
Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Basics of reinforcement learning

Lucian Buşoniu

TMLSS, 20 July 2018

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Main idea of reinforcement learning (RL)

Learn a sequential decision policy

to optimize the cumulative performance

of an unknown system

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

RL principle

Interact with system: measure states, apply actions
Performance feedback in the form of rewards
Inspired by human and animal learning

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

RL principle: AI view

Agent embedded in an environment
that feeds back states and rewards

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Example: Domestic robot

A domestic robot ensures light switches are off
Abstractization to high-level control (physical actions
implemented by low-level controllers)

States: grid coordinates, switch states
Actions: movements NSEW, toggling switch
Rewards: when switches toggled on→off

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Example: Robot arm

Low-level control
States: link angles and angular velocities
Actions: motor voltages
Rewards: e.g. to reach a desired configuration,
give larger rewards as robot gets closer to it

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Many other applications

Artificial intelligence, control, medicine, multiagent systems,
economics etc.

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

RL on the machine learning spectrum

Supervised: for each training sample, correct output
known
Unsupervised: only input samples, no outputs;
find patterns in the data
Reinforcement: correct actions not available, only rewards

But note: RL finds dynamical optimal control!

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

1 Introduction

2 Markov decision process & optimal solution

3 Dynamic programming, DP

4 Monte Carlo, MC

5 Exploration basics

6 Temporal differences, TD

7 Improving data efficiency

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Example: Machine replacement

Consider machine with n different wear levels
1 = perfect working order, n = fully degraded
Produces revenue vi when operating at level i
Stohastic wear: level i increases to j > i with probas pij ,
stays i with pii = 1− pi,i+1 − ...− pi,n

Machine can be replaced at any time (assumed
instantaneously), paying cost c

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Machine replacement: States and actions

State x = wear level,
state space X = {1, 2, . . . , n}

Action u = whether to Wait or Replace,
action space: U = {W, R}

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Machine replacement: Transition function

Transition function f (x , u, x ′) gives the probability of reaching
state x ′ after applying action u in state x :

f (x = i , u, x ′ = j) =


pij if u = W and i ≤ j
1 if u = R and j = 1
0 otherwise

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Machine replacement: Reward function

Reward function ρ(x , u, x ′) gives reward resulting from
transitioning from x to x ′ after applying u:

ρ(x = i , u, x ′ = j) =

{
vi if u = W
−c + v1 if u = R

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

General case: Markov decision process

Markov decision process (MDP)
1 State space X
2 Action space U
3 Transition function f (x , u, x ′), f : X × U × X → [0, 1]

4 Reward function ρ(x , u, x ′), ρ : X × U × X → R

Some MDPs have terminal states (e.g. success, failure), that
once reached cannot be left and provide no additional reward

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Machine replacement: Specific example

n = 5 wear levels
Revenue: v1 = 1, v2 = 0.9, ..., v5 = 0.6
Cost of new machine: c = 1
Wear increase probabilities:

[pij] =


0.6 0.3 0.1 0 0
0 0.6 0.3 0.1 0
0 0 0.6 0.3 0.1
0 0 0 0.7 0.3
0 0 0 0 1.0



Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Control policy

Control policy h : X → U: maps states x to actions u
Example for machine replacement: h(1) = . . . = h(4) = W,
h(5) = R

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Return and objective

Example: γ = 0.9, h = always wait, x0 = 4, and trial:

γ0r1 + γ1r2 + γ2r3 + γ3r4 + . . . = 0.90 · 0.8 + 0.91 · 0.7+

+ 0.92 · 0.7 + 0.93 · 0.6 + 0.94 · 0.6 + . . . = 6.3710

Objective
Find h that maximizes from any x0
the expected return under the stochastic transitions:

Rh(x0) = Ex1,x2,...

{ ∞∑
k=0

γkρ(xk , h(xk), xk+1)

}
Note: There are also other types of return!

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Discount factor

Discount factor γ ∈ [0, 1):
represents an increasing uncertainty about the future
bounds the infinite sum (assuming rewards bounded)
helps the convergence of algorithms

To choose γ, trade-off between:
1 Long-term quality of the solution (large γ)
2 Simplicity of the problem (small γ)

In practice, γ should be sufficiently large so as not to ignore
important later rewards

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Q-function

Q-function of a policy h is the expected return achieved by
executing u0 in x0 and then following h

Qh(x0, u0) = Ex1

{
ρ(x0, u0, x1) + γRh(x1)

}

Qh measures the quality of state-action pairs

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Bellman equation of Qh

Go one step further in the equation:

Qh(x0, u0) = Ex1

{
ρ(x0, u0, x1) + γRh(x1)

}
= Ex1

{
ρ(x0, u0, x1) + γEx2

{
ρ(x1, h(x1), x2) + γRh(x2)

}}
= Ex1

{
ρ(x0, u0, x1) + γQh(x1, h(x1))

}

⇒ Bellman equation for Qh

Qh(x , u) = Ex ′

{
ρ(x , u, x ′) + γQh(x ′, h(x ′))

}
=

∑
x ′

f (x , u, x ′)
[
ρ(x , u, x ′) + γQh(x ′, h(x ′))

]

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Optimal solution and Bellman optimality equation

Optimal Q-function: Q∗ = max
h

Qh

⇒ “Greedy” policy in Q∗: h∗(x) = arg max
u

Q∗(x , u)

is optimal, i.e. achieves maximal returns
(if multiple actions maximize, break ties arbitrarily)

Bellman optimality equation (for Q∗)

Q∗(x , u) = Ex ′

{
ρ(x , u, x ′) + γ max

u′
Q∗(x ′, u′)

}
=

∑
x ′

f (x , u, x ′)
[
ρ(x , u, x ′) + γ max

u′
Q∗(x ′, u′)

]

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Machine replacement: Optimal solution

Discount factor γ = 0.9

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Up next:

Algorithms to find the optimal solution

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Algorithm landscape

By model usage:
Model-based: f , ρ known a priori
Model-free: f , ρ unknown
Model-learning: f , ρ learned from data

Model-based usually called dynamic programming (DP);
needed as a stepping stone to RL

By interaction level:
Offline: algorithm runs in advance
Online: algorithm runs with the system

We focus on exact case: x , u small number of discrete values,
so we can exactly represent solutions. In practice, function
approximation often needed – covered in Doina’s talk

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

1 Introduction

2 Markov decision process & optimal solution

3 Dynamic programming, DP

4 Monte Carlo, MC

5 Exploration basics

6 Temporal differences, TD

7 Improving data efficiency

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Q-iteration

Transforms Bellman optimality equation:

Q∗(x , u) =
∑
x ′

f (x , u, x ′)
[
ρ(x , u, x ′) + γ max

u′
Q∗(x ′, u′)

]
into an iterative procedure:

Q-iteration
repeat at each iteration `

for all x , u do
Q`+1(x , u)←

∑
x ′

f (x , u, x ′)
[
ρ(x , u, x ′)

+ γ maxu′ Q`(x ′, u′)
]

end for
until convergence to Q∗

Once Q∗ available: h∗(x) = arg maxu Q∗(x , u)

Q-iteration belongs to the class of value iteration algorithms

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Machine replacement: Q-iteration demo

Discount factor γ = 0.9

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Machine replacement: Q-iteration demo

Q`+1(x , u)←
∑
x ′

f (x , u, x ′)[ρ(x , u, x ′) + γ max
u′

Q`(x ′, u′)]

x = 1 x = 2 x = 3 x = 4 x = 5
Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 1 ; 0 0.9 ; 0 0.8 ; 0 0.7 ; 0 0.6 ; 0
Q2 1.86 ; 0.9 1.67 ; 0.9 1.48 ; 0.9 1.3 ; 0.9 1.14 ; 0.9
Q3 2.58 ; 1.67 2.31 ; 1.67 2.05 ; 1.67 1.83 ; 1.67 1.63 ; 1.67
Q4 3.2 ; 2.33 2.87 ; 2.33 2.55 ; 2.33 2.3 ; 2.33 2.1 ; 2.33
· · · · · · · · · · · · · · · · · ·
Q64 8.25 ; 7.42 7.84 ; 7.42 7.55 ; 7.42 7.38 ; 7.42 7.28 ; 7.42
Q65 8.25 ; 7.42 7.84 ; 7.42 7.55 ; 7.42 7.38 ; 7.42 7.28 ; 7.42
h∗ W W W R R

h∗(x) = arg max
u

Q∗(x , u)

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Policy iteration

Policy iteration
initialize policy h0
repeat at each iteration `

1: policy evaluation: find Qh`

2: policy improvement:
h`+1(x)← arg maxu Qh`(x , u)

until convergence to h∗

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Iterative policy evaluation

Similarly to Q-iteration, transforms Bellman equation for Qh:

Qh(x , u) =
∑
x ′

f (x , u, x ′)
[
ρ(x , u, x ′) + γQh(x ′, h(x ′))

]
into an iterative procedure:

Iterative policy evaluation
repeat at each iteration τ

for all x , u do
Qτ+1(x , u)←

∑
x ′

f (x , u, x ′)
[
ρ(x , u, x ′)

+ γQτ (x ′, h(x ′))
]

end for
until convergence to Qh

(other options exist, e.g. solving the linear system)

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Machine replacement: policy iteration demo

Discount factor γ = 0.9

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Machine replacement: policy iteration

Qτ+1(x , u)←
∑

x ′
f (x , u, x ′)[ρ(x , u, x ′) + γQτ (x ′, h(x ′))]

h`+1(x)← arg max
u

Qh`(x , u)

x = 1 x = 2 x = 3 x = 4 x = 5
h0 W W W W W
Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 1 ; 0 0.9 ; 0 0.8 ; 0 0.7 ; 0 0.6 ; 0
Q2 1.86 ; 0.9 1.67 ; 0.9 1.48 ; 0.9 1.3 ; 0.9 1.14 ; 0.9
Q3 2.58 ; 1.67 2.31 ; 1.67 2.05 ; 1.67 1.83 ; 1.67 1.63 ; 1.67
· · · · · · · · · · · · · · · · · ·
Q39 7.51 ; 6.75 6.95 ; 6.75 6.49 ; 6.75 6.17 ; 6.75 5.9 ; 6.75
Q40 7.52 ; 6.75 6.96 ; 6.75 6.5 ; 6.75 6.18 ; 6.75 5.91 ; 6.75
h1 W W R R R

...algorithm continues...

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Machine replacement: policy iteration (cont’d)

x = 1 x = 2 x = 3 x = 4 x = 5
h1 W W R R R
Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
· · · · · · · · · · · · · · · · · ·
Q43 8.01 ; 7.2 7.57 ; 7.2 7.27 ; 7.2 7.17 ; 7.2 7.07 ; 7.2
h2 W W W R R
Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
· · · · · · · · · · · · · · · · · ·
Q43 8.17 ; 7.35 7.76 ; 7.35 7.47 ; 7.35 7.3 ; 7.35 7.2 ; 7.35
h3 W W W R R

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Convergence of Q-iteration

Each iteration a contraction with factor γ in∞-norm:

‖Q`+1 −Q∗‖∞ ≤ γ ‖Q` −Q∗‖∞
⇒ Q-iteration monotonically converges to Q∗,

with convergence rate γ ⇒ γ helps convergence

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Stopping condition of Q-iteration

Convergence to Q∗ only guaranteed asymptotically,
as `→∞

In practice, algorithm can be stopped when:

‖Q`+1 −Q`‖ ≤ εqiter

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Convergence of policy iteration

Policy evaluation component – like Q-iteration:
Iterative policy evaluation contraction with factor γ

⇒ monotonic convergence to Qh, with rate γ

Complete policy iteration algorithm:
Policy is either improved or already optimal
But the maximum number of improvements is finite! (|U||X |)

⇒ convergence to h∗ in a finite number of iterations

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Stopping conditions of policy iteration

In practice:
Policy evaluation can be stopped when:

‖Qτ+1 −Qτ‖ ≤ εpeval

Policy iteration can be stopped when:

‖h`+1 − h`‖ ≤ εpiter

Note: εpiter can be taken 0!

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Q-iteration vs. policy iteration

Number of iterations to convergence
Q-iteration > policy iteration

Complexity
one iteration of Q-iteration
> one iteration of iterative policy evaluation
complete Q-iteration ??? complete policy iteration

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

1 Introduction

2 Markov decision process & optimal solution

3 Dynamic programming, DP

4 Monte Carlo, MC

5 Exploration basics

6 Temporal differences, TD

7 Improving data efficiency

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Algorithm landscape

By model usage:
Model-based: f , ρ known a priori
Model-free: f , ρ unknown
Model-learning: f , ρ learned from data

By interaction level:
Offline: algorithm runs in advance
Online: algorithm runs with the system

We move to online RL for the remainder of the talk

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Policy evaluation change

To find Qh:
So far: model-based policy evaluation
Reinforcement learning: model not available!
Learn Qh from data obtained by
online interaction with the system

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Monte Carlo policy evaluation

Recall: Qh(x0, u0) = Ex1

{
ρ(x0, u0, x1) + γRh(x1)

}

Trial from (x0, u0) to xK using u1 = h(x1), u2 = h(x2), etc.
xK must be terminal (assumed further) or K large enough

⇒ Return along trial provides a sample of Qh(x0, u0):∑K−1

j=0
γ j rj+1

Furthermore, sample of Qh(xk , uk) at each step k :

Qh(xk , uk) =
∑K−1

j=k
γ j−k rj+1

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Monte Carlo policy evaluation (cont’d)

To learn the expected value, run N trajectories
(often called roll-outs)
Estimated Q-value = average of the returns, e.g.

Qh(x0, u0) =
1
N

N∑
i=1

Ki−1∑
j=0

γ j ri,j+1

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Monte Carlo policy iteration

Monte Carlo policy iteration
for each iteration ` do

run N trials applying h`

reset accumulator A(x , u), counter C(x , u) to 0
for each step k of each trial i do

A(xk , uk)← A(xk , uk) +
∑Ki−1

j=k γ j−k ri,j+1 (return)
C(xk , uk)← C(xk , uk) + 1

end for
Qh`(x , u)← A(x , u)/C(x , u)
h`+1(x)← arg maxu Qh`(x , u)

end for

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Need for exploration

Qh(x , u)← A(x , u)/C(x, u)

How to ensure C(x , u) > 0 – information about each (x , u)?

1 Select representative initial states x0

2 Actions:
u0 representative, sometimes different from h(x0)

and in addition, perhaps:
uk representative, sometime different from h(xk)

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Exploration-exploitation

Exploration needed:
actions different from the current policy
Exploitation of current knowledge also needed:
current policy must be applied

Exploration-exploitation dilemma
– essential in all RL algorithms

(not just in MC)

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

1 Introduction

2 Markov decision process & optimal solution

3 Dynamic programming, DP

4 Monte Carlo, MC

5 Exploration basics

6 Temporal differences, TD

7 Improving data efficiency

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

ε-greedy strategy

Simple solution to the exploration-exploitation dilemma:
ε-greedy

uk =

{
h(xk) = arg maxu Q(xk , u) with probability (1− εk)

a uniformly random action w.p. εk

Exploration probability εk ∈ (0, 1)
usually decreased over time
Main disadvantage: when exploring, actions are fully
random, leading to poor performance

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Softmax strategy

Action selection:

uk = u w.p.
eQ(xk ,u)/τk∑
u′ eQ(xk ,u′)/τk

where τk > 0 is the exploration temperature
Taking τ → 0, greedy selection recovered;
τ →∞ gives uniform random
Compared to ε-greedy, better actions are more likely to be
applied even when exploring

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Bandit-based exploration

At single state, exploration modeled as multi-armed bandit:
Action j = arm with reward distribution ρj , expectation µj

Best arm (optimal action) has expected value µ∗

At step k , we pull arm (try action) jk , getting rk ∼ ρjk

Objective: After n pulls, small regret:
∑n

k=1 µ∗ − µjk

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

UCB algorithm

Popular algorithm: after n steps, pick arm with
largest upper confidence bound:

b(j) = µ̂j +

√
3 log n

2nj

where:
µ̂j = mean of rewards observed for arm j so far
nj = how many times arm j was pulled

These are only a few simple methods, many others exist,
e.g. Bayesian exploration, intrinsic rewards etc.

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

1 Introduction

2 Markov decision process & optimal solution

3 Dynamic programming, DP

4 Monte Carlo, MC

5 Exploration basics

6 Temporal differences, TD

7 Improving data efficiency

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

DP perspective

1 Start from policy evaluation:
Qτ+1(x , u)←

∑
x ′ f (x , u, x ′)[ρ(x , u, x ′) + γQτ (x ′, h(x ′))]

2 Instead of model, use transition sample at each step k ,
(xk , uk , xk+1, rk+1, uk+1):

Q(xk , uk)← rk+1 + γQ(xk+1, uk+1)
Note:
xk+1 ∼ f (xk , uk , ·), rk+1 = ρ(xk , uk , xk+1), uk+1 ∼ h(xk+1)

3 Turn into incremental update:
Q(xk , uk)←Q(xk , uk) + αk ·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk)]
αk ∈ (0, 1] learning rate

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Intermediate algorithm

Temporal differences for policy evaluation
for each trial do

init x0, choose initial action u0
repeat at each step k

apply uk , measure xk+1, receive rk+1
choose next action uk+1 ∼ h(xk+1)
Q(xk , uk)← Q(xk , uk) + αk ·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk)]
until trial finished

end for

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

MC perspective

Temporal differences for policy h evaluation
for each trial do

...
repeat each step k

apply uk , measure xk+1, receive rk+1
Q(xk , uk)← ...Q...

until trial finished
end for

Monte Carlo
for each trial do

execute trial
...
Q(x , u)← A(x , u)/C(x , u)

end for

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

MC and DP perspectives

Learn from online interaction: like MC, unlike DP

Update after each transition, using previous Q-values:
like DP, unlike MC

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Exploration-exploitation

choose next action uk+1 ∼ h(xk+1)

Information about (x , u) 6= (x , h(x)) needed
⇒ exploration
h must be followed
⇒ exploitation

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Policy improvement

Previous algorithm: h fixed

Improving h: simplest, after each transition,
called optimistic policy improvement

h implicit, greedy in Q
(update Q ⇒ implicitly improve h)

E.g. ε-greedy:

uk+1 =

{
arg maxu Q(xk+1, u) w.p. (1− εk+1)

uniformly random w.p. εk+1

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

SARSA

SARSA
for each trial do

init x0
choose u0 with exploration based on Q
repeat at each step k

apply uk , measure xk+1, receive rk+1
choose uk+1 with exploration based on Q
Q(xk , uk)← Q(xk , uk) + αk ·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk)]
until trial finished

end for

Origin of the name: (xk , uk , rk+1, xk+1, uk+1) =
(State, Action, Reward, State, Action)

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Machine replacement: SARSA demo

Parameters: α = 0.1, ε = 0.3 (constant), single trial
x0 = 1

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Q-learning

1 Similarly to SARSA, start from Q-iteration:
Q`+1(x , u)←

∑
x ′ f (x , u, x ′)[ρ(x , u, x ′) + γ maxu′ Q`(x ′, u′)]

2 Instead of model, use at each step k transition sample
(xk , uk , xk+1, rk+1):

Q(xk , uk)← rk+1 + γ maxu′ Q(xk+1, u′)
Note: xk+1 ∼ f (xk , uk , ·), rk+1 = ρ(xk , uk , xk+1)

3 Turn into incremental update:
Q(xk , uk)←Q(xk , uk) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk)]

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Q-learning

Q-learning
for each trial do

init x0
repeat at each step k

choose uk with exploration based on Q
apply uk , measure xk+1, receive rk+1
Q(xk , uk)← Q(xk , uk) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk)]

until trial finished
end for

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Machine replacement: Q-learning demo

Parameters: α = 0.1, ε = 0.3 (constant), single trial
x0 = 1

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Convergence

Conditions for convergence to Q∗

in both SARSA and Q-learning:
1 All pairs (x , u) continue to be updated:

requires exploration, e.g. ε-greedy
2 Technical conditions on αk (goes to 0,

∑∞
k=0 α2

k = finite,
but not too fast,

∑∞
k=0 αk →∞)

In addition, for SARSA:
3 Policy must become greedy asymptotically

e.g. for ε-greedy, limk→∞ εk = 0

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Discussion

SARSA on-policy
Always updates towards the Q-function
of the current policy

Q-learning off-policy
Irrespective of the current policy,
always updates towards optimal Q-function

Advantages of temporal differences
Easy to understand and implement
Low complexity⇒ fast execution

Exploration and αk sequence greatly influence performance

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

1 Introduction

2 Markov decision process & optimal solution

3 Dynamic programming, DP

4 Monte Carlo, MC

5 Exploration basics

6 Temporal differences, TD

7 Improving data efficiency

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Motivation

TD uses data inefficiently, and data is often costly.

Example:

2D gridworld navigation from Start to Goal
Nonzero reward = 10 only on reaching G (terminal state)

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Motivation (cont’d)

Take SARSA with α = 1; initialize Q = 0
Updates along the trial on the left:

. . .

Q(x4, u4) = 0 + γ ·Q(x5, u5) = 0
Q(x5, u5) = 10 + γ · 0 = 10

A new transition from x4 to x5 (and hence a new trial)
required to propagate the info to x4!

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Ideas presented

1 Eligibility traces

2 Experience replay

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Eligibility traces

Idea: Leave a trace along the trial:

λ ∈ [0, 1] decay rate

Replacing traces

e(x , u)← 0 for all x , u
for each step k do

e(x , u)← λγe(x , u) for all x , u
e(xk , uk)← 1

end for

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Example algorithm: SARSA(λ)

Recall original SARSA only updates Q(xk , uk):
Q(xk , uk)←Q(xk , uk) + αk ·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk)]

SARSA(λ) updates all eligible pairs:
Q(x , u)←Q(x , u) + αk · e(x , u)·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk)] ∀x , u

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

SARSA(λ)

SARSA(λ)
for each trial do

init x0
e(x , u)← 0 ∀x , u
choose u0 with exploration based on Q
repeat at each step k

apply uk , measure xk+1, receive rk+1
choose uk+1 with exploration based on Q
e(x , u)← λγe(x , u) ∀x , u
e(xk , uk)← 1
Q(x , u)← Q(x , u) + αk · e(x , u)·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk)] for all x , u
until trial finished

end for

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Example: Effect of eligibility traces

λ = 0.7
Updates until x4: Q remains 0
At x5, the entire trial gets updated:

Q(x5, u5) = 10 + γ0 = 10
Q(x4, u4) = (γλ)[10 + γ0] = 3.5

Q(x3, u3) = (γλ)2[10 + γ0] = 1.225
. . .

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

TD versus MC

λ = 0 ⇒ recovers original algorithms, e.g. SARSA(0)
λ = 1 ⇒ TD becomes like MC

Typical values of λ are around 0.5 to 0.8

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Experience replay

Store each transition (xk , uk , xk+1, rk+1)
in a database

At each step, replay N transitions from the database
(in addition to regular updates)

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

Q-learning with experience replay

Q-learning with experience replay
for each trial do

init x0
repeat at each step k

apply uk , measure xk+1, receive rk+1
Q(xk , uk)← Q(xk , uk) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk)]

add (xk , uk , xk+1, rk+1) to database
ReplayExperience

until trial finished
end for

Introduction MDP & solution Dynamic programming Monte Carlo Exploration Temporal differences Improvements

ReplayExperience procedure

ReplayExperience
loop N times

retrieve a transition (x , u, x ′, r) from database
Q(x , u)← Q(x , u) + α·

[r + γ max
u′

Q(x ′, u′)−Q(x , u)]

end loop

Retrieval order:
1 Backwards along trials, best for classical algos
2 Randomly, helps e.g. in deep RL
3 etc.

Appendix

Textbooks

Sutton & Barto, Reinforcement Learning: An Introduction,
1998 (+ ongoing 2nd edition, 2017).
Bertsekas, Dynamic Programming and Optimal Control,
vol. 2, 4th ed., 2012.
Szepesvári, Algorithms for Reinforcement Learning, 2010.
Buşoniu, Babuška, De Schutter, & Ernst, Reinforcement
Learning and Dynamic Programming Using Function
Approximators, 2010.

	Introduction
	Introduction

	Markov decision process & optimal solution
	MDP and objective
	Optimal solution

	Dynamic programming, DP
	Value iteration
	Policy iteration
	Analysis and discussion

	Monte Carlo, MC
	Monte Carlo

	Exploration basics
	Exploration

	Temporal differences, TD
	Introduction
	SARSA
	Q-learning

	Improving data efficiency
	Eligibility traces
	Experience replay

	Appendix

