Basics of reinforcement learning

Lucian Busoniu

TMLSS, 20 July 2018

Introduction
000000

Main idea of reinforcement learning (RL)

Learn a sequential decision policy
to optimize the cumulative performance

of an unknown system

Introduction
0e00000

RL principle

action u

@ Interact with system: measure states, apply actions
@ Performance feedback in the form of rewards
@ Inspired by human and animal learning

Introduction
[e]e] lelelele]

RL principle: Al view

—_—— —_——
——

reward r
Controller h
(agent)

@ Agent embedded in an environment
that feeds back states and rewards

action u

Introduction
[e]e]e] lelele]

Example: Domestic robot

A domestic robot ensures light switches are off
Abstractization to high-level control (physical actions
implemented by low-level controllers)

@ States: grid coordinates, switch states
@ Actions: movements NSEW, toggling switch
@ Rewards: when switches toggled on—off up

Introduction
0000e00

Example: Robot arm

Low-level control
@ States: link angles and angular velocities
@ Actions: motor voltages

@ Rewards: e.g. to reach a desired configuration,
give larger rewards as robot gets closer to it

u

Introduction
00000e0

Many other applications

Artificial intelligence, control, medicine, multiagent systems,
economics etc.

u

Introduction
000000e

RL on the machine learning spectrum

Supervised Reinforcement Unsupervised
learning learning learning

more informative feedback less informative feedback

@ Supervised: for each training sample, correct output
known

@ Unsupervised: only input samples, no outputs;
find patterns in the data

@ Reinforcement: correct actions not available, only rewards

But note: RL finds dynamical optimal control!

MDP & solution

0 Introduction

9 Markov decision process & optimal solution
Q Dynamic programming, DP

© Monte Carlo, MC

Q Exploration basics

e Temporal differences, TD

e Improving data efficiency

u

MDP & solution
900000000

Example: Machine replacement

Replace

@ Consider machine with n different wear levels
1 = perfect working order, n = fully degraded

@ Produces revenue v; when operating at level i

@ Stohastic wear: level j increases to j > i with probas pj;,
stays i with pi=1-— Pijit1 — - — Pin

@ Machine can be replaced at any time (assumed
instantaneously), paying cost ¢

MDP & solution
0@0000000

Machine replacement: States and actions

@ State x = wear level,
state space X ={1,2,...,n}

@ Action u = whether to Wait or Replace,
action space: U = {W,R}

MDP & solution
[e]e] lelele]ele]e)

Machine replacement: Transition function

Replace

Transition function f(x, u, x") gives the probability of reaching
state x’ after applying action u in state x:

p;j fu=Wandi<j
fix=iux=j)=<1 ifu=Randj="1
0 otherwise

MDP & solution
[e]e]e] leleele]e)

Machine replacement: Reward function

Reward function p(x, u, x’) gives reward resulting from
transitioning from x to x’ after applying u:

Vi ifu=W
—c+vy ifu=R

p(X:i,U,X/:j) - {

MDP & solution
0000e0000

General case: Markov decision process

Markov decision process (MDP)

@ State space X

© Action space U

© Transition function f(x,u, x"), f: X x U x X — [0,1]
@ Reward function p(x,u, x’), p: XxUxX—R

Some MDPs have terminal states (e.g. success, failure), that
once reached cannot be left and provide no additional reward

MDP & solution
00000e000

Machine replacement: Specific example

1 0.9 0.8 0.7 0.6

@ n =5 wear levels
@ Revenue: vi =1,v.=0.9,...,v5 = 0.6
@ Cost of new machine: ¢ =1
@ Wear increase probabilities:
06 03 01 0 O
06 03 01 O
[pi] = 06 0.3 0.1
0.7 0.3

1.0 0]

MDP & solution
000000800

Control policy

@ Control policy h: X — U: maps states x to actions u

@ Example for machine replacement: h(1) = ... = h(4) =W,
h(5) =R

MDP & solution
000000080

Return and objective

Example: v = 0.9, h = always wait, xo = 4, and trial:
0.8 0.7 0.7 0.6 0.6
TV I SR S S o
@—»é OO O s €

Or 4+ +4P+°n+...=09°.08+0.9"- 0.7+
+092-07+09%.06+0.9%-06+...=6.3710

Objective

Find h that maximizes from any x
the expected return under the stochastic transitions:

R"(x0) = Ex, xe.... {kZ K p(Xic, h(Xk)anH)}
0

Note: There are also other types of return! up

MDP & solution
00000000e

Discount factor

Discount factor v € [0, 1):
@ represents an increasing uncertainty about the future
@ bounds the infinite sum (assuming rewards bounded)
@ helps the convergence of algorithms

To choose 7, trade-off between:
@ Long-term quality of the solution (large)
@ Simplicity of the problem (small)

In practice, v should be sufficiently large so as not to ignore
important later rewards

MDP & solution
[JeJele]

Q-function

Q-function of a policy his the expected return achieved by
executing up in X and then following h

Q"(xo, Up) = Ex, {P(Xo, U, X1) + WRh(XO}

Q" measures the quality of state-action pairs

MDP & solution
0®00

Bellman equation of Q"

Go one step further in the equation:
Q" (xo, Up) = Ex, {P(Xo, Uo, X1) + WF"h(XO}
= Ex {p(Xo, Uo, X1) +7Bx, {p()ﬁ »h(x), xe) + 'th(Xz)}}

= Ey, {p(Xo, Uo, x1) +vQ"(x1, h(xq))}

= Bellman equation for Q"
Q"(x,u) = Ey {p(X, u, x') +~Q"(x, h(x’))}

=Y f(x,u,x) [p(X, u, x') +yQ"(x', h(X’))}

MDP & solution
[e]e] Je]

Optimal solution and Bellman optimality equation

@ Optimal Q-function: Q* = mf?x Q"
= “Greedy” policy in Q*: h*(x) = arg max Q*(x, u)
u

is optimal, i.e. achieves maximal returns
(if multiple actions maximize, break ties arbitrarily)
Bellman optimality equation (for Q*)

Q*(x,u) = Eyx {p(X, u,x') +ymax Q*(x', u’)}
u/

= E f(x,u, x") [p(x, u, x") + v max Q*(x’, u’)]
U/
X/

MDP & solution
[e]e]e])

Machine replacement: Optimal solution

Discount factor v = 0.9

86

— i, VW aIt)
84F = Qfx, Replace) |4

821

781

76

state, x

Dynamic programming

Up next:

Algorithms to find the optimal solution

Dynamic programming

Algorithm landscape

By model usage:

@ Model-based: f, p known a priori

@ Model-free: f, p unknown

@ Model-learning: f, p learned from data
Model-based usually called dynamic programming (DP);
needed as a stepping stone to RL
By interaction level:

@ Offline: algorithm runs in advance

@ Online: algorithm runs with the system

We focus on exact case: x, u small number of discrete values,
so we can exactly represent solutions. In practice, function
approximation often needed — covered in Doina’s talk

Dynamic programming

e Dynamic programming, DP

Dynamic programming
®00

Q-iteration
Transforms Bellman optimality equation:

u)=>Y_ f(x,u,x) [p(X, u,x') + max Q*(x', u’)}
X/

into an iterative procedure:

Q-iteration
repeat at each iteration ¢
for all x, u do
Quri1(x,u) Z f(x, u, x")[p(x, u,x")

+ ymaxy Qux',)]
end for
until convergence to Q*
Once Q* available: h*(x) = argmax, Q*(x, u)

Q-iteration belongs to the class of value iteration algorithms "

Dynamic programming
oceo

Machine replacement: Q-iteration demo

Discount factor v = 0.9

Q-iteration, ell=64

Rlw|w|r 8B
<
85
Q(x, Wait)
Q(x, Replace)
8l
75]
| E—
7 n
1 2 3 4 5
10 tat .
—e—Q-Q
T R oD —

iteration, ell

Dynamic programming
ocoe

Machine replacement: Q-iteration demo

Qri1(x,u) « Z f(x,u, x)[p(x,u,x) +~ max Qu(x', U]

XI

'
Qo 0;0 : ; ;
Q; 1;0 09:0 0.8;0 0.7;0 06;0
Q 1.86; 0.9 1.67;0.9 1.48; 0.9 1.3; 0.9 1.14; 0.9
Q; 258:;167 231;167 205;167 1.83;1.67 1.63;1.67
Q4 32;233 287;233 255;233 23;233 2.1;2.33

Qs 825;742 784,742 755;742 738,742 7.28;742
Qss 825;742 784,742 755;742 738,742 7.28;742
h* W W w R R

h*(x) = argmax Q*(x, u)
u

Dynamic programming
©0000

Policy iteration

Policy iteration
initialize policy hg
repeat at each iteration ¢
1: policy evaluation: find Q"
2: policy improvement:
hey1(x) < argmax, Q™ (x, u)
until convergence to h*

Dynamic programming
0®000

lterative policy evaluation

Similarly to Q-iteration, transforms Bellman equation for Q"

Q"(x, u) Zf X, u, x' [X, u,x’)+th(X’,h(X’))}

into an iterative procedure:

lterative policy evaluation
repeat at each iteration
for all x, u do
Q- 1(Z f(x, u, x")[p(x, u, x)
+ Q- (X', h(x"))]
end for
until convergence to Q"

(other options exist, e.g. solving the linear system) 0[]

Dynamic programming
00®00

Machine replacement: policy iteration demo

Discount factor v = 0.9

Policy iteration, ell=3

Flw|w|R (8.

82
— Q(x, Wait)
st Q(x, Replace)
781
761

al —

7.2

3

iteration, ell

Dynamic programming
00000

Machine replacement: policy iteration

Qr41(x, U) — fo f(x, u, x")[p(x, u, x') +yQ-(x', h(x"))]

hey1(x) < argmax Q(x, u)
u

x =1 xX=2 x=3 x=4 x=5
ho w W W w W
Qo 0;0 0;0 0;0 0;0 0:0
Q; 1;0 0.9;0 0.8;0 0.7;0 06;0

Q 1.86;09 1.67;0.9 1.48; 0.9 1.3;0.9 1.14;0.9
Q; 258;167 231;1.67 205;167 1.83;1.67 1.63;1.67

Qg 751;6.75 6.95;6.75 6.49;6.75 6.17;6.75 5.9;6.75
Qu 752;6.75 6.96;6.75 6.5;6.75 6.18;6.75 5.91;6.75
hy W W R R R

...algorithm continues... [1/[J

Dynamic programming
[elelele]

Machine replacement: policy iteration (cont'd)

x=1 X=2 x=3 x=4 x=5
hy W W R R R
Qo 0;0 0;0 0;0 0;0 0;0
Q4 8.01;7.2 757;7.2 727:72 717;72 7.07:7.2
ho W w W R R
Q 0;0 0;0 0;0 0:0 0:0
Q4 817:735 7.76;735 747,735 7.3;735 72;7.35
hs W W W R R

Dynamic programming
 Yolelele)

Convergence of Q-iteration

@ Each iteration a contraction with factor v in co-norm:
Q1 = Qe <711 Qe = Q7|

= Q-iteration monotonically converges to Q*,
with convergence rate v = ~ helps convergence

/QO

0

for
|
|

d

1)

: |
I

|

|

d=1Q,-0*||.! up

Dynamic programming
0®000

Stopping condition of Q-iteration

@ Convergence to Q* only guaranteed asymptotically,
as ¢ — oo

@ In practice, algorithm can be stopped when:

HQ€+1 - Q@H < Egiter
q

Dynamic programming
00800

Convergence of policy iteration

Policy evaluation component — like Q-iteration:
@ lterative policy evaluation contraction with factor ~
= monotonic convergence to Q", with rate

Complete policy iteration algorithm:
@ Policy is either improved or already optimal
@ But the maximum number of improvements is finite! (\UUX‘)
= convergence to h* in a finite number of iterations

Dynamic programming
00080

Stopping conditions of policy iteration

In practice:
@ Policy evaluation can be stopped when:

”QT-H - Q‘r” < Epeval
@ Policy iteration can be stopped when:

Hhﬁ—H - h@H < Epiter

@ Note: pier can be taken 0!

Dynamic programming
0000e

Q-iteration vs. policy iteration

Number of iterations to convergence
@ Q-iteration > policy iteration

Complexity

@ one iteration of Q-iteration
> one iteration of iterative policy evaluation

@ complete Q-iteration ??? complete policy iteration

Monte Carlo

@ Monte Carlo, MC

Monte Carlo

Algorithm landscape

By model usage:
@ Model-based: f, p known a priori
@ Model-free: f, p unknown
@ Model-learning: f, p learned from data

By interaction level:
@ Offline: algorithm runs in advance

@ Online: algorithm runs with the system

We move to online RL for the remainder of the talk

Monte Carlo
[Jelele]ele)

Policy evaluation change

To find Q”:
@ So far: model-based policy evaluation
@ Reinforcement learning: model not available!

@ Learn Q" from data obtained by
online interaction with the system

Monte Carlo
[e] lelelele)

Monte Carlo policy evaluation

Recall: Q"(xo, Ug) = Ex, {p(Xo, Uo, X1) +vR"(x1)}

y I

r r ¥ n y

@ Trial from (xp, Up) to xx using uy = h(xy), Uz = h(x2), etc.
@ xx must be terminal (assumed further) or K large enough
= Return along trial provides a sample of Q"(xp, Up):
K-1 .
Z/:O Vi
@ Furthermore, sample of Q"(xy, uk) at each step k:

K
Q" (X, Uk) = Z/:k QLR

Monte Carlo
[e]e] lelele)

Monte Carlo policy evaluation (cont’d)

r r, I I
H—> (ot e ()
r I I

.
Iy I
H =)

@ To learn the expected value, run N trajectories
(often called roll-outs)

@ Estimated Q-value = average of the returns, e.g.
N Ki—1
Qh(XO Uo) Z Z ok rl/+1
i=1 j=0 0l

Monte Carlo
[e]e]e] lele)

Monte Carlo policy iteration

Monte Carlo policy iteration

for each iteration ¢ do
run N trials applying hy
reset accumulator A(x, u), counter C(x, u) to 0
for each step k of each trial i do
A(Xi, Ug) — A(Xk, Ug) + Zﬁ? V=Kr; 11 (return)
C(xk, ux) — C(xx, ug) + 1
end for
Q" (x, u) — A(x,u)/C(x, u)
hey1(x) — argmax, Q™ (x, u)
end for

Monte Carlo
[e]e]ele] o)

Need for exploration

Q"(x, u) — A(x, u)/C(x, u))

How to ensure C(x, u) > 0 — information about each (x, u)?

@ Select representative initial states xo
© Actions:
Up representative, sometimes different from h(xo)
and in addition, perhaps:
ux representative, sometime different from h(x)

Monte Carlo
00000e

Exploration-exploitation

@ Exploration needed:
actions different from the current policy

@ Exploitation of current knowledge also needed:
current policy must be applied

Exploration-exploitation dilemma
—essential in all RL algorithms J

(not just in MC)

Exploration

e Exploration basics

Exploration
[Jele]e]

e-greedy strategy

@ Simple solution to the exploration-exploitation dilemma:
e-greedy

U — h(xx) = argmax, Q(xx, u) with probability (1 — ex)
“Ta uniformly random action w.p. g

@ Exploration probability £, € (0, 1)
usually decreased over time

@ Main disadvantage: when exploring, actions are fully
random, leading to poor performance

Exploration
[e] le]e]

Softmax strategy

@ Action selection:
eQ(xk,u)/7x

Uk =Uu W-p- Zu/ eo(xk,u/)/,rk

where 7, > 0 is the exploration temperature

@ Taking 7 — 0, greedy selection recovered;
T — oo gives uniform random

@ Compared to e-greedy, better actions are more likely to be
applied even when exploring

Exploration
[e]e] 6]

Bandit-based exploration

At single state, exploration modeled as multi-armed bandit:
@ Action j = arm with reward distribution p;, expectation y;
@ Best arm (optimal action) has expected value p*

@ At step k, we pull arm (try action) jx, getting rx ~ p;,
@ Obijective: After n pulls, small regret: > _, u* — M,

Exploration
[e]ele]]

UCB algorithm

Popular algorithm: after n steps, pick arm with
largest upper confidence bound:

3logn

b(j) = fj + 2n,

where:
@ [i; = mean of rewards observed for arm j so far
@ n; = how many times arm j was pulled

These are only a few simple methods, many others exist,
e.g. Bayesian exploration, intrinsic rewards etc.

Temporal differences

e Temporal differences, TD

Temporal differences
[Jelelele}

DP perspective

@ Start from policy evaluation:
QT-H (Xv U) A Ex’ f(Xv u, X/)[p(X, u, X/) + P)/QT(X/ﬂ h(XI))]

@ Instead of model, use transition sample at each step k,
(Xk» Uks X415 k15 Ukg1)-
Q(Xk, Uk) « 1 +7Q(Xk1, Ukt1)
Note:
Xicr1 ~ (X, Uk,), Tt = p(Xks Uy Xier1)s Ukt ~ B(Xiq1)

© Turn into incremental update:
Q(Xk, U) —Q(Xic, Ux) + g
[kt +7Q(Xks1, Ukt1) — Q(Xk, Uk)]
ak € (0, 1] learning rate

Temporal differences
[¢] lele]e}

Intermediate algorithm

Temporal differences for policy evaluation

for each trial do
init Xp, choose initial action uy
repeat at each step k
apply ux, measure Xy 1, receive r
choose next action vy 1 ~ h(Xx11)
Q(Xk, k) — Q(Xk, Uk) + v
[Fke1 + Y Q(Xit 1, Uk1) — Q(Xk, U)]
until trial finished
end for

Temporal differences
[e]e] lele}

MC perspective

Temporal differences for policy h evaluation
for each trial do

repeat each step k
apply ux, measure X 1, receive r 4
Q(Xk, Uk) —...Q...
until trial finished
end for

Monte Carlo

Temporal differences
[e]ele] o}

MC and DP perspectives

@ Learn from online interaction: like MC, unlike DP

@ Update after each transition, using previous Q-values:
like DP, unlike MC

he]

?

3

IS value iteration, temporal

2 policy iteration differences
3 D

8 Monte Carlo
':ES model-based model-free

Temporal differences
[e]e]e]e] }

Exploration-exploitation

choose next action ux 1 ~ h(Xk1) J

@ Information about (x, u) # (x, h(x)) needed
= exploration

@ h must be followed
= exploitation

Temporal differences
@00

Policy improvement

@ Previous algorithm: h fixed

@ Improving h: simplest, after each transition,
called optimistic policy improvement

@ himplicit, greedy in Q
(update Q = implicitly improve h)

@ E.g. e-greedy:

u _ arg max,, Q(Xk+1 , U) W.p. (1 — €k+1)
et uniformly random W.P. €41

Temporal differences
oeo

SARSA

SARSA

for each trial do
init xg
choose uy with exploration based on Q
repeat at each step k
apply uk, measure xx. 1, receive ri
choose ug, 1 with exploration based on Q
Q(Xk, Uk) — Q(Xk, Ux) +
(M1 + YQ(Xkg1, Uk1) — Q(Xk, Uk)]
until trial finished
end for

Origin of the name: (xk, Uk, M1, Xki1, Uk+1) =
(State, Action, Reward, State, Action)

Temporal differences
[ele] J

Machine replacement: SARSA demo

Parameters: a = 0.1, ¢ = 0.3 (constant), single trial
Xo = 1

SARSA, trial 1 completed
R|w|R [,
)

Qix, Wait)
4 Q(x, Replace]

1 2 3 4 5
9
——a.Q
s\
7
0 1

Temporal differences
00000

Q-learning

@ Similarly to SARSA, start from Q-iteration:
Qur1(x,u) > f(x,u, X)[p(x, u, x") +ymax, Qi(x’, u")]

@ Instead of model, use at each step k transition sample

(Xik> Uk, X415 Tkt)
Q(Xk, Uk) «— k1 +ymaxy Q(Xxy1,U')

Note: X1 ~ f(Xi, Uk,), Tkt = p(Xics Uks Xk11)

© Turn into incremental update:
Q(Xk, Uk) —Q(Xk, Uk) + g
[Fic1 + v max QX1 u') — Q(xx, uk)]

Temporal differences
0@000

Q-learning

Q-learning
for each trial do
init xp
repeat at each step k
choose uy with exploration based on Q
apply ux, measure X 1, receive ry 4
Q(Xk, ux) « Q(Xk, Uk) + a:
[Fic1 + v max QX1 u') — Q(xk, uk)]
until trial finished
end for

Machine replacement: Q-learning demo
Parameters: a = 0.1, ¢ = 0.3 (constant), single trial
Xo = 1

Q-learning, trial 1 completed
w|R|[R [,

Qix, Wait)
Q(x, Replace)

Temporal differences
[o]e]e] le]

Convergence

Conditions for convergence to Q*
in both SARSA and Q-learning:

@ All pairs (x, u) continue to be updated:
requires exploration, e.g. e-greedy

@ Technical conditions on oy (goes to 0, >3, a2 = finite,
but not too fast, Y > ; ax —)

In addition, for SARSA:

© Policy must become greedy asymptotically
e.g. for e-greedy, limy_,.ocx =0

Temporal differences
[o]e]e]e]]

Discussion

SARSA on-policy

@ Always updates towards the Q-function
of the current policy

Q-learning off-policy
@ Irrespective of the current policy,
always updates towards optimal Q-function

Advantages of temporal differences
@ Easy to understand and implement
@ Low complexity = fast execution

Exploration and oy sequence greatly influence performance

u

Improvements

o Improving data efficiency

Improvements

Motivation

TD uses data inefficiently, and data is often costly.

Example:

B

.,

@ 2D gridworld navigation from Start to Goal
@ Nonzero reward = 10 only on reaching G (terminal state)

Improvements

Motivation (cont'd)

r:::] 0\

G E
I ool | T
B B

@ Take SARSA with oo = 1; initialize Q=0
@ Updates along the trial on the left:

Q(x4, Us) =0+ - Q(x5,u5) = 0
Q(X5,U5): 104+~-0=10

@ A new transition from x4 to x5 (and hence a new trial)
required to propagate the info to x4! b

Improvements

Ideas presented

@ Eligibility traces

© Experience replay

Improvements
[Jelelele}

Eligibility traces

@ |dea: Leave a trace along the trial:

e(x,u,)=1
g X tlis)=(r)” g OXeart /)IX“ I

. uk 3 > . uk 2 > (> uk—1 :@ Uk >

@)\ € [0, 1] decay rate

Replacing traces

e(x,u) — Oforall x,u

for each step k do
e(x,u) — \vye(x,u) forall x,u
e(Xk, ug) — 1

end for

Improvements
[¢] lele]e}

Example algorithm: SARSA())

@ Recall original SARSA only updates Q(x, uk):
Q(Xx, Uk) «—Q(Xk, Uk) + cu-

[Mke1 +7YQ(Xkt1, Uk1) — Q(Xk, U)]

@ SARSA(\) updates all eligible pairs:
Q(x,u) —Q(x,u) + ak - e(x, u)-

(k1 +YQ(Xkq1, Uk1) — Q(Xk, Uk)] VX, u

ramming Monte Carlo Exploration Temporal differences Improvements

[e]e] lele]elele)

SARSA(\)

for each trial do
init Xo
e(x,u) —0 Vx,u
choose uy with exploration based on Q
repeat at each step k
apply ux, measure X 1, receive ry 4
choose uy. 1 with exploration based on Q
e(x,u) — \ye(x,u) Vx,u
e(xk, Uk) — 1
Q(x, u) — Q(x,u) + ak - e(x, u)-
[Fet1 + Y Q(Xkt 1, Uk1) — Q(Xi, u)] for all x, u
until trial finished
end for

Improvements
[e]ele] lo}

Example: Effect of eligibility traces

—
o

\/G)\/ T
®

>
fn

il X,

‘, 7 S : /S\,

e A=07

@ Updates until x4: Q remains 0

@ At xs, the entire trial gets updated:
Q(xs,us) =10+~0 =10
Q(x4,Us) = (yA)[10+~0] = 3.5
Q(x3, U3) = (YA)?[10 +~0] = 1.225

Improvements
[e]e]e]e]]

TD versus MC

@ \ =0 = recovers original algorithms, e.g. SARSA(0)
@ \=1 = TD becomes like MC

AR,
AN e /
7 ~ ////;/ \\\ -
\\G/ -/ ‘ \ -

T —_—|—— T =0 — H 1:‘ — =1
— original TD \ / MC
. \ V4
— - —

Typical values of X are around 0.5 t0 0.8

Improvements
@00

Experience replay

@ Store each transition (X, Uk, Xk+1, Mk+1)
in a database

.'
—rr
-

@ At each step, replay N transitions from the database
(in addition to regular updates)

Improvements
oeo

Q-learning with experience replay

Q-learning with experience replay

for each trial do
init Xo
repeat at each step k
apply ux, measure X 1, receive ry 4
O(Xk, Uk) — Q(Xk, Uk) + o
[rk1 + v max Q(Xk+1, U") — Q(xx, ug)]

add (xk, Uk, Xk11, k1) to database
ReplayExperience
until trial finished
end for

Improvements
[ele] J

ReplayExperience procedure

ReplayExperience

loop N times
retrieve a transition (x, u, x’, r) from database
Q(x,u) — Q(x,u) + a-
[r +~ymax Q(x', u') — Q(x, u)]
ul

end loop

Retrieval order:
@ Backwards along trials, best for classical algos
@ Randomly, helps e.g. in deep RL
Q etc.

Appendix

Textbooks

@ Sutton & Barto, Reinforcement Learning: An Introduction,
1998 (+ ongoing 2nd edition, 2017).

@ Bertsekas, Dynamic Programming and Optimal Control,
vol. 2, 4th ed., 2012.

@ Szepesvari, Algorithms for Reinforcement Learning, 2010.

@ Busoniu, Babuska, De Schutter, & Ernst, Reinforcement
Learning and Dynamic Programming Using Function
Approximators, 2010.

	Introduction
	Introduction

	Markov decision process & optimal solution
	MDP and objective
	Optimal solution

	Dynamic programming, DP
	Value iteration
	Policy iteration
	Analysis and discussion

	Monte Carlo, MC
	Monte Carlo

	Exploration basics
	Exploration

	Temporal differences, TD
	Introduction
	SARSA
	Q-learning

	Improving data efficiency
	Eligibility traces
	Experience replay

	Appendix

