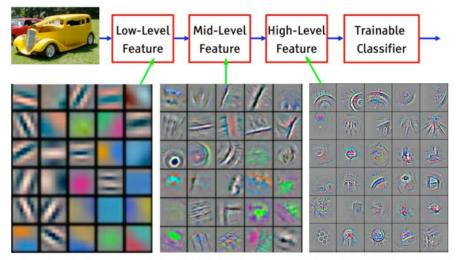
Terminology

- **Supervised learning:** labeled data points of the correct behaviour.
- Reinforcement learning: receive some reward signal and try to maximize it by improving the model's behaviour
- Unsupervised learning: no labels the aim is discovering interesing patterns in the data and usefull representations

Supervised Learning



Supervised Learning



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Unsupervised Learning. DALL-E

the painting American Gothic, with two dogs holding pepperoni pizza instead of the farmers holding a pitchfork

 \rightarrow

Created with DALL·E, an AI system by OpenAI

Adam × DALL·E

"a photo of dog wearing a 1960 science fiction space helmet"

Created with DALL·E, an AI system by OpenAI

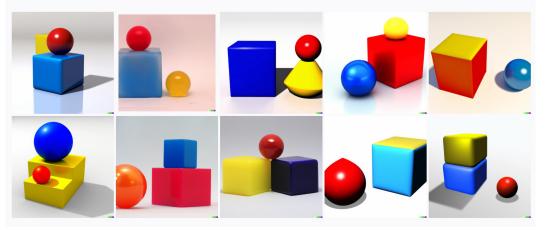
Adam × DALL·E

"a 35 millimeter macro photo of a bald eagle sitting on top of a space station"

Adam × DALL·E

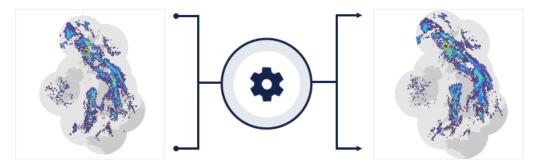
"a 3D rendering of playing cards with 4 aces being held by a man playing poker"

Report issue 🏳



Unsupervised Learning. Nowcasting

Nowcasting the next hour of rain ¹



Context Past 20mins

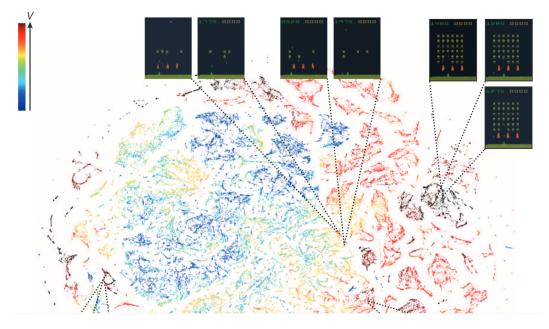
Deep Generative Model of Rain

Nowcast Next 90mins

Reinforcement Learning

Emergent Tool Use in Hide'n'Seek

Reinforcement Learning



Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

Computational Graphs

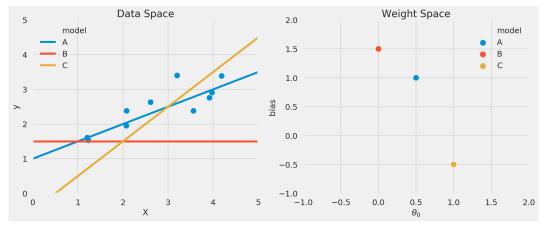
Neural Networks in practice. It's just Linear Algebra

A complete example

Optimization Algorithms for Neural Networks

Wild beasts and how to tame them?

Linear regression



Three different linear models in the data and weight space ¹.

$$y = \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x} + b$$

¹following Grosse, Ba - CS421, 2019

• Linear model $y = \theta^{T} \phi(\mathbf{x})$, with Mean Squared Error objective function $\mathcal{L}(\theta) = (t - y)^2$

Linear model $y = \theta^{\intercal} \phi(\mathbf{x})$, with Mean Squared Error objective function $\mathcal{L}(\theta) = (t - y)^2$

• Has a nice closed form solution: $(\Phi^{\mathsf{T}}\Phi)^{-1}\Phi^{\mathsf{T}}t$

- Linear model $y = \theta^{T} \phi(\mathbf{x})$, with Mean Squared Error objective function $\mathcal{L}(\theta) = (t y)^{2}$
- Has a nice closed form solution: $(\Phi^{\intercal}\Phi)^{-1}\Phi^{\intercal}t$
- But the solution can also be found iteratively:
 - Compute the gradient of $\mathcal{L}(\theta)$ w.r.t. θ :

$$\nabla_{\boldsymbol{\theta}} \mathcal{L} = (t - y) \phi(\boldsymbol{x})$$

Linear model $y = \theta^{T} \phi(\mathbf{x})$, with Mean Squared Error objective function $\mathcal{L}(\theta) = (t - y)^{2}$

• Has a nice closed form solution: $(\Phi^{\intercal}\Phi)^{-1}\Phi^{\intercal}t$

But the solution can also be found iteratively:

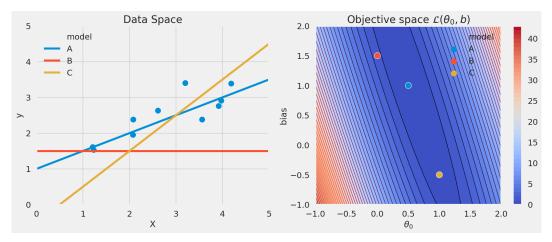
• Compute the gradient of $\mathcal{L}(\theta)$ w.r.t. θ :

$$\nabla_{\boldsymbol{\theta}} \mathcal{L} = (t - y) \phi(\boldsymbol{x})$$

Perform gradient descent:

$$\boldsymbol{\theta}_{j+1} \leftarrow \boldsymbol{\theta}_j - \alpha \nabla_{\boldsymbol{\theta}_j} \mathcal{L}$$

Why do gradient descent if we can find the minimum analytically?



Three different linear models in the data and objective $\mathcal{L}(\theta_0, b) = [t - f(x; \theta_0, b)]^2$ space.

following Grosse, Ba - CS421, 2019

Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

Computational Graphs

Neural Networks in practice. It's just Linear Algebra

A complete example

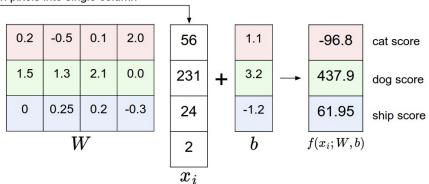
Optimization Algorithms for Neural Networks

Wild beasts and how to tame them?

Linear classification

stretch pixels into single column

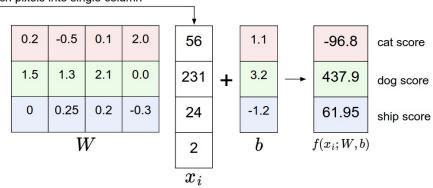
input image



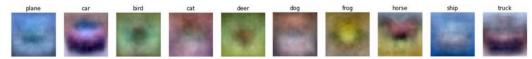
Linear classification

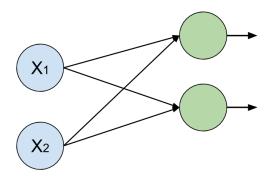
stretch pixels into single column

input image



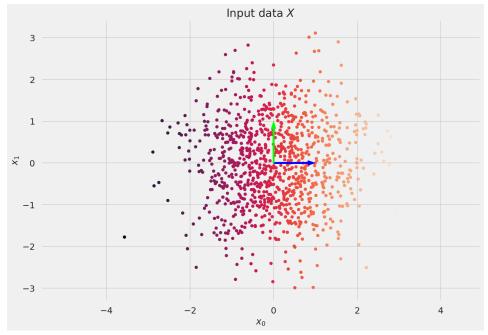
Learned weights:





A linear model with four weights. Also can be seen as two stacked "neurons" without activation functions.

Linear case: y = Wx



 \blacktriangleright y = Wx

▶ What is **W** actually doing to **x**?

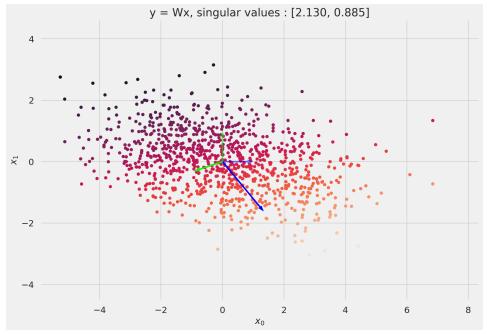
¹Mathematics for Machine Learning, ch. 4

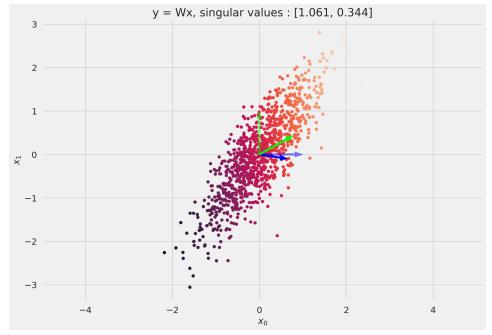
 \blacktriangleright y = Wx

▶ What is *W* actually doing to *x*?

▶ Let's perform singular value decomposition¹ for some intuition:

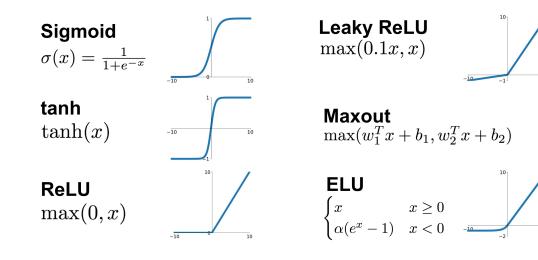
¹Mathematics for Machine Learning, ch. 4





We can scale, rotate and reflect data. Can we do more?

Non-linear functions¹

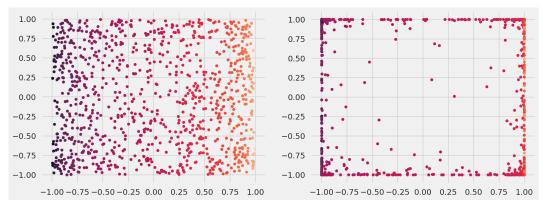


10

10

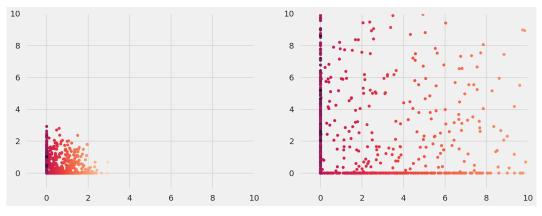
¹from CS231n, lecture 4, 2019

Non-linear transformation



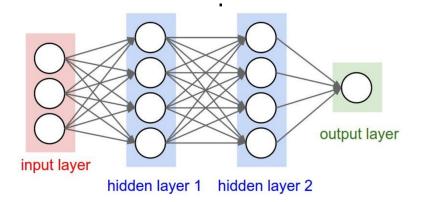
tanh(Sx) activation function with two different scale factors (left=1.0, right=5.0).

Non-linear transformation



ReLU(Sx) activation function with two different scale factors (left=1.0, right=5.0).

Neural Networks, finally

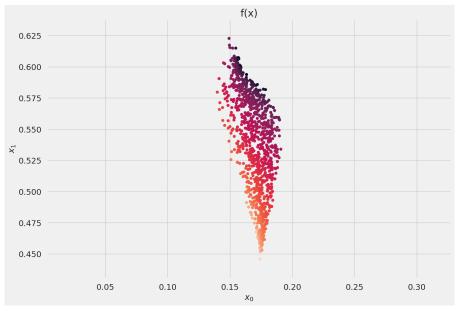


Typical "three-layer" or "two-hidden-layer" neural network

• Linear case:
$$f(x) = Wx$$

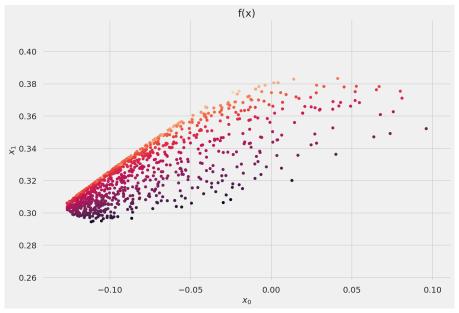
• Neural Net:
$$f(\mathbf{x}) = \mathbf{W}_3 \sigma(\mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x}))$$

NN transformation



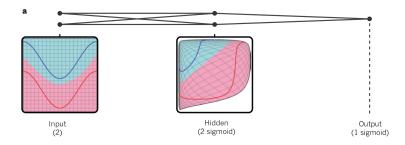
Transformation performed by a 5-layer random neural network

NN transformation



Transformation performed by a 5-layer random neural network

Warping space. Why is it usefull.



Space warping by a one hidden layer neural network for learning a linearized representation of the decision boundary¹.

¹from LeCun 2015, Nature.

Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

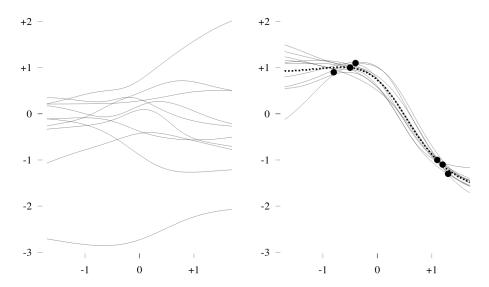
Computational Graphs

Neural Networks in practice. It's just Linear Algebra

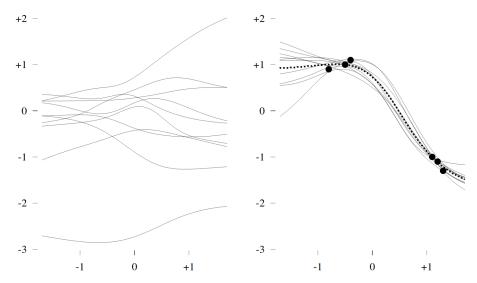
A complete example

Optimization Algorithms for Neural Networks

Wild beasts and how to tame them?



¹Radford M. Neal, Bayesian Learning for Neural Networks



Sample 2.6 million networks and you're done!

¹Radford M. Neal, Bayesian Learning for Neural Networks

► Can we do better?

¹dsdeepdive.blogspot.com

- Can we do better?
- Use the lesson from the iterative linear regression

¹dsdeepdive.blogspot.com

- Can we do better?
- Use the lesson from the iterative linear regression
- Compute the gradient of $\mathcal{L}(\mathcal{D}, \theta)$ w.r.t. θ ,

¹dsdeepdive.blogspot.com

Can we do better?

Use the lesson from the iterative linear regression

• Compute the gradient of $\mathcal{L}(\mathcal{D}, \theta)$ w.r.t. θ ,

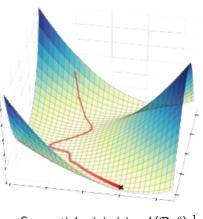
► Find incremental solutions that better explain the data. using:

$$\boldsymbol{\theta}_{j+1} \leftarrow \boldsymbol{\theta}_j - \alpha \nabla_{\boldsymbol{\theta}_j} \mathcal{L}$$

sequentially find:

$$\theta_0, \theta_1, ..., \theta_k$$

such that $L(\mathcal{D}, \theta)$ decreases.



Sequential minimizing $L(\mathcal{D}, \theta)^{-1}$

¹dsdeepdive.blogspot.com

The problem...

Computing the gradient of $\mathcal{L}(\mathcal{D}, \theta)$ w.r.t. θ can quickly get tedious and inflexible:

- Additional cost functions, regularization loss, etc...
- ▶ We would want to quickly experiment with different layers and activations.

But it's not that complicated¹

```
import numpy as np
     from numpy.random import randn
 3
     N, D_in, H, D_out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
     w1, w2 = randn(D_in, H), randn(H, D_out)
 7
 8
     for t in range(2000):
 9
       h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y \text{ pred} = h.dot(w2)
       loss = np.square(y pred - y).sum()
       print(t, loss)
       grad v pred = 2.0 * (v pred - v)
14
       grad_w2 = h.T.dot(grad_y_pred)
16
       grad_h = grad_y_pred.dot(w2.T)
       grad_w1 = x.T.dot(grad_h * h * (1 - h))
18
19
       w1 -= 1e-4 * grad_w1
20
       w2 = 1e - 4 * grad w2
```

¹from CS231n, lecture 4, 2019

Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

Computational Graphs

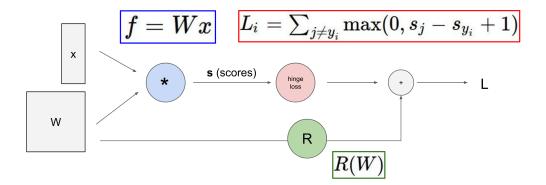
Neural Networks in practice. It's just Linear Algebra

A complete example

Optimization Algorithms for Neural Networks

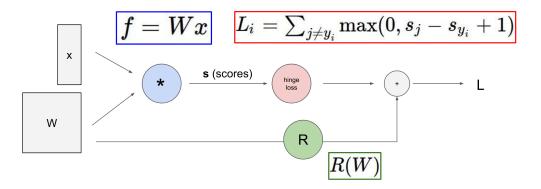
Wild beasts and how to tame them?

Computation graphs + automatic differentation



¹Grosse, Ba, CS421

Computation graphs + automatic differentation



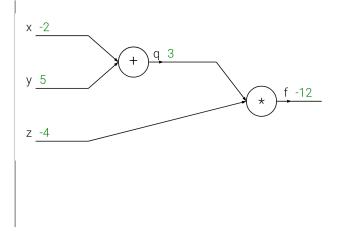
Automatic differentiation: takes a program which computes a value, and automatically constructs a procedure for computing derivatives of that value¹.

¹Grosse, Ba, CS421

$$f(x, y, z) = (x + y)z$$

¹from CS231n, lecture 4, 2019

$$f(x, y, z) = (x + y)z$$



¹from CS231n, lecture 4, 2019

$$f(x, y, z) = (x + y)z$$

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

$$\frac{\partial f}{\partial q} = \frac{\partial f}{\partial z} = \frac{\partial f}{\partial z} = q$$

$$\frac{\partial f}{\partial z} = \frac{\partial f}{$$

We v

 $\overline{\partial x}^{'}, \overline{\partial y}^{'}, \overline{\partial z}$

¹from CS231n, lecture 4, 2019

$$f(x, y, z) = (x + y)z$$

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$
We want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

¹from CS231n, lecture 4, 2019

$$f(x, y, z) = (x + y)z$$

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$
We want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

¹from CS231n, lecture 4, 2019

q

We

$$f(x, y, z) = (x + y)z$$

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

$$z = \frac{-4}{3}$$
where want:
$$\frac{\partial f}{\partial f} \frac{\partial f}{\partial f} \frac{\partial f}{\partial f}$$

 $\overline{\partial x}^{'}, \overline{\partial y}^{'}, \overline{\partial z}$

¹from CS231n, lecture 4, 2019

$$f(x, y, z) = (x + y)z$$

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$
We want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

¹from CS231n, lecture 4, 2019

q

We

$$f(x, y, z) = (x + y)z$$

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

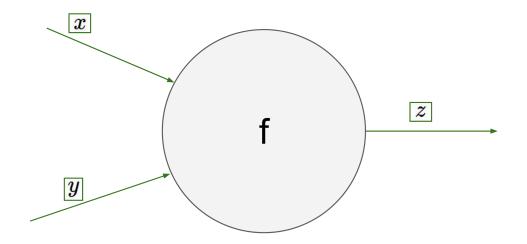
$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

$$z = \frac{4}{3}$$
where want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

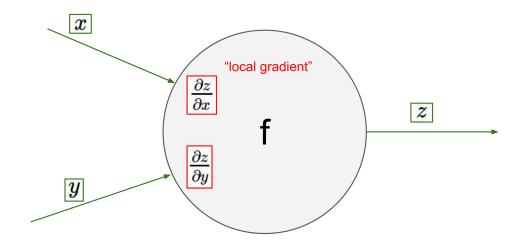
¹from CS231n, lecture 4, 2019

Link: Automatic Differentiation in PyTorch



¹from CS231n, lecture 4, 2019

$\mathsf{Backprop}^1$



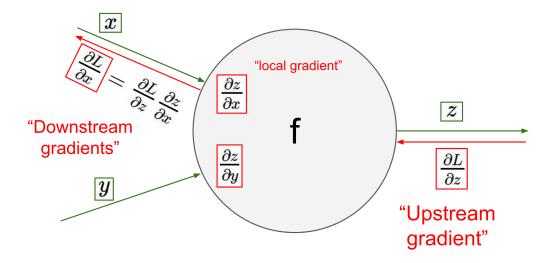
¹from CS231n, lecture 4, 2019

Backprop¹



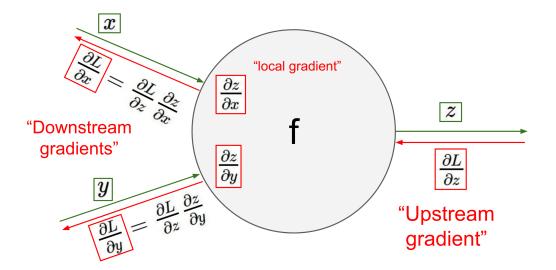
¹from CS231n, lecture 4, 2019

$\mathsf{Backprop}^1$



¹from CS231n, lecture 4, 2019

$\mathsf{Backprop}^1$



¹from CS231n, lecture 4, 2019

Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

Computational Graphs

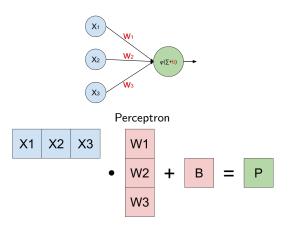
Neural Networks in practice. It's just Linear Algebra

A complete example

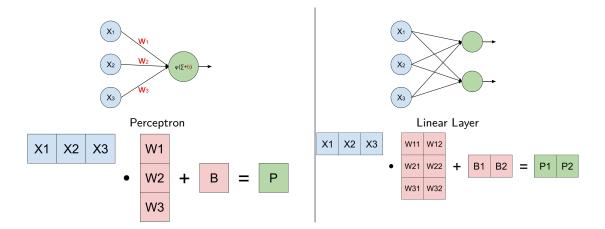
Optimization Algorithms for Neural Networks

Wild beasts and how to tame them?

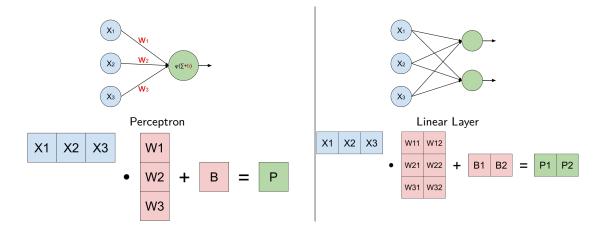
NN = Tensor Operations



NN = Tensor Operations



NN = Tensor Operations



How about the case with multiple input tensors?

It's straightforward in PyTorch

```
import torch
import torch.nn as nn
model = nn.Sequential(
    nn.Linear(input_dim, 64),
    nn.ReLU(),
    nn.Linear(64,64),
    nn.ReLU(),
    nn.Linear(64,out_dim)
)
dummy_inputs = torch.randn((1, input_dim))
```

```
prediction = model(dummy_inputs)
```

Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

Computational Graphs

Neural Networks in practice. It's just Linear Algebra

A complete example

Optimization Algorithms for Neural Networks

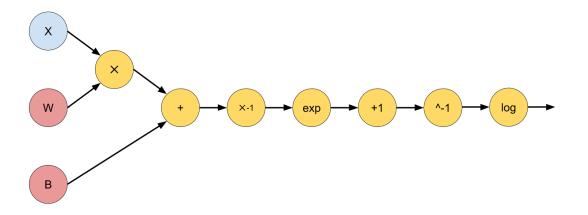
Wild beasts and how to tame them?

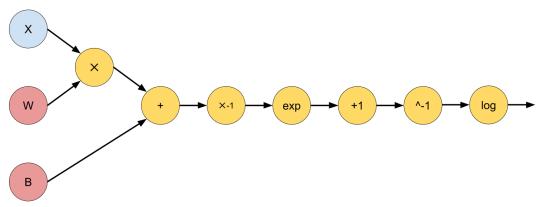
Computation Graph

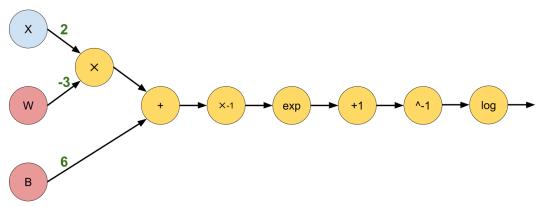
$$L(x, w, b) = log\left(\frac{1}{e^{-(xw+b)} + 1}\right)$$

Computation Graph

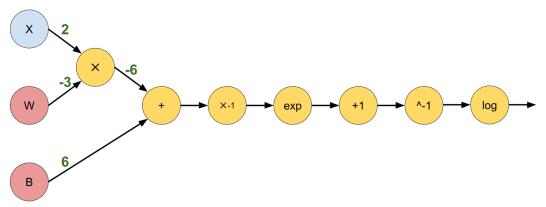
$$L(x, w, b) = log\left(\frac{1}{e^{-(xw+b)}+1}\right)$$



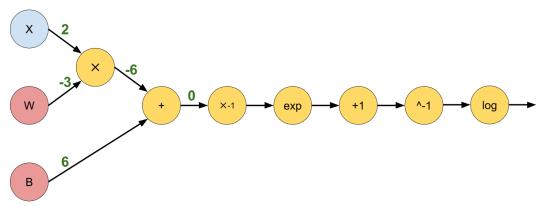




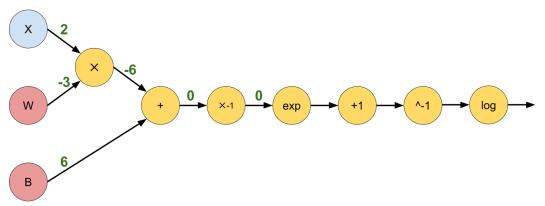
$$x = 2, w = -3, b = 6$$



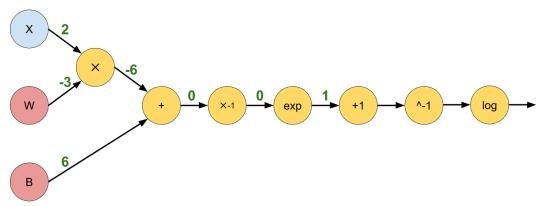
$$x = 2, w = -3, b = 6$$



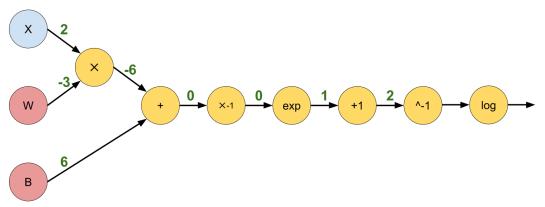
$$x = 2, w = -3, b = 6$$



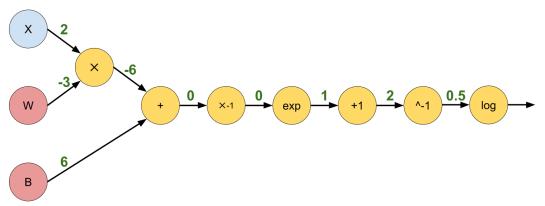
$$x = 2, w = -3, b = 6$$



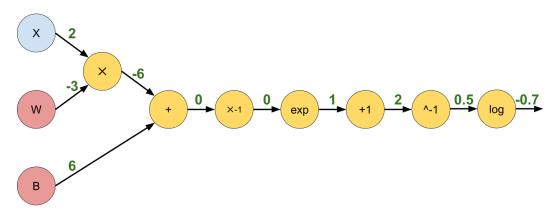
$$x = 2, w = -3, b = 6$$



$$x = 2, w = -3, b = 6$$

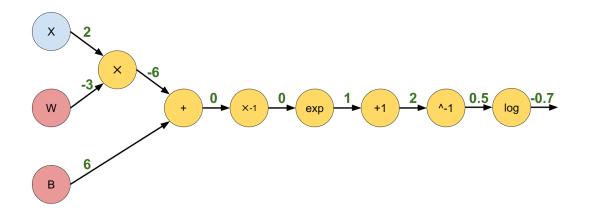


$$x = 2, w = -3, b = 6$$

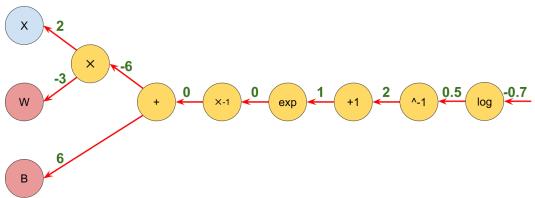


$$x = 2, w = -3, b = 6$$

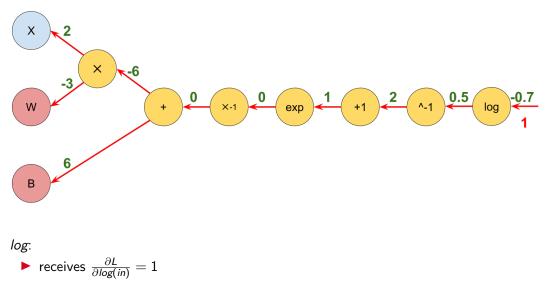
$$L(2, -3, 6) \simeq 0.7$$

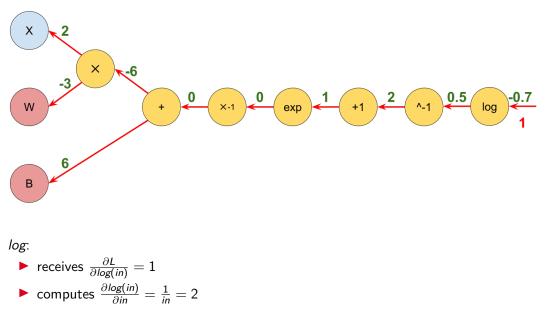


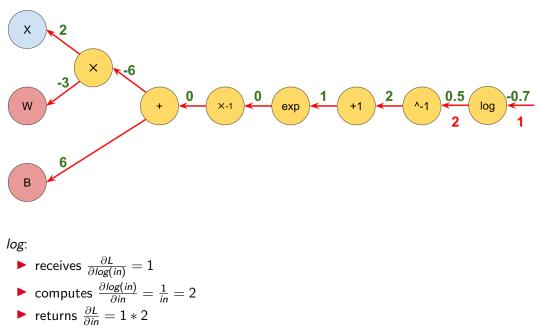
Task: Compute $\nabla L = \begin{bmatrix} \frac{\partial L}{\partial x}, \frac{\partial L}{\partial w}, \frac{\partial L}{\partial b} \end{bmatrix}$

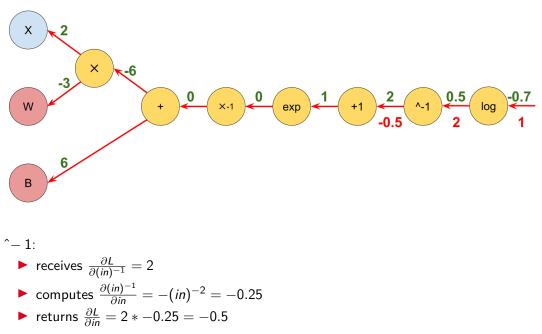


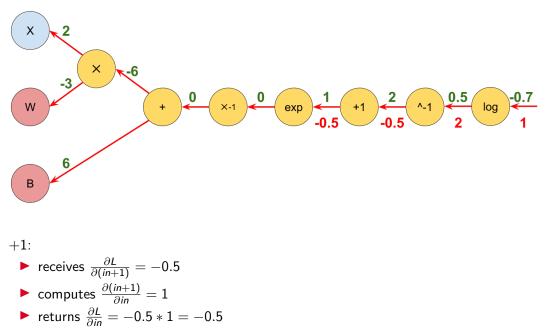
Task: Compute $\nabla L = \begin{bmatrix} \frac{\partial L}{\partial x}, \frac{\partial L}{\partial w}, \frac{\partial L}{\partial b} \end{bmatrix}$ Chain-rule \implies each sub-module M: \blacktriangleright receives $\frac{\partial L}{\partial M(in)}$ \flat computes $\frac{\partial M(in)}{\partial in_k}$ \flat returns $\frac{\partial L}{\partial in_k} = \frac{\partial L}{\partial M(in)} \frac{\partial M(in)}{\partial in_k}$

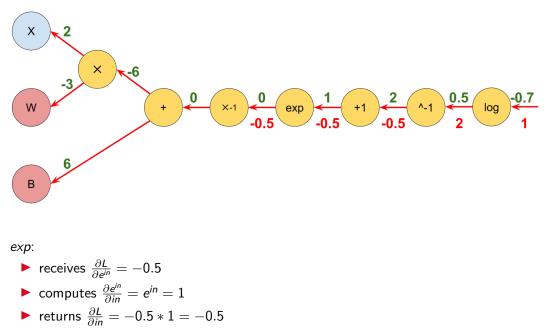


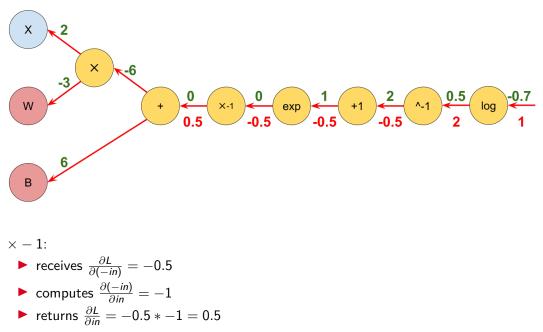


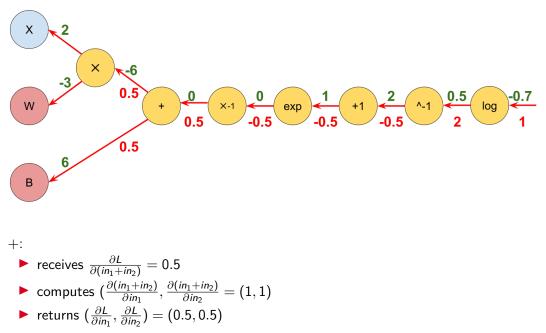


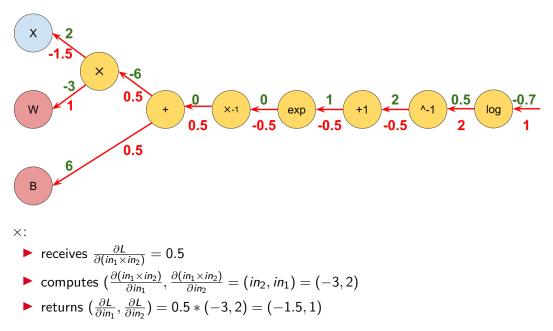


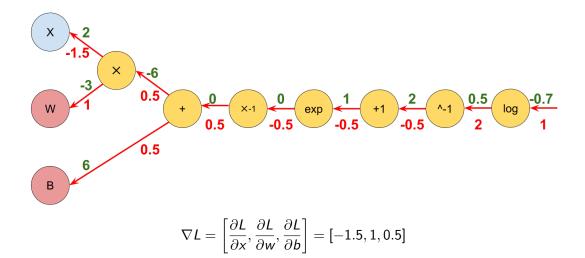












Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

Computational Graphs

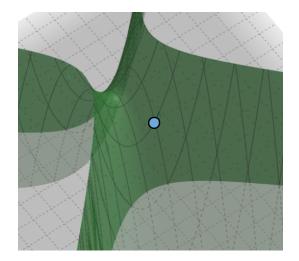
Neural Networks in practice. It's just Linear Algebra

A complete example

Optimization Algorithms for Neural Networks

Wild beasts and how to tame them?

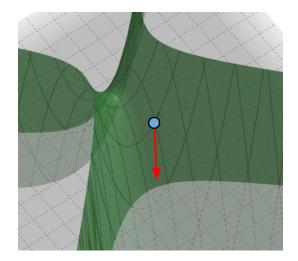
Gradient



$$\theta_0 = [2, 1]$$
$$L(\theta_0) = 4$$

$$L: \mathbb{R}^2 \to \mathbb{R}$$
$$L(x, y) = x^2 - y^2 - 2x + 5y$$

Gradient



$$\theta_0 = [2, 1]$$

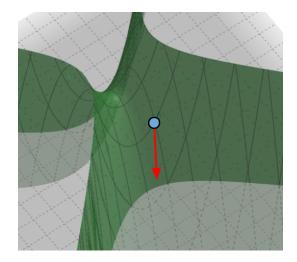
$$L(\theta_0) = 4$$

$$\nabla L = \left[\frac{\partial L}{\partial x}, \frac{\partial L}{\partial y}\right]$$

$$\frac{\partial L}{\partial x} = 2x - 2, \frac{\partial L}{\partial y} = -2y + 5$$

$$L: \mathbb{R}^2 \to \mathbb{R}$$
$$L(x, y) = x^2 - y^2 - 2x + 5y$$

Gradient



$$\theta_0 = [2, 1]$$

$$L(\theta_0) = 4$$

$$\nabla L = \left[\frac{\partial L}{\partial x}, \frac{\partial L}{\partial y}\right]$$

$$\frac{\partial L}{\partial x} = 2x - 2, \frac{\partial L}{\partial y} = -2y + 5$$

$$\nabla L(\theta_0) = [2, 3]$$

$$\theta_1 = \theta_0 - 0.1 \nabla L(\theta_0) = [1.8, 0.7]$$

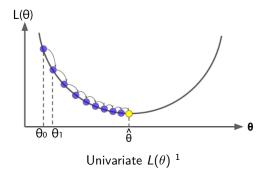
$$L(\theta_1) = 2.65$$

$$L: \mathbb{R}^2 \to \mathbb{R}$$
$$L(x, y) = x^2 - y^2 - 2x + 5y$$

Gradient Descent

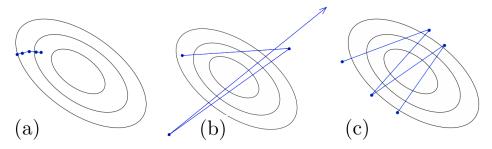
- $\blacktriangleright L: \mathbb{R}^k \to \mathbb{R}, \min_{\theta} \{L(\theta)\}$
- $\blacktriangleright \text{ choose a learning rate } \eta \in \mathbb{R}$
- **>** sample randomly θ_0
- repeat until convergence:

$$\theta_{i+1} = \theta_i - \eta \nabla L(\theta_i)$$

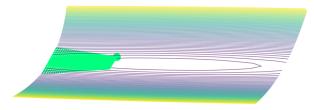


¹tigerthinks.com

Problems

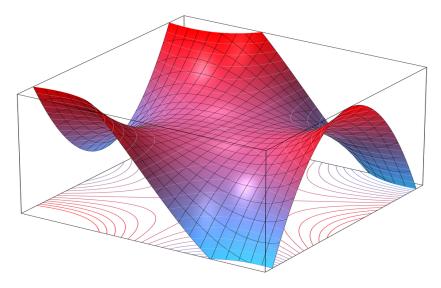


Slow Convergence (small η); Divergence (high η); Oscillations (high η)¹



Highly different curvature

Problems



Near-flat Dimensions

Momentum

- Use past information to take the current action
- Consistent small step in a direction \implies encourage a bigger step
- Oscillating moves dampen movement
- Straightforward way to achieve this: use the previous update direction

Plain gradient descent:

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t - \alpha \nabla_{\boldsymbol{\theta}_t} \mathcal{L}$$

With momentum:

Adaptive Learning-Rate. Adam

- Use gradient component $|\nabla L(\theta)_k|$ as signal strength.
- Amplify the parameter update step inversely proportional to signal strength.
- ▶ Take into account the entire history, emphasising recent information.

Adaptive Learning-Rate. Adam

- Use gradient component $|\nabla L(\theta)_k|$ as signal strength.
- Amplify the parameter update step inversely proportional to signal strength.
- ▶ Take into account the entire history, emphasising recent information.

$$\begin{aligned} \mathbf{v}_t &\leftarrow \mu \mathbf{v}_{t-1} + (1-\alpha) \nabla_{\boldsymbol{\theta}_t} \mathcal{L} \\ \mathbf{s}_t &\leftarrow \gamma \mathbf{s}_{t-1} + (1-\gamma) [\nabla_{\boldsymbol{\theta}_t} \mathcal{L}]^2 \end{aligned}$$

The parameter update is then:

$$oldsymbol{ heta}_{t+1} \leftarrow oldsymbol{ heta}_t - rac{lpha}{\sqrt{oldsymbol{s}_t + \epsilon}}oldsymbol{oldsymbol{v}}_t$$

It's easy in PyTorch

```
model = YourFancyNeuralNetwork()
optim = torch.optim.Adam(model.parameters(), ...)
for inputs, targets in data_loader:
    predictions = model(inputs)
    loss = torch.mean_squared_error(predictions, targets)
    model.zero_grad() # ignore this for now
    loss.backward() # computes gradients
    optim.step() # change parameters accordingly
```

In a nutshell

- Compute loss function on training data $L = \frac{1}{n} \sum_{i} l(h_{\theta}(x_i), y_i)$
- Backpropagate gradient
- Apply optimization step
- Stop when the error stops decreasing (or any other metric you are interested in stops improving)

Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

Computational Graphs

Neural Networks in practice. It's just Linear Algebra

A complete example

Optimization Algorithms for Neural Networks

Wild beasts and how to tame them?

A fully connected network with one hidden layer followed by a non-linear function can approximate any function from one finite-dimensional space to another in the limit of the width of the hidden layer (Hornik et al., 1990).

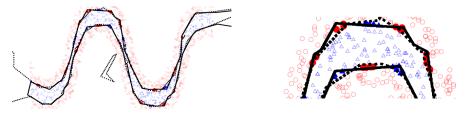
A fully connected network with one hidden layer followed by a non-linear function can approximate any function from one finite-dimensional space to another in the limit of the width of the hidden layer (Hornik et al., 1990).

Potentially the hidden layer can get exponentially large. Eg.: no of possible binary functions on vectors $\mathbf{v} \in \{0,1\}^n$ is 2^{2^n} , requiring $O(2^n)$ units, each responding to a single input.

► How does depth relate to UAT?

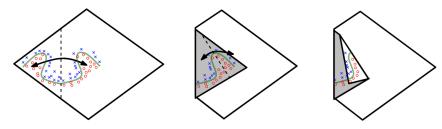
- ► How does depth relate to UAT?
- There exist families of functions which can be approximated efficiently (in numbers of parameters) by deep networks.

- How does depth relate to UAT?
- There exist families of functions which can be approximated efficiently (in numbers of parameters) by deep networks.
- Montufar et al. 2014:



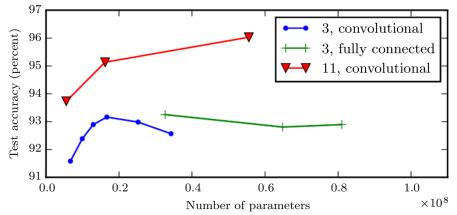
A network with ReLU units learns piece-wise linear functions at each layer and deep networks reuse these computations exponentially more often than shallow networks. Solid line is a 20 units, one layer NN and dotted line is a 2 layers, 10 units each NN.

- How does depth relate to UAT?
- There exist families of functions which can be approximated efficiently (in numbers of parameters) by deep networks.
- Montufar et al. 2014:



A network with ReLU units creates mirror images of the function computed at the input of some hidden unit resulting in increasingly expressive networks

- How does depth relate to UAT?
- There exist families of functions which can be approximated efficiently (in numbers of parameters) by deep networks.
- ► Goodfellow et al. 2014:



Generalization correlates with depth, not number of parameters.

The new generalization theory

Is the classic generalization theory still valid?