
Reinforcement learning basics Algorithms Accelerating RL

Reinforcement Learning
P art I: The Classical Setting

Lucian Buşoniu, Jelmer v an Ast, Robert Babuška

Knowledge-Based Control Systems

2010-03-01

Reinforcement learning basics Algorithms Accelerating RL

Demo: RL for a robot goalkeeper

Learn how to catch ball, using video camera image

Reinforcement learning basics Algorithms Accelerating RL

Outline

1 Reinforcement learning basics

2 Algorithms

3 Accelerating RL

Reinforcement learning basics Algorithms Accelerating RL

1 Reinforcement learning basics

Introduction

Elements of RL

RL solution

2 Algorithms

3 Accelerating RL

Reinforcement learning basics Algorithms Accelerating RL

Introduction

Why learning?

Learning can find solutions that:
1 cannot be found in advance

– problem too complex

(e.g., controlling highly nonlinear systems)

– problem not fully known beforehand

(e.g., robotic exploration of extraterrestrial planets)

2 steadily improve

3 adapt to time-varying environments

Essential for any intelligent system

Reinforcement learning basics Algorithms Accelerating RL

Introduction

Principle of RL

Interact with a system through states and actions

Receive rewards as performance feedback

Inspired by human and animal learning

Reinforcement learning basics Algorithms Accelerating RL

Introduction

RL on the Machine Learning spectrum

Reinforcement learning basics Algorithms Accelerating RL

Introduction

Spectrum: Supervised learning

F or each input sample x , correct output y is known

Infer input-output relationship y ≈ g(x)

Example: neural networks

Reinforcement learning basics Algorithms Accelerating RL

Introduction

Spectrum: Unsupervised learning

Only input samples x available – no outputs

Find patterns in the data

Example: clustering



Reinforcement learning basics Algorithms Accelerating RL

Introduction

Spectrum: Reinforcement learning

Correct outputs not available, only rewards

Find optimal control behavior

Reinforcement learning basics Algorithms Accelerating RL

Introduction

Reinforcement learning = Control

Reinforcement learning is about control:

optimal, adaptive, and model-free

This presentation: classical RL – discrete states and actions

Reinforcement learning basics Algorithms Accelerating RL

Elements of RL

1 Reinforcement learning basics

Introduction

Elements of RL

RL solution

2 Algorithms

3 Accelerating RL

Reinforcement learning basics Algorithms Accelerating RL

Elements of RL

A simple cleaning robot example

Cleaning robot in a 1-D world

Either pick up trash (reward +5) or power pack (reward +1)

After picking up item, episode terminates

Reinforcement learning basics Algorithms Accelerating RL

Elements of RL

Cleaning robot: State & action

Robot in given state x (cell)

and takes action u (e.g., move right)

State space X = {0, 1, 2, 3, 4, 5}

Action space U = {−1, 1} = {left, right}

Reinforcement learning basics Algorithms Accelerating RL

Elements of RL

Cleaning robot: Transition & reward

Robot reaches next state x ′

and receives reward r = quality of transition

(here, +5 for collecting trash)

Reinforcement learning basics Algorithms Accelerating RL

Elements of RL

Cleaning robot: Transition & reward functions

Transition function (process behavior):

x ′ = f (x , u) =

{

x if x is terminal (0 or 5)

x + u otherwise

Reward function (immediate performance):

r = ρ(x , u) =











1 if x = 1 and u = −1 (powerpack)

5 if x = 4 and u = 1 (trash)

0 otherwise

Note: Terminal states cannot be left

& do not accumulate rewards!

Reinforcement learning basics Algorithms Accelerating RL

Elements of RL

Markov decision process

1 State space X

2 Action space U

3 Transition function x ′ = f (x , u)

4 Reward function r = ρ(x , u)

... form a Mark ov decision process

Note: stochastic formulation possible

Reinforcement learning basics Algorithms Accelerating RL

Elements of RL

Policy

Policy h: mapping from x to u (state feedback)

Determines controller behavior

Example: h(0) = ∗ (terminal state, action is irrelevant),

h(1) = −1, h(2) = 1, h(3) = 1, h(4) = 1, h(5) = ∗



Reinforcement learning basics Algorithms Accelerating RL

RL solution

1 Reinforcement learning basics

Introduction

Elements of RL

RL solution

2 Algorithms

3 Accelerating RL

Reinforcement learning basics Algorithms Accelerating RL

RL solution

Learning goal

Find h that maximizes discounted return:

Rh(x0) =
∞
∑

k=0

γ
k rk+1 =

∞
∑

k=0

γ
k
ρ(xk , h(xk ))

from any x0

Discount factor γ ∈ [0, 1):

induces a “pseudo-horizon” for optimization

bounds infinite sum

encodes increasing uncertainty about the future

helps convergence of algorithms

Reinforcement learning basics Algorithms Accelerating RL

RL solution

Cleaning robot: Return

Assume h always goes right

Rh(2) = γ
0r1 + γ

1r2 + γ
2r3 + γ

30 + γ
40 + . . .

= γ
2 · 5

Because x3 is terminal, all remaining rewards are 0

Reinforcement learning basics Algorithms Accelerating RL

RL solution

Q-function

Q-function of policy h:

Qh(x0, u0) = ρ(x0, u0) + γRh(x1)

(return after taking u0 in x0 and then following h)

Simply fix the first action in the sequence,

independently of policy

Why Q-function? Useful to choose actions (later)

Reinforcement learning basics Algorithms Accelerating RL

RL solution

Bellman equation

Develop Q-function one step ahead:

Qh(x0, u0) = ρ(x0, u0) + γRh(x1)

= ρ(x0, u0) + γ[ρ(x1, h(x1)) + γRh(x2)]

= ρ(x0, u0) + γQh(x1, h(x1))

Also, x1 = f (x0, u0)

⇒ Bellman equation for Qh

Qh(x , u) = ρ(x , u) + γQh(f (x , u), h(f (x , u)))

Reinforcement learning basics Algorithms Accelerating RL

RL solution

Optimal solution

Optimal Q-function:

Q∗ = max
h

Qh

⇒ Greedy policy in Q∗:

h∗(x) = arg max
u

Q∗(x , u)

is optimal (achieves maximal returns)

Bellman optimality equation (for Q∗)

Q∗(x , u) = ρ(x , u) + γ max
u′

Q∗(f (x , u), u′)

Reinforcement learning basics Algorithms Accelerating RL

RL solution

Cleaning robot: Optimal solution

Discount factor γ = 0.5

Reinforcement learning basics Algorithms Accelerating RL

1 Reinforcement learning basics

2 Algorithms

Taxonomy

Q-learning

SARSA

3 Accelerating RL

Reinforcement learning basics Algorithms Accelerating RL

Taxonomy

Types of algorithms

By model knowledge

1 Model-based – dynamic programming

f , ρ known

2 Model-free – proper reinforcement learning

f , ρ unknown, only transition data (x , u, x ′
, r) available

3 Model-learning RL

estimate f and ρ from transition data



Reinforcement learning basics Algorithms Accelerating RL

Taxonomy

Types of algorithms (cont’d)

By level of interaction

1 Offline

data collected in advance

2 Online

controller learns by interacting with the process

By path to optimal solution

1 Off-policy

find Q∗, use it to compute h∗

2 On-policy

find Qh, improve h, repeat

Reinforcement learning basics Algorithms Accelerating RL

Taxonomy

Algorithms in this lecture

Online model-free reinforcement learning:

Off-policy On-policy

Q-learning SARSA

Reinforcement learning basics Algorithms Accelerating RL

Q-learning

1 Reinforcement learning basics

2 Algorithms

Taxonomy

Q-learning

SARSA

3 Accelerating RL

Reinforcement learning basics Algorithms Accelerating RL

Q-learning

Off-policy online RL: Q-learning

Recall off-policy: find Q∗, use it to compute h∗

1 Take Bellman optimality equation at some (x , u):
Q∗(x , u) = ρ(x , u) + γ maxu′ Q∗(f (x , u), u′)

2 Turn into iterative update:

Q(x , u)← ρ(x , u) + γ maxu′ Q(f (x , u), u′)

3 Instead of model f , ρ, use transition sample

(xk , uk , xk+1, rk+1) at each step k :

Q(xk , uk )← rk+1 + γ maxu′ Q(xk+1, u′)
Note: xk+1 = f (xk , uk ), rk+1 = ρ(xk , uk )

Reinforcement learning basics Algorithms Accelerating RL

Q-learning

Q-learning (cont’d)

3 Instead of model, use transition sample

(xk , uk , xk+1, rk+1) at each step k :

Q(xk , uk )← rk+1 + γ maxu′ Q(xk+1, u′)
Note: xk+1 = f (xk , uk ), rk+1 = ρ(xk , uk )

4 Finally, make update incremental:
Q(xk , uk )←Q(xk , uk ) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )]

αk ∈ (0, 1] learning rate

Reinforcement learning basics Algorithms Accelerating RL

Q-learning

Complete Q-learning algorithm

Q-learning

for every trial do

initialize x0

repeat for each step k

take action uk

measure xk+1, receive rk+1

Q(xk , uk )← Q(xk , uk ) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )]

until terminal state

end for

Reinforcement learning basics Algorithms Accelerating RL

Q-learning

Exploration-exploitation tradeoff

Essential condition for convergence to Q∗:

all (x , u) pairs must be visited infinitely often

⇒ Exploration necessary:

sometimes, choose actions randomly

Exploitation of current knowledge is also necessary:

sometimes, choose actions greedily:

uk = arg maxū Q(xk , ū)

Exploration-exploitation tradeoff crucial

for performance of online RL

Reinforcement learning basics Algorithms Accelerating RL

Q-learning

Exploration-exploitation: ε-greedy strategy

Simple solution: ε-greedy

uk =

{

arg maxū Q(xk , ū) with probability (1− εk )

a random action with probability εk

Exploration probability εk ∈ (0, 1)
is usually decreased over time

Reinforcement learning basics Algorithms Accelerating RL

Q-learning

Cleaning robot: Q-learning demo

Parameters: α = 0.2, ε = 0.3 (constant)

x0 = 2 or 3 (randomly)



Reinforcement learning basics Algorithms Accelerating RL

SARSA

1 Reinforcement learning basics

2 Algorithms

Taxonomy

Q-learning

SARSA

3 Accelerating RL

Reinforcement learning basics Algorithms Accelerating RL

SARSA

On-policy online RL: SARSA

Recall on-policy: find Qh, improve h, repeat

Similar to Q-learning:

1 Take Bellman equation for Qh, at some (x , u):
Qh(x , u) = ρ(x , u) + γQh(f (x , u), h(f (x , u)))

2 Turn into iterative update:

Q(x , u)← ρ(x , u) + γQ(f (x , u), h(f (x , u)))

3 Use sample (xk , uk , rk+1, xk+1, uk+1) at each step k :

Q(xk , uk )← rk+1 + γQ(xk+1, uk+1)
Note: uk+1 = h(f (xk , uk )), h = policy being followed

Reinforcement learning basics Algorithms Accelerating RL

SARSA

SARSA (cont’d)

3 Use sample (xk , uk , rk+1, xk+1, uk+1) at each step k :

Q(xk , uk )← rk+1 + γQ(xk+1, uk+1)
Note: uk+1 = h(f (xk , uk )), h = policy being followed

4 Make update incremental:
Q(xk , uk )←Q(xk , uk ) + αk ·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )]

(xk , uk , rk+1, xk+1, uk+1) =

(State, Action, Reward, State, Action) = SARSA

Reinforcement learning basics Algorithms Accelerating RL

SARSA

Complete SARSA algorithm

SARSA

for every trial do

initialize x0, choose initial action u0

repeat for each step k

apply uk , measure xk+1, receive rk+1

choose next action uk+1

Q(xk , uk )← Q(xk , uk ) + αk ·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )]
until terminal state

end for

Reinforcement learning basics Algorithms Accelerating RL

SARSA

Exploration-exploitation in SARSA

For convergence—besides infinite exploration—

SARSA requires policy to eventually become greedy

E.g., ε-greedy

uk =

{

arg maxū Q(xk , ū) with probability (1− εk )

a random action with probability εk

with limk→∞ εk = 0

Greedy actions⇒ policy implicitly improved!

(Recall on-policy: find Qh, improve h, repeat)

Reinforcement learning basics Algorithms Accelerating RL

SARSA

Cleaning robot: SARSA demo

Parameters like Q-learning: α = 0.2, ε = 0.3 (constant)

x0 = 2 or 3 (randomly)

Reinforcement learning basics Algorithms Accelerating RL

1 Reinforcement learning basics

2 Algorithms

3 Accelerating RL

Eligibility traces

Experience replay

Reinforcement learning basics Algorithms Accelerating RL

Accelerating RL

In practice, transition data costs:

time

profits (suboptimal performance due to exploration)

process wear & tear

Fast RL = use data efficiently

(computational demands are secondary)

Reinforcement learning basics Algorithms Accelerating RL

Eligibility traces

Eligibility traces

Leave decaying trace along state-action trajectory:

λ ∈ [0, 1] decay rate, γ discount factor

Implementation:

e(x , u)← 0 for all x , u

for each step k do

e(x , u)← λγe(x , u) for all x , u

e(xk , uk )← 1

end for



Reinforcement learning basics Algorithms Accelerating RL

Eligibility traces

Q(λ)-learning

Recall basic Q-learning only updates Q(xk , uk ):
Q(xk , uk )←Q(xk , uk ) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )]

Q(λ)-learning updates all eligible pairs:
Q(x , u)←Q(x , u) + αk · e(x , u)·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )] for all x , u

Note: exploratory actions break causality

⇒ reset eligibility trace to 0

Reinforcement learning basics Algorithms Accelerating RL

Eligibility traces

Complete Q(λ)-learning algorithm

Q(λ)-learning

for every trial do

e(x , u)← 0 for all x , u

initialize x0

repeat for each step k

take action uk

measure xk+1, receive rk+1

if uk exploratory then e(x , u)← 0 for all x , u

else e(x , u)← λγe(x , u) for all x , u

end if

e(xk , uk )← 1

Q(x , u)← Q(x , u) + αk · e(x , u)·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )] for all x , u

until terminal state

end for

Reinforcement learning basics Algorithms Accelerating RL

Eligibility traces

Cleaning robot: Q(λ)-learning demo

Parameters: α = 0.2, ε = 0.3 (like basic Q-learning), λ = 0.5

x0 = 2 or 3 (randomly)

Reinforcement learning basics Algorithms Accelerating RL

Eligibility traces

SARSA(λ)

Similar to Q-learning:

Basic SARSA:
Q(xk , uk )←Q(xk , uk ) + αk ·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )]

SARSA(λ)-learning:
Q(x , u)←Q(x , u) + αk · e(x , u)·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )] for all x , u

SARSA on-policy, including exploration

⇒ exploratory actions not a problem

Reinforcement learning basics Algorithms Accelerating RL

Eligibility traces

Complete SARSA(λ) algorithm

SARSA(λ)

for every trial do

e(x , u)← 0 for all x , u

initialize x0, choose initial action u0

repeat for each step k

apply uk , measure xk+1, receive rk+1

choose next action uk+1

e(x , u)← λγe(x , u) for all x , u

e(xk , uk )← 1

Q(x , u)← Q(x , u) + αk · e(x , u)·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )] for all x , u
until terminal state

end for

Reinforcement learning basics Algorithms Accelerating RL

Eligibility traces

Cleaning robot: SARSA(λ) demo

Parameters: α = 0.2, ε = 0.3 (like basic SARSA), λ = 0.5

x0 = 2 or 3 (randomly)

Reinforcement learning basics Algorithms Accelerating RL

Eligibility traces

Effects of eligibility trace

Accelerates learning: fewer trials to convergence

However: too large λ can make algorithm

settle on suboptimal solution!

Reinforcement learning basics Algorithms Accelerating RL

Experience replay

1 Reinforcement learning basics

2 Algorithms

3 Accelerating RL

Eligibility traces

Experience replay

Reinforcement learning basics Algorithms Accelerating RL

Experience replay

Experience replay (ER)

Store each transition sample (xk , uk , xk+1, rk+1)
into a database

At ev ery step, repla y N transitions from the database

Improv ement: replay most informativ e samples first:

prioritiz ed s weeping



Reinforcement learning basics Algorithms Accelerating RL

Experience replay

ER Q-learning

Q-learning with experience replay

for every trial do

initializ e x0

repeat for each step k

tak e action uk

measure xk+1, receive rk+1

Q(xk , uk )← Q(xk , uk ) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u
′)−Q(xk , uk )]

add (xk , uk , xk+1, rk+1) to database

ReplayExperience

until terminal state

end for

Reinforcement learning basics Algorithms Accelerating RL

Experience replay

ER Q-learning (cont’d)

ReplayExperience

loop N times

retrieve a sample (x , u, x ′
, r) from database

Q(x , u)← Q(x , u) + α·

[r + γ max
u′

Q(x ′
, u

′)−Q(x , u)]

end loop

Summary and outlook

Summary and outlook

Summary

Reinforcement learning =

optimal, adaptive, model-free control

Principle: reward signal as performance feedback

Inspired from human and animal learning,

but solid mathematical foundation

Classical RL: small, discrete X and U (this presentation)

Summary and outlook

Summary and outlook

A final look at the algorithms

Off-policy On-policy

Basic RL
Q-learning

Param: γ, αk , εk

SARSA

Param: γ, αk , εk

RL with

eligibility traces Q(λ)-learning

Param: γ, αk , εk , λ

SARSA(λ)

Param: γ, αk , εk , λ

T ypical parameter values:

γ 0.9 or larger

αk under 0.5 or diminishing schedule

εk around 0.1 or diminishing schedule

λ between 0.5 and 0.9

Summary and outlook

Summary and outlook

Outlook

Other algorithms: actor-critic, model-learning, policy

search, etc.

Continuous X , U:

Part II – RL using function approximation

State not fully measurable:

“partially observable Markov decision process”

RL for distributed (multi-agent) control



Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Reinforcement Learning
P art II: Approximate RL for Continuous-Space Control

Lucian Buşoniu, Jelmer v an Ast, Robert Babuška

Knowledge-Based Control Systems

2010-03-03

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Principle of RL

Interact with a system through states and actions

Receive rewards as performance feedback

This presentation: appro ximate RL

– continuous states & actions

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Outline

1 Introduction

2 Classical offline algorithms

3 Approximate algorithms for continuous spaces

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Introduction

Recall: Solution of the RL problem

Q-function Qh of policy h

Optimal Q-function Q∗ = maxh Qh

Satisfies Bellman optimality equation:

Q
∗(x , u) = ρ(x , u) + γ max

u′

Q
∗(f (x , u), u

′)

Optimal policy h∗ – greedy in Q∗:

h
∗(x) = arg max

u

Q
∗(x , u)

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Introduction

Why approximation?

Classical RL – tabular representation of Q-functions:

separate Q-value for each x and u

But in real-life control, X , U continuous!

Tabular representation impossible

⇒ need to approximate the Q-function

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Introduction

Recall: Types of algorithms

By model knowledge

1 Model-based – f and ρ known (dynamic programming)

2 Model-free – no f and ρ, only transition data (RL)

3 Model-learning – estimate f and ρ from transition data

By level of interaction

1 Offline – data collected in advance

2 Online – learn by interacting with the process

By path to optimal solution

1 Off-policy – find Q∗, use it to compute h∗

2 On-policy – find Qh, improve h, repeat

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Introduction

Algorithms considered

Off-policy On-policy

(previous lecture)

Classical online RL Q-learning SARSA

(this lecture)

Classical offline DP Q-iteration Policy iteration

Approximate offline fuzzy
Q-iteration

approximate
policy iteration

Approximate online approximate
Q-learning

online approximate
policy iteration

Technical focus: Q-iteration & fuzzy Q-iteration

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

1 Introduction

2 Classical offline algorithms

3 Approximate algorithms for continuous spaces

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Classical offline algorithms

Classical offline algorithms

Off-policy On-policy

Classical offline DP
Q-iteration Policy iteration

Approximate offline fuzzy
Q-iteration

approximate
policy iteration

Approximate online approximate
Q-learning

online approximate
policy iteration



Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Classical offline algorithms

Offline, off-policy: Q-iteration

Turn Bellman optimality equation:

Q
∗(x , u) = ρ(x , u) + γ max

u′

Q
∗(f (x , u), u

′)

into an iterative update:

Q-iteration

repeat at each iteration `

for all x , u do

Q`+1(x , u)← ρ(x , u) + γ maxu′ Q`(f (x , u), u′)
end for

until convergence to Q∗

Once Q∗ available: h∗(x) = arg maxu Q∗(x , u)

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Classical offline algorithms

Cleaning robot: Q-iteration demo

Discount factor: γ = 0.5

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Classical offline algorithms

Q-iteration convergence

Each update is a contraction with factor γ:

‖Q`+1 −Q
∗‖

∞
≤ γ ‖Q` −Q

∗‖
∞

⇒ Q-iteration monotonically converg es to Q∗

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Classical offline algorithms

Offline, on-policy: Policy iteration

Recall on-policy: find Qh, improve h, repeat

Policy iteration

starting from an initial policy

repeat at each iteration `

policy evaluation: find Qh`

policy improvement: h`+1(x)← arg maxu Qh`(x , u)
until convergence to h∗

Policy evaluation: iterative, from Bellman equation for Qh

(like Q-iteration)

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Classical offline algorithms

Cleaning robot: Policy iteration demo

Initial policy: always go left

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

1 Introduction

2 Classical offline algorithms

3 Approximate algorithms for continuous spaces

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Approximate algorithms for continuous spaces

Off-policy On-policy

Classical offline DP Q-iteration Policy iteration

Approximate offline
fuzzy
Q-iteration

approximate
policy iteration

Approximate online approximate
Q-learning

online approximate
policy iteration

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Approximating the Q-function

1 Introduction

2 Classical offline algorithms

3 Approximate algorithms for continuous spaces

Approximating the Q-function

Fuzzy Q-iteration

Approximate policy iteration

Online approximate policy iteration

Approximate Q-learning

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Approximating the Q-function

Q-function approximation

In real-life control, X , U continuous

⇒ approximate Q-function Q̂ must be used

Usually, policy not approximated

Greedy in Q̂, computed on demand for given x :

h(x) = arg max
u

Q̂(x , u)

Approximator must ensure efficient arg max solution



Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Approximating the Q-function

Approximating over the action space

Approximator must ensure efficient “arg max” solution

⇒ Typically: action discretization

Choose M discrete actions u1, . . . , uM ∈ U

Solve “arg max” by explicit enumeration

Example: grid discretization

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Approximating the Q-function

Approximating over the state space

Typically: basis functions

φ1, . . . , φN : X → [0,∞)

Usually normalized:
∑

i
φi(x) = 1

E.g., fuzzy approximation, RBF network approximation

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Approximating the Q-function

Linear Q-function approximation

Given:

1 N basis functions φ1, . . . , φN

2 M discrete actions u1, . . . , uM

Store:

3 N ×M matrix of parameters θ

(one for each pair basis function–discrete action)

Approximate Q-function

Q̂θ(x , uj) =

N∑

i=1

φi(x)θi,j = [φ1(x) . . . φN(x)]


 · · ·




θ1,j
...

θN,j


 · · ·




Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Fuzzy Q-iteration

Offline, off-policy: Fuzzy Q-iteration

Off-policy On-policy

Classical offline DP Q-iteration Policy iteration

Approximate offline
fuzzy
Q-iteration (DP) approximate

policy iteration

Approximate online
approximate
Q-learning

online approximate
policy iteration

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Fuzzy Q-iteration

Fuzzy approximator

Basis functions: pyramidal membership functions (MFs)

= cross-product of triangular MFs

Each MF i has core (center) xi

θi,j can be seen as Q̂(xi , uj)

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Fuzzy Q-iteration

Fuzzy Q-iteration

Recall classical Q-iteration:

repeat at each iteration `

for all x , u do

Q`+1(x , u) = ρ(x , u) + γ maxu′ Q`(f (x , u), u′)
end for

until convergence

Fuzzy Q-iteration

repeat at each iteration `

for all cores xi , discrete actions uj do

θ`+1,i,j = ρ(xi , uj) + γ maxj ′ Q̂θ`(f (xi , uj), uj ′)
end for

until convergence

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Fuzzy Q-iteration

Fuzzy Q-iteration policy

Recall optimal policy:

h∗(x) = arg max
u

Q∗(x , u)

Fuzzy Q-iteration policy:

ĥ∗(x) = arg max
uj , j=1,...,M

Q̂θ∗(x , uj)

(θ∗ = converged parameter matrix)

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Fuzzy Q-iteration

Example: Inverted pendulum swing-up

x = [angle α, velocity α̇]T

u = voltage

ρ(x , u) = −xT

[
5 0

0 0.1

]
x − uT1u

Discount factor γ = 0.98

Goal: stabilize pointing up

Insufficient actuation⇒ need to swing back & forth

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Fuzzy Q-iteration

Inverted pendulum: Near-optimal solution

Left: Q-function for u = 0 Right: policy

Replay



Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Fuzzy Q-iteration

Inverted pendulum: Fuzzy Q-iteration demo

MFs: 41× 21 equidistant grid

Discretization: 5 actions, logarithmically spaced around 0

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Fuzzy Q-iteration

Inverted pendulum: Fuzzy Q-iteration demo

Demo

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Fuzzy Q-iteration

Fuzzy Q-iteration convergence

Like classical Q-iteration:

Each update is a contraction with factor γ:

‖θ`+1 − θ∗‖∞ ≤ γ‖θ` − θ∗‖∞

⇒ Monotonic convergence to θ∗

θ∗ leads to near-optimal Q̂∗, ĥ∗

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Approximate policy iteration

Offline, on-policy: Approximate policy iteration

Off-policy On-policy

Classical offline DP Q-iteration Policy iteration

Approximate offline fuzzy
Q-iteration

approximate
policy iteration (RL)

Approximate online approximate

Q-learning

online approximate

policy iteration

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Approximate policy iteration

Approximate policy iteration

Recall classical policy iteration:

starting from an initial policy

repeat at each iteration `

policy evaluation: find Qh`

policy improv ement: h`+1(x)← arg maxu Qh`(x , u)
until conv ergence

Approximate policy iteration (API)

starting from an initial policy

repeat at each iteration `

approximate policy ev aluation: find θ so that Q̂θ
≈ Qh`

policy improv ement: h`+1(x)← arg maxu Q̂θ(x , u)
until conv ergence

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Approximate policy iteration

Inverted pendulum: API demo

Basis functions: 15× 9 grid of RBFs

Discretization: 3 equidistant actions

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Approximate policy iteration

Inverted pendulum: API demo

Demo

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Online approximate policy iteration

Online, on-policy: Online API

Off-policy On-policy

Classical offline DP Q-iteration Policy iteration

Approximate offline fuzzy

Q-iteration

approximate

policy iteration

Approximate online approximate

Q-learning

online approximate

policy iteration (RL)

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Online approximate policy iteration

Inverted pendulum: Online API demo

Real-time learning control

Approximator: similar to offline API (except 11× 11 RBFs)



Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Approximate Q-learning

Online, off-policy: Approximate Q-learning

Off-policy On-policy

Classical offline DP Q-iteration Policy iteration

Approximate offline fuzzy

Q-iteration

approximate

policy iteration

Approximate online
approximate

Q-learning (RL) online approximate

policy iteration

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Approximate Q-learning

Demo: Q-learning for w alking robot (Erik Schuitema)

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Approximate Q-learning

Recall: Experience replay

Store each transition sample (xk , uk , xk+1, rk+1)
into a database

At every step, replay several transitions from the database

Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Approximate Q-learning

Demo: Q-learning for goalkeeper robot (Sander Adam)

Real-time learning control

Employs experience replay

Conclusion

T ake-home message

Approximate reinforcement learning =

Learn how to optimally control

complex systems from scratch


