
Training Neural Networks

Florin Gogianu,
Technical University of Cluj-Napoca,

Bitdefender

April 13, 2022

Inspired by CS231n - Stanford, CS421 - University of Toronto, NYU-DLSP21 - University of New
York. Some slides adapted from Ștefan Postăvaru.

1 / 61

Before we begin, some useful resources

▶ Learn X in Y minutes, X=Python
▶ Learn what tensors are in PyTorch
▶ Watch this tutorial.

2 / 61

https://learnxinyminutes.com/docs/python/
https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

Goals

1. Optimize large, deep neural networks...

2. ...for learning useful representations.

3 / 61

Goals

1. Optimize large, deep neural networks...
2. ...for learning useful representations.

3 / 61

Terminology

▶ Supervised learning: labeled data points of the correct behaviour.
▶ Reinforcement learning: receive some reward signal and try to maximize it by

improving the model’s behaviour
▶ Unsupervised learning: no labels - the aim is discovering interesing patterns in

the data and usefull representations

4 / 61

Supervised Learning

5 / 61

Supervised Learning

5 / 61

Unsupervised Learning. DALL-E

6 / 61

Unsupervised Learning. Nowcasting

Nowcasting the next hour of rain 1

1DeepMind, 2022
8 / 61

https://deepmind.com/blog/article/nowcasting

Reinforcement Learning

Emergent Tool Use in Hide’n’Seek

9 / 61

https://openai.com/blog/emergent-tool-use/

Reinforcement Learning

10 / 61

Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

Computational Graphs

Neural Networks in practice. It’s just Linear Algebra

A complete example

Optimization Algorithms for Neural Networks

Wild beasts and how to tame them?

11 / 61

Linear regression

Three different linear models in the data and weight space 1.

y = θ⊺x + b

1following Grosse, Ba - CS421, 2019
12 / 61

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/

Linear models

▶ Linear model y = θ⊺ ϕ(x), with Mean Squared Error objective function
L(θ) = (t− y)2

▶ Has a nice closed form solution: (Φ⊺Φ)−1Φ⊺t
▶ But the solution can also be found iteratively:

▶ Compute the gradient of L(θ) w.r.t. θ:

∇θL = (t− y)ϕ(x)

▶ Perform gradient descent:
θj+1 ← θj − α∇θjL

▶ Why do gradient descent if we can find the minimum analytically?

13 / 61

Linear models

▶ Linear model y = θ⊺ ϕ(x), with Mean Squared Error objective function
L(θ) = (t− y)2

▶ Has a nice closed form solution: (Φ⊺Φ)−1Φ⊺t

▶ But the solution can also be found iteratively:
▶ Compute the gradient of L(θ) w.r.t. θ:

∇θL = (t− y)ϕ(x)

▶ Perform gradient descent:
θj+1 ← θj − α∇θjL

▶ Why do gradient descent if we can find the minimum analytically?

13 / 61

Linear models

▶ Linear model y = θ⊺ ϕ(x), with Mean Squared Error objective function
L(θ) = (t− y)2

▶ Has a nice closed form solution: (Φ⊺Φ)−1Φ⊺t
▶ But the solution can also be found iteratively:

▶ Compute the gradient of L(θ) w.r.t. θ:

∇θL = (t− y)ϕ(x)

▶ Perform gradient descent:
θj+1 ← θj − α∇θjL

▶ Why do gradient descent if we can find the minimum analytically?

13 / 61

Linear models

▶ Linear model y = θ⊺ ϕ(x), with Mean Squared Error objective function
L(θ) = (t− y)2

▶ Has a nice closed form solution: (Φ⊺Φ)−1Φ⊺t
▶ But the solution can also be found iteratively:

▶ Compute the gradient of L(θ) w.r.t. θ:

∇θL = (t− y)ϕ(x)

▶ Perform gradient descent:
θj+1 ← θj − α∇θjL

▶ Why do gradient descent if we can find the minimum analytically?

13 / 61

Linear models

Three different linear models in the data and objective L(θ0, b) = [t− f(x; θ0, b)]2 space.

following Grosse, Ba - CS421, 2019
14 / 61

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/

Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

Computational Graphs

Neural Networks in practice. It’s just Linear Algebra

A complete example

Optimization Algorithms for Neural Networks

Wild beasts and how to tame them?

15 / 61

Linear classification

Learned weights:

16 / 61

Linear classification

Learned weights:

16 / 61

A simple transformation

A linear model with four weights. Also can be seen as two stacked ”neurons” without
activation functions.

Linear case: y = Wx

17 / 61

A simple transformation

following LeCun, Canziani - DS-GA, 2000

18 / 61

https://atcold.github.io/pytorch-Deep-Learning/chapters/01-3/

A simple transformation

▶ y = Wx
▶ What is W actually doing to x?

▶ Let’s perform singular value decomposition1 for some intuition:

W = U× S× V⊺[0.19 1.84
−0.97 −0.93

]
=

[0.83 −0.55
−0.55 −0.83

]︸ ︷︷ ︸
rotation

×
[2.17 0.00

0.00 0.74
]︸ ︷︷ ︸

scale

×
[0.32 0.94

0.94 −0.32
]︸ ︷︷ ︸

reflection

1Mathematics for Machine Learning, ch. 4
19 / 61

https://mml-book.github.io/

A simple transformation

▶ y = Wx
▶ What is W actually doing to x?
▶ Let’s perform singular value decomposition1 for some intuition:

W = U× S× V⊺[0.19 1.84
−0.97 −0.93

]
=

[0.83 −0.55
−0.55 −0.83

]︸ ︷︷ ︸
rotation

×
[2.17 0.00

0.00 0.74
]︸ ︷︷ ︸

scale

×
[0.32 0.94

0.94 −0.32
]︸ ︷︷ ︸

reflection

1Mathematics for Machine Learning, ch. 4
19 / 61

https://mml-book.github.io/

A simple transformation

20 / 61

A simple transformation

21 / 61

A simple transformation

We can scale, rotate and reflect data. Can we do more?

22 / 61

Non-linear functions1

1from CS231n, lecture 4, 2019
23 / 61

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

Non-linear transformation

tanh(Sx) activation function with two different scale factors (left=1.0, right=5.0).

24 / 61

Non-linear transformation

ReLU(Sx) activation function with two different scale factors (left=1.0, right=5.0).

25 / 61

Neural Networks, finally

Typical ”three-layer” or ”two-hidden-layer” neural network

▶ Linear case: f(x) = Wx
▶ Neural Net: f(x) = W3 σ(W2 σ(W1x))

26 / 61

NN transformation

Transformation performed by a 5-layer random neural network
27 / 61

NN transformation

Transformation performed by a 5-layer random neural network
28 / 61

Warping space. Why is it usefull.

Space warping by a one hidden layer neural network for learning a linearized representation of
the decision boundary1.

1from LeCun 2015, Nature.
29 / 61

Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

Computational Graphs

Neural Networks in practice. It’s just Linear Algebra

A complete example

Optimization Algorithms for Neural Networks

Wild beasts and how to tame them?

30 / 61

How to learn θ?

Sample 2.6 million networks and you’re done!

1Radford M. Neal, Bayesian Learning for Neural Networks
31 / 61

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.9306&rep=rep1&type=pdf

How to learn θ?

Sample 2.6 million networks and you’re done!
1Radford M. Neal, Bayesian Learning for Neural Networks

31 / 61

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.9306&rep=rep1&type=pdf

How to learn θ?
▶ Can we do better?

▶ Use the lesson from the iterative linear regression
▶ Compute the gradient of L(D,θ) w.r.t. θ,
▶ Find incremental solutions that better explain the data.

using:
θj+1 ← θj − α∇θjL

sequentially find:

θ0,θ1, ..., θk

such that L(D,θ)decreases.

Sequential minimizing L(D, θ) 1

1dsdeepdive.blogspot.com 32 / 61

http://dsdeepdive.blogspot.com/2016/03/optimizations-of-gradient-descent.html

How to learn θ?
▶ Can we do better?
▶ Use the lesson from the iterative linear regression

▶ Compute the gradient of L(D,θ) w.r.t. θ,
▶ Find incremental solutions that better explain the data.

using:
θj+1 ← θj − α∇θjL

sequentially find:

θ0,θ1, ..., θk

such that L(D,θ)decreases.

Sequential minimizing L(D, θ) 1

1dsdeepdive.blogspot.com 32 / 61

http://dsdeepdive.blogspot.com/2016/03/optimizations-of-gradient-descent.html

How to learn θ?
▶ Can we do better?
▶ Use the lesson from the iterative linear regression
▶ Compute the gradient of L(D,θ) w.r.t. θ,

▶ Find incremental solutions that better explain the data.
using:

θj+1 ← θj − α∇θjL

sequentially find:

θ0,θ1, ..., θk

such that L(D,θ)decreases.

Sequential minimizing L(D, θ) 1

1dsdeepdive.blogspot.com 32 / 61

http://dsdeepdive.blogspot.com/2016/03/optimizations-of-gradient-descent.html

How to learn θ?
▶ Can we do better?
▶ Use the lesson from the iterative linear regression
▶ Compute the gradient of L(D,θ) w.r.t. θ,
▶ Find incremental solutions that better explain the data.

using:
θj+1 ← θj − α∇θjL

sequentially find:

θ0,θ1, ..., θk

such that L(D,θ)decreases.

Sequential minimizing L(D, θ) 1

1dsdeepdive.blogspot.com 32 / 61

http://dsdeepdive.blogspot.com/2016/03/optimizations-of-gradient-descent.html

The problem...

Computing the gradient of L(D,θ) w.r.t. θ can quickly get tedious and inflexible:
▶ Additional cost functions, regularization loss, etc...
▶ We would want to quickly experiment with different layers and activations.

33 / 61

But it’s not that complicated1

1from CS231n, lecture 4, 2019
34 / 61

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

Computational Graphs

Neural Networks in practice. It’s just Linear Algebra

A complete example

Optimization Algorithms for Neural Networks

Wild beasts and how to tame them?

35 / 61

Computation graphs + automatic differentation

Automatic differentiation: takes a program which computes a value, and automatically
constructs a procedure for computing derivatives of that value1.

1Grosse, Ba, CS421
36 / 61

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec06.pdf

Computation graphs + automatic differentation

Automatic differentiation: takes a program which computes a value, and automatically
constructs a procedure for computing derivatives of that value1.

1Grosse, Ba, CS421
36 / 61

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec06.pdf

Simple example1

f(x, y, z) = (x + y)z

q = x + y ∂q
∂x = 1, ∂q

∂y = 1

f = qz ∂f
∂q = z, ∂f

∂z = q

We want:
∂f
∂x ,

∂f
∂y ,

∂f
∂z

1from CS231n, lecture 4, 2019
37 / 61

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

Simple example1

f(x, y, z) = (x + y)z

q = x + y ∂q
∂x = 1, ∂q

∂y = 1

f = qz ∂f
∂q = z, ∂f

∂z = q

We want:
∂f
∂x ,

∂f
∂y ,

∂f
∂z

1from CS231n, lecture 4, 2019
37 / 61

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

Simple example1

f(x, y, z) = (x + y)z

q = x + y ∂q
∂x = 1, ∂q

∂y = 1

f = qz ∂f
∂q = z, ∂f

∂z = q

We want:
∂f
∂x ,

∂f
∂y ,

∂f
∂z

1from CS231n, lecture 4, 2019
37 / 61

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

Simple example1

f(x, y, z) = (x + y)z

q = x + y ∂q
∂x = 1, ∂q

∂y = 1

f = qz ∂f
∂q = z, ∂f

∂z = q

We want:
∂f
∂x ,

∂f
∂y ,

∂f
∂z

1from CS231n, lecture 4, 2019
37 / 61

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

Simple example1

f(x, y, z) = (x + y)z

q = x + y ∂q
∂x = 1, ∂q

∂y = 1

f = qz ∂f
∂q = z, ∂f

∂z = q

We want:
∂f
∂x ,

∂f
∂y ,

∂f
∂z

1from CS231n, lecture 4, 2019
37 / 61

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

Simple example1

f(x, y, z) = (x + y)z

q = x + y ∂q
∂x = 1, ∂q

∂y = 1

f = qz ∂f
∂q = z, ∂f

∂z = q

We want:
∂f
∂x ,

∂f
∂y ,

∂f
∂z

1from CS231n, lecture 4, 2019
37 / 61

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

Simple example1

f(x, y, z) = (x + y)z

q = x + y ∂q
∂x = 1, ∂q

∂y = 1

f = qz ∂f
∂q = z, ∂f

∂z = q

We want:
∂f
∂x ,

∂f
∂y ,

∂f
∂z

∂f
∂y =

∂f
∂q

∂q
∂y

1from CS231n, lecture 4, 2019
37 / 61

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

Simple example1

f(x, y, z) = (x + y)z

q = x + y ∂q
∂x = 1, ∂q

∂y = 1

f = qz ∂f
∂q = z, ∂f

∂z = q

We want:
∂f
∂x ,

∂f
∂y ,

∂f
∂z

∂f
∂y =

∂f
∂q

∂q
∂x

1from CS231n, lecture 4, 2019
37 / 61

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

Link: Automatic Differentiation in PyTorch

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

Backprop1

1from CS231n, lecture 4, 2019
39 / 61

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

Backprop1

1from CS231n, lecture 4, 2019
39 / 61

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

Backprop1

1from CS231n, lecture 4, 2019
39 / 61

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

Backprop1

1from CS231n, lecture 4, 2019
39 / 61

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

Backprop1

1from CS231n, lecture 4, 2019
39 / 61

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

Computational Graphs

Neural Networks in practice. It’s just Linear Algebra

A complete example

Optimization Algorithms for Neural Networks

Wild beasts and how to tame them?

40 / 61

NN = Tensor Operations

Perceptron

Linear Layer

How about the case with multiple input tensors?

41 / 61

NN = Tensor Operations

Perceptron Linear Layer

How about the case with multiple input tensors?

41 / 61

NN = Tensor Operations

Perceptron Linear Layer

How about the case with multiple input tensors?

41 / 61

It’s straightforward in PyTorch

import t o r ch
import t o r ch . nn as nn

model = nn . S e q u e n t i a l (
nn . L i n e a r (input_dim , 64) ,
nn . ReLU () ,
nn . L i n e a r (64 , 64) ,
nn . ReLU () ,
nn . L i n e a r (64 , out_dim)

)

dummy_inputs = to r ch . randn ((1 , input_dim))
p r e d i c t i o n = model (dummy_inputs)

42 / 61

Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

Computational Graphs

Neural Networks in practice. It’s just Linear Algebra

A complete example

Optimization Algorithms for Neural Networks

Wild beasts and how to tame them?

43 / 61

Computation Graph

L(x,w, b) = log
(

1
e−(xw+b) + 1

)

44 / 61

Computation Graph

L(x,w, b) = log
(

1
e−(xw+b) + 1

)

44 / 61

Forward

Task: Compute L(x,w, b)

x = 2,w = −3, b = 6

L(2,−3, 6) ≃ 0.7

45 / 61

Forward

Task: Compute L(x,w, b)
x = 2,w = −3, b = 6

L(2,−3, 6) ≃ 0.7

45 / 61

Forward

Task: Compute L(x,w, b)
x = 2,w = −3, b = 6

L(2,−3, 6) ≃ 0.7

45 / 61

Forward

Task: Compute L(x,w, b)
x = 2,w = −3, b = 6

L(2,−3, 6) ≃ 0.7

45 / 61

Forward

Task: Compute L(x,w, b)
x = 2,w = −3, b = 6

L(2,−3, 6) ≃ 0.7

45 / 61

Forward

Task: Compute L(x,w, b)
x = 2,w = −3, b = 6

L(2,−3, 6) ≃ 0.7

45 / 61

Forward

Task: Compute L(x,w, b)
x = 2,w = −3, b = 6

L(2,−3, 6) ≃ 0.7

45 / 61

Forward

Task: Compute L(x,w, b)
x = 2,w = −3, b = 6

L(2,−3, 6) ≃ 0.7

45 / 61

Forward

Task: Compute L(x,w, b)
x = 2,w = −3, b = 6

L(2,−3, 6) ≃ 0.7

45 / 61

Backward

Task: Compute ∇L =
[
∂L
∂x ,

∂L
∂w ,

∂L
∂b
]

46 / 61

Backward

Task: Compute ∇L =
[
∂L
∂x ,

∂L
∂w ,

∂L
∂b
]

Chain-rule =⇒ each sub-module M:
▶ receives ∂L

∂M(in)
▶ computes ∂M(in)

∂ink

▶ returns ∂L
∂ink

= ∂L
∂M(in)

∂M(in)
∂ink

46 / 61

Backward

log:
▶ receives ∂L

∂log(in) = 1

▶ computes ∂log(in)
∂in = 1

in = 2
▶ returns ∂L

∂in = 1 ∗ 2

46 / 61

Backward

log:
▶ receives ∂L

∂log(in) = 1
▶ computes ∂log(in)

∂in = 1
in = 2

▶ returns ∂L
∂in = 1 ∗ 2

46 / 61

Backward

log:
▶ receives ∂L

∂log(in) = 1
▶ computes ∂log(in)

∂in = 1
in = 2

▶ returns ∂L
∂in = 1 ∗ 2

46 / 61

Backward

ˆ− 1:
▶ receives ∂L

∂(in)−1 = 2

▶ computes ∂(in)−1

∂in = −(in)−2 = −0.25
▶ returns ∂L

∂in = 2 ∗ −0.25 = −0.5
46 / 61

Backward

+1:
▶ receives ∂L

∂(in+1) = −0.5
▶ computes ∂(in+1)

∂in = 1
▶ returns ∂L

∂in = −0.5 ∗ 1 = −0.5
46 / 61

Backward

exp:
▶ receives ∂L

∂ein = −0.5
▶ computes ∂ein

∂in = ein = 1
▶ returns ∂L

∂in = −0.5 ∗ 1 = −0.5
46 / 61

Backward

×− 1:
▶ receives ∂L

∂(−in) = −0.5
▶ computes ∂(−in)

∂in = −1
▶ returns ∂L

∂in = −0.5 ∗ −1 = 0.5
46 / 61

Backward

+:
▶ receives ∂L

∂(in1+in2)
= 0.5

▶ computes (∂(in1+in2)
∂in1

, ∂(in1+in2)
∂in2

= (1, 1)
▶ returns (∂L

∂in1
, ∂L
∂in2

) = (0.5, 0.5)
46 / 61

Backward

×:
▶ receives ∂L

∂(in1×in2)
= 0.5

▶ computes (∂(in1×in2)
∂in1

, ∂(in1×in2)
∂in2

= (in2, in1) = (−3, 2)
▶ returns (∂L

∂in1
, ∂L
∂in2

) = 0.5 ∗ (−3, 2) = (−1.5, 1)

46 / 61

Backward

∇L =

[
∂L
∂x ,

∂L
∂w ,

∂L
∂b

]
= [−1.5, 1, 0.5]

46 / 61

Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

Computational Graphs

Neural Networks in practice. It’s just Linear Algebra

A complete example

Optimization Algorithms for Neural Networks

Wild beasts and how to tame them?

47 / 61

Gradient

L : R2 → R

L(x, y) = x2 − y2 − 2x + 5y

θ0 = [2, 1]

L(θ0) = 4

∇L =

[
∂L
∂x ,

∂L
∂y

]
∂L
∂x = 2x− 2, ∂L

∂y = −2y + 5

∇L(θ0) = [2, 3]

θ1 = θ0 − 0.1∇L(θ0) = [1.8, 0.7]

L(θ1) = 2.65

48 / 61

Gradient

L : R2 → R

L(x, y) = x2 − y2 − 2x + 5y

θ0 = [2, 1]

L(θ0) = 4

∇L =

[
∂L
∂x ,

∂L
∂y

]
∂L
∂x = 2x− 2, ∂L

∂y = −2y + 5

∇L(θ0) = [2, 3]

θ1 = θ0 − 0.1∇L(θ0) = [1.8, 0.7]

L(θ1) = 2.65

48 / 61

Gradient

L : R2 → R

L(x, y) = x2 − y2 − 2x + 5y

θ0 = [2, 1]

L(θ0) = 4

∇L =

[
∂L
∂x ,

∂L
∂y

]
∂L
∂x = 2x− 2, ∂L

∂y = −2y + 5

∇L(θ0) = [2, 3]

θ1 = θ0 − 0.1∇L(θ0) = [1.8, 0.7]

L(θ1) = 2.65

48 / 61

Gradient Descent

▶ L : Rk → R,minθ{L(θ)}
▶ choose a learning rate η ∈ R

▶ sample randomly θ0
▶ repeat until convergence:

θi+1 = θi − η∇L(θi)

Univariate L(θ) 1

1tigerthinks.com
49 / 61

http://tigerthinks.com/2018/07/18/mle-in-ten-parts/

Problems

Slow Convergence (small η); Divergence (high η); Oscillations (high η) 1

Highly different curvature

1cs.toronto.edu 50 / 61

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/

Problems

Near-flat Dimensions
51 / 61

Momentum

▶ Use past information to take the current action
▶ Consistent small step in a direction =⇒ encourage a bigger step
▶ Oscillating moves =⇒ dampen movement
▶ Straightforward way to achieve this: use the previous update direction

Plain gradient descent:
θt+1 ← θt − α∇θtL

With momentum:
vt+1 ← µvt +∇θtL
θt+1 ← θt − αvt+1.

52 / 61

Adaptive Learning-Rate. Adam

▶ Use gradient component |∇L(θ)k| as signal strength.
▶ Amplify the parameter update step inversely proportional to signal strength.
▶ Take into account the entire history, emphasising recent information.

vt ← µvt−1 + (1− α)∇θtL
st ← γst−1 + (1− γ)[∇θtL]2,

The parameter update is then:

θt+1 ← θt −
α√

st + ϵ
vt

53 / 61

Adaptive Learning-Rate. Adam

▶ Use gradient component |∇L(θ)k| as signal strength.
▶ Amplify the parameter update step inversely proportional to signal strength.
▶ Take into account the entire history, emphasising recent information.

vt ← µvt−1 + (1− α)∇θtL
st ← γst−1 + (1− γ)[∇θtL]2,

The parameter update is then:

θt+1 ← θt −
α√

st + ϵ
vt

53 / 61

It’s easy in PyTorch

model = YourFancyNeura lNetwork ()
optim = to r ch . optim . Adam(model . pa ramete r s () , . . .)

f o r i npu t s , t a r g e t s i n da ta_ loade r :

p r e d i c t i o n s = model (i n p u t s)
l o s s = to r ch . mean_squared_error (p r e d i c t i o n s , t a r g e t s)

model . ze ro_grad () # i g n o r e t h i s f o r now

l o s s . backward () # computes g r a d i e n t s
optim . s t ep () # change pa ramete r s a c c o r d i n g l y

54 / 61

In a nutshell

▶ Compute loss function on training data L = 1
n
∑

i l(hθ(xi), yi)

▶ Backpropagate gradient
▶ Apply optimization step
▶ Stop when the error stops decreasing (or any other metric you are interested in

stops improving)

55 / 61

Outline

Recap. Linear Models

Understanding Neural Networks

Strategies for learning with Neural Network

Computational Graphs

Neural Networks in practice. It’s just Linear Algebra

A complete example

Optimization Algorithms for Neural Networks

Wild beasts and how to tame them?

56 / 61

Universal Approximation Theorem

A fully connected network with one hidden layer followed by a non-linear function can
approximate any function from one finite-dimensional space to another in the limit of
the width of the hidden layer (Hornik et al., 1990).

Potentially the hidden layer can get exponentially large. Eg.: no of possible binary
functions on vectors v ∈ {0, 1}n is 22n , requiring O(2n) units, each responding to a
single input.

57 / 61

Universal Approximation Theorem

A fully connected network with one hidden layer followed by a non-linear function can
approximate any function from one finite-dimensional space to another in the limit of
the width of the hidden layer (Hornik et al., 1990).

Potentially the hidden layer can get exponentially large. Eg.: no of possible binary
functions on vectors v ∈ {0, 1}n is 22n , requiring O(2n) units, each responding to a
single input.

57 / 61

UAT and depth

▶ How does depth relate to UAT?

▶ There exist families of functions which can be approximated efficiently (in
numbers of parameters) by deep networks.

▶ Montufar et al. 2014:

A network with ReLU units learns piece-wise linear functions at each layer and deep networks
reuse these computations exponentially more often than shallow networks. Solid line is a 20
units, one layer NN and dotted line is a 2 layers, 10 units each NN.

58 / 61

UAT and depth

▶ How does depth relate to UAT?
▶ There exist families of functions which can be approximated efficiently (in

numbers of parameters) by deep networks.

▶ Montufar et al. 2014:

A network with ReLU units learns piece-wise linear functions at each layer and deep networks
reuse these computations exponentially more often than shallow networks. Solid line is a 20
units, one layer NN and dotted line is a 2 layers, 10 units each NN.

58 / 61

UAT and depth

▶ How does depth relate to UAT?
▶ There exist families of functions which can be approximated efficiently (in

numbers of parameters) by deep networks.
▶ Montufar et al. 2014:

A network with ReLU units learns piece-wise linear functions at each layer and deep networks
reuse these computations exponentially more often than shallow networks. Solid line is a 20
units, one layer NN and dotted line is a 2 layers, 10 units each NN.

58 / 61

UAT and depth

▶ How does depth relate to UAT?
▶ There exist families of functions which can be approximated efficiently (in

numbers of parameters) by deep networks.
▶ Montufar et al. 2014:

A network with ReLU units creates mirror images of the function computed at the input of
some hidden unit resulting in increasingly expressive networks

59 / 61

UAT and depth
▶ How does depth relate to UAT?
▶ There exist families of functions which can be approximated efficiently (in

numbers of parameters) by deep networks.
▶ Goodfellow et al. 2014:

Generalization correlates with depth, not number of parameters.
60 / 61

The new generalization theory

Is the classic generalization theory still valid?

61 / 61

	Recap. Linear Models
	Understanding Neural Networks
	Strategies for learning with Neural Network
	Computational Graphs
	Neural Networks in practice. It's just Linear Algebra
	A complete example
	Optimization Algorithms for Neural Networks
	Wild beasts and how to tame them?

