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Demo: RL for a robot goalkeeper

Learn how to catch ball, using video camera image
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Introduction

Why learning?

Learning can find solutions that:
1 cannot be found in advance

– problem too complex

(e.g., controlling highly nonlinear systems)

– problem not fully known beforehand

(e.g., robotic exploration of extraterrestrial planets)

2 steadily improve

3 adapt to time-varying environments

Essential for any intelligent system
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Introduction

Principle of RL

Interact with a system through states and actions

Receive rewards as performance feedback

Inspired by human and animal learning
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Introduction

RL on the Machine Learning spectrum
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Introduction

Spectrum: Supervised learning

F or each input sample x , correct output y is known

Infer input-output relationship y ≈ g(x)

Example: neural networks
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Introduction

Spectrum: Unsupervised learning

Only input samples x available – no outputs

Find patterns in the data

Example: clustering
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Introduction

Spectrum: Reinforcement learning

Correct outputs not available, only rewards

Find optimal control behavior
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Introduction

Reinforcement learning = Control

Reinforcement learning is about control:

optimal, adaptive, and model-free

This presentation: classical RL – discrete states and actions
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Elements of RL

A simple cleaning robot example

Cleaning robot in a 1-D world

Either pick up trash (reward +5) or power pack (reward +1)

After picking up item, episode terminates
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Elements of RL

Cleaning robot: State & action

Robot in given state x (cell)

and takes action u (e.g., move right)

State space X = {0, 1, 2, 3, 4, 5}

Action space U = {−1, 1} = {left, right}
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Elements of RL

Cleaning robot: Transition & reward

Robot reaches next state x ′

and receives reward r = quality of transition

(here, +5 for collecting trash)
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Elements of RL

Cleaning robot: Transition & reward functions

Transition function (process behavior):

x ′ = f (x , u) =

{

x if x is terminal (0 or 5)

x + u otherwise

Reward function (immediate performance):

r = ρ(x , u) =











1 if x = 1 and u = −1 (powerpack)

5 if x = 4 and u = 1 (trash)

0 otherwise

Note: Terminal states cannot be left

& do not accumulate rewards!
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Elements of RL

Markov decision process

1 State space X

2 Action space U

3 Transition function x ′ = f (x , u)

4 Reward function r = ρ(x , u)

... form a Mark ov decision process

Note: stochastic formulation possible

Reinforcement learning basics Algorithms Accelerating RL

Elements of RL

Policy

Policy h: mapping from x to u (state feedback)

Determines controller behavior

Example: h(0) = ∗ (terminal state, action is irrelevant),

h(1) = −1, h(2) = 1, h(3) = 1, h(4) = 1, h(5) = ∗



Reinforcement learning basics Algorithms Accelerating RL

RL solution

1 Reinforcement learning basics

Introduction

Elements of RL

RL solution

2 Algorithms

3 Accelerating RL

Reinforcement learning basics Algorithms Accelerating RL

RL solution

Learning goal

Find h that maximizes discounted return:

Rh(x0) =
∞
∑

k=0

γ
k rk+1 =

∞
∑

k=0

γ
k
ρ(xk , h(xk ))

from any x0

Discount factor γ ∈ [0, 1):

induces a “pseudo-horizon” for optimization

bounds infinite sum

encodes increasing uncertainty about the future

helps convergence of algorithms
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RL solution

Cleaning robot: Return

Assume h always goes right

Rh(2) = γ
0r1 + γ

1r2 + γ
2r3 + γ

30 + γ
40 + . . .

= γ
2 · 5

Because x3 is terminal, all remaining rewards are 0
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RL solution

Q-function

Q-function of policy h:

Qh(x0, u0) = ρ(x0, u0) + γRh(x1)

(return after taking u0 in x0 and then following h)

Simply fix the first action in the sequence,

independently of policy

Why Q-function? Useful to choose actions (later)
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RL solution

Bellman equation

Develop Q-function one step ahead:

Qh(x0, u0) = ρ(x0, u0) + γRh(x1)

= ρ(x0, u0) + γ[ρ(x1, h(x1)) + γRh(x2)]

= ρ(x0, u0) + γQh(x1, h(x1))

Also, x1 = f (x0, u0)

⇒ Bellman equation for Qh

Qh(x , u) = ρ(x , u) + γQh(f (x , u), h(f (x , u)))
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RL solution

Optimal solution

Optimal Q-function:

Q∗ = max
h

Qh

⇒ Greedy policy in Q∗:

h∗(x) = arg max
u

Q∗(x , u)

is optimal (achieves maximal returns)

Bellman optimality equation (for Q∗)

Q∗(x , u) = ρ(x , u) + γ max
u′

Q∗(f (x , u), u′)
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RL solution

Cleaning robot: Optimal solution

Discount factor γ = 0.5
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Taxonomy

Types of algorithms

By model knowledge

1 Model-based – dynamic programming

f , ρ known

2 Model-free – proper reinforcement learning

f , ρ unknown, only transition data (x , u, x ′
, r) available

3 Model-learning RL

estimate f and ρ from transition data
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Taxonomy

Types of algorithms (cont’d)

By level of interaction

1 Offline

data collected in advance

2 Online

controller learns by interacting with the process

By path to optimal solution

1 Off-policy

find Q∗, use it to compute h∗

2 On-policy

find Qh, improve h, repeat
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Taxonomy

Algorithms in this lecture

Online model-free reinforcement learning:

Off-policy On-policy

Q-learning SARSA

Reinforcement learning basics Algorithms Accelerating RL

Q-learning

1 Reinforcement learning basics

2 Algorithms

Taxonomy

Q-learning

SARSA

3 Accelerating RL

Reinforcement learning basics Algorithms Accelerating RL

Q-learning

Off-policy online RL: Q-learning

Recall off-policy: find Q∗, use it to compute h∗

1 Take Bellman optimality equation at some (x , u):
Q∗(x , u) = ρ(x , u) + γ maxu′ Q∗(f (x , u), u′)

2 Turn into iterative update:

Q(x , u)← ρ(x , u) + γ maxu′ Q(f (x , u), u′)

3 Instead of model f , ρ, use transition sample

(xk , uk , xk+1, rk+1) at each step k :

Q(xk , uk )← rk+1 + γ maxu′ Q(xk+1, u′)
Note: xk+1 = f (xk , uk ), rk+1 = ρ(xk , uk )
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Q-learning

Q-learning (cont’d)

3 Instead of model, use transition sample

(xk , uk , xk+1, rk+1) at each step k :

Q(xk , uk )← rk+1 + γ maxu′ Q(xk+1, u′)
Note: xk+1 = f (xk , uk ), rk+1 = ρ(xk , uk )

4 Finally, make update incremental:
Q(xk , uk )←Q(xk , uk ) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )]

αk ∈ (0, 1] learning rate
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Q-learning

Complete Q-learning algorithm

Q-learning

for every trial do

initialize x0

repeat for each step k

take action uk

measure xk+1, receive rk+1

Q(xk , uk )← Q(xk , uk ) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )]

until terminal state

end for
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Q-learning

Exploration-exploitation tradeoff

Essential condition for convergence to Q∗:

all (x , u) pairs must be visited infinitely often

⇒ Exploration necessary:

sometimes, choose actions randomly

Exploitation of current knowledge is also necessary:

sometimes, choose actions greedily:

uk = arg maxū Q(xk , ū)

Exploration-exploitation tradeoff crucial

for performance of online RL
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Q-learning

Exploration-exploitation: ε-greedy strategy

Simple solution: ε-greedy

uk =

{

arg maxū Q(xk , ū) with probability (1− εk )

a random action with probability εk

Exploration probability εk ∈ (0, 1)
is usually decreased over time
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Q-learning

Cleaning robot: Q-learning demo

Parameters: α = 0.2, ε = 0.3 (constant)

x0 = 2 or 3 (randomly)
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SARSA

On-policy online RL: SARSA

Recall on-policy: find Qh, improve h, repeat

Similar to Q-learning:

1 Take Bellman equation for Qh, at some (x , u):
Qh(x , u) = ρ(x , u) + γQh(f (x , u), h(f (x , u)))

2 Turn into iterative update:

Q(x , u)← ρ(x , u) + γQ(f (x , u), h(f (x , u)))

3 Use sample (xk , uk , rk+1, xk+1, uk+1) at each step k :

Q(xk , uk )← rk+1 + γQ(xk+1, uk+1)
Note: uk+1 = h(f (xk , uk )), h = policy being followed
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SARSA

SARSA (cont’d)

3 Use sample (xk , uk , rk+1, xk+1, uk+1) at each step k :

Q(xk , uk )← rk+1 + γQ(xk+1, uk+1)
Note: uk+1 = h(f (xk , uk )), h = policy being followed

4 Make update incremental:
Q(xk , uk )←Q(xk , uk ) + αk ·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )]

(xk , uk , rk+1, xk+1, uk+1) =

(State, Action, Reward, State, Action) = SARSA
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SARSA

Complete SARSA algorithm

SARSA

for every trial do

initialize x0, choose initial action u0

repeat for each step k

apply uk , measure xk+1, receive rk+1

choose next action uk+1

Q(xk , uk )← Q(xk , uk ) + αk ·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )]
until terminal state

end for
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SARSA

Exploration-exploitation in SARSA

For convergence—besides infinite exploration—

SARSA requires policy to eventually become greedy

E.g., ε-greedy

uk =

{

arg maxū Q(xk , ū) with probability (1− εk )

a random action with probability εk

with limk→∞ εk = 0

Greedy actions⇒ policy implicitly improved!

(Recall on-policy: find Qh, improve h, repeat)
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SARSA

Cleaning robot: SARSA demo

Parameters like Q-learning: α = 0.2, ε = 0.3 (constant)

x0 = 2 or 3 (randomly)
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Eligibility traces

Experience replay
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Accelerating RL

In practice, transition data costs:

time

profits (suboptimal performance due to exploration)

process wear & tear

Fast RL = use data efficiently

(computational demands are secondary)
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Eligibility traces

Eligibility traces

Leave decaying trace along state-action trajectory:

λ ∈ [0, 1] decay rate, γ discount factor

Implementation:

e(x , u)← 0 for all x , u

for each step k do

e(x , u)← λγe(x , u) for all x , u

e(xk , uk )← 1

end for
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Eligibility traces

Q(λ)-learning

Recall basic Q-learning only updates Q(xk , uk ):
Q(xk , uk )←Q(xk , uk ) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )]

Q(λ)-learning updates all eligible pairs:
Q(x , u)←Q(x , u) + αk · e(x , u)·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )] for all x , u

Note: exploratory actions break causality

⇒ reset eligibility trace to 0
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Eligibility traces

Complete Q(λ)-learning algorithm

Q(λ)-learning

for every trial do

e(x , u)← 0 for all x , u

initialize x0

repeat for each step k

take action uk

measure xk+1, receive rk+1

if uk exploratory then e(x , u)← 0 for all x , u

else e(x , u)← λγe(x , u) for all x , u

end if

e(xk , uk )← 1

Q(x , u)← Q(x , u) + αk · e(x , u)·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )] for all x , u

until terminal state

end for
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Eligibility traces

Cleaning robot: Q(λ)-learning demo

Parameters: α = 0.2, ε = 0.3 (like basic Q-learning), λ = 0.5

x0 = 2 or 3 (randomly)
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Eligibility traces

SARSA(λ)

Similar to Q-learning:

Basic SARSA:
Q(xk , uk )←Q(xk , uk ) + αk ·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )]

SARSA(λ)-learning:
Q(x , u)←Q(x , u) + αk · e(x , u)·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )] for all x , u

SARSA on-policy, including exploration

⇒ exploratory actions not a problem
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Eligibility traces

Complete SARSA(λ) algorithm

SARSA(λ)

for every trial do

e(x , u)← 0 for all x , u

initialize x0, choose initial action u0

repeat for each step k

apply uk , measure xk+1, receive rk+1

choose next action uk+1

e(x , u)← λγe(x , u) for all x , u

e(xk , uk )← 1

Q(x , u)← Q(x , u) + αk · e(x , u)·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )] for all x , u
until terminal state

end for

Reinforcement learning basics Algorithms Accelerating RL

Eligibility traces

Cleaning robot: SARSA(λ) demo

Parameters: α = 0.2, ε = 0.3 (like basic SARSA), λ = 0.5

x0 = 2 or 3 (randomly)
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Eligibility traces

Effects of eligibility trace

Accelerates learning: fewer trials to convergence

However: too large λ can make algorithm

settle on suboptimal solution!
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Eligibility traces

Experience replay
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Experience replay

Experience replay (ER)

Store each transition sample (xk , uk , xk+1, rk+1)
into a database

At ev ery step, repla y N transitions from the database

Improv ement: replay most informativ e samples first:

prioritiz ed s weeping
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Experience replay

ER Q-learning

Q-learning with experience replay

for every trial do

initializ e x0

repeat for each step k

tak e action uk

measure xk+1, receive rk+1

Q(xk , uk )← Q(xk , uk ) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u
′)−Q(xk , uk )]

add (xk , uk , xk+1, rk+1) to database

ReplayExperience

until terminal state

end for
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Experience replay

ER Q-learning (cont’d)

ReplayExperience

loop N times

retrieve a sample (x , u, x ′
, r) from database

Q(x , u)← Q(x , u) + α·

[r + γ max
u′

Q(x ′
, u

′)−Q(x , u)]

end loop

Summary and outlook

Summary and outlook

Summary

Reinforcement learning =

optimal, adaptive, model-free control

Principle: reward signal as performance feedback

Inspired from human and animal learning,

but solid mathematical foundation

Classical RL: small, discrete X and U (this presentation)

Summary and outlook

Summary and outlook

A final look at the algorithms

Off-policy On-policy

Basic RL
Q-learning

Param: γ, αk , εk

SARSA

Param: γ, αk , εk

RL with

eligibility traces Q(λ)-learning

Param: γ, αk , εk , λ

SARSA(λ)

Param: γ, αk , εk , λ

T ypical parameter values:

γ 0.9 or larger

αk under 0.5 or diminishing schedule

εk around 0.1 or diminishing schedule

λ between 0.5 and 0.9

Summary and outlook

Summary and outlook

Outlook

Other algorithms: actor-critic, model-learning, policy

search, etc.

Continuous X , U:

Part II – RL using function approximation

State not fully measurable:

“partially observable Markov decision process”

RL for distributed (multi-agent) control
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Principle of RL

Interact with a system through states and actions

Receive rewards as performance feedback

This presentation: appro ximate RL

– continuous states & actions
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Introduction

Recall: Solution of the RL problem

Q-function Qh of policy h

Optimal Q-function Q∗ = maxh Qh

Satisfies Bellman optimality equation:

Q
∗(x , u) = ρ(x , u) + γ max

u′

Q
∗(f (x , u), u

′)

Optimal policy h∗ – greedy in Q∗:

h
∗(x) = arg max

u

Q
∗(x , u)
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Introduction

Why approximation?

Classical RL – tabular representation of Q-functions:

separate Q-value for each x and u

But in real-life control, X , U continuous!

Tabular representation impossible

⇒ need to approximate the Q-function
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Introduction

Recall: Types of algorithms

By model knowledge

1 Model-based – f and ρ known (dynamic programming)

2 Model-free – no f and ρ, only transition data (RL)

3 Model-learning – estimate f and ρ from transition data

By level of interaction

1 Offline – data collected in advance

2 Online – learn by interacting with the process

By path to optimal solution

1 Off-policy – find Q∗, use it to compute h∗

2 On-policy – find Qh, improve h, repeat
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Introduction

Algorithms considered

Off-policy On-policy

(previous lecture)

Classical online RL Q-learning SARSA

(this lecture)

Classical offline DP Q-iteration Policy iteration

Approximate offline fuzzy
Q-iteration

approximate
policy iteration

Approximate online approximate
Q-learning

online approximate
policy iteration

Technical focus: Q-iteration & fuzzy Q-iteration
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1 Introduction
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Introduction Classical offline algorithms Approximate algorithms for continuous spaces

Classical offline algorithms

Classical offline algorithms

Off-policy On-policy

Classical offline DP
Q-iteration Policy iteration

Approximate offline fuzzy
Q-iteration

approximate
policy iteration

Approximate online approximate
Q-learning

online approximate
policy iteration
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Classical offline algorithms

Offline, off-policy: Q-iteration

Turn Bellman optimality equation:

Q
∗(x , u) = ρ(x , u) + γ max

u′

Q
∗(f (x , u), u

′)

into an iterative update:

Q-iteration

repeat at each iteration `

for all x , u do

Q`+1(x , u)← ρ(x , u) + γ maxu′ Q`(f (x , u), u′)
end for

until convergence to Q∗

Once Q∗ available: h∗(x) = arg maxu Q∗(x , u)
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Classical offline algorithms

Cleaning robot: Q-iteration demo

Discount factor: γ = 0.5
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Classical offline algorithms

Q-iteration convergence

Each update is a contraction with factor γ:

‖Q`+1 −Q
∗‖

∞
≤ γ ‖Q` −Q

∗‖
∞

⇒ Q-iteration monotonically converg es to Q∗
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Classical offline algorithms

Offline, on-policy: Policy iteration

Recall on-policy: find Qh, improve h, repeat

Policy iteration

starting from an initial policy

repeat at each iteration `

policy evaluation: find Qh`

policy improvement: h`+1(x)← arg maxu Qh`(x , u)
until convergence to h∗

Policy evaluation: iterative, from Bellman equation for Qh

(like Q-iteration)
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Classical offline algorithms

Cleaning robot: Policy iteration demo

Initial policy: always go left
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Approximate algorithms for continuous spaces

Off-policy On-policy

Classical offline DP Q-iteration Policy iteration

Approximate offline
fuzzy
Q-iteration

approximate
policy iteration

Approximate online approximate
Q-learning

online approximate
policy iteration
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Approximating the Q-function
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Approximating the Q-function

Fuzzy Q-iteration

Approximate policy iteration

Online approximate policy iteration

Approximate Q-learning
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Approximating the Q-function

Q-function approximation

In real-life control, X , U continuous

⇒ approximate Q-function Q̂ must be used

Usually, policy not approximated

Greedy in Q̂, computed on demand for given x :

h(x) = arg max
u

Q̂(x , u)

Approximator must ensure efficient arg max solution
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Approximating the Q-function

Approximating over the action space

Approximator must ensure efficient “arg max” solution

⇒ Typically: action discretization

Choose M discrete actions u1, . . . , uM ∈ U

Solve “arg max” by explicit enumeration

Example: grid discretization
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Approximating the Q-function

Approximating over the state space

Typically: basis functions

φ1, . . . , φN : X → [0,∞)

Usually normalized:
∑

i
φi(x) = 1

E.g., fuzzy approximation, RBF network approximation
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Approximating the Q-function

Linear Q-function approximation

Given:

1 N basis functions φ1, . . . , φN

2 M discrete actions u1, . . . , uM

Store:

3 N ×M matrix of parameters θ

(one for each pair basis function–discrete action)

Approximate Q-function

Q̂θ(x , uj) =

N∑

i=1

φi(x)θi,j = [φ1(x) . . . φN(x)]


 · · ·




θ1,j
...

θN,j


 · · ·



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Fuzzy Q-iteration

Offline, off-policy: Fuzzy Q-iteration

Off-policy On-policy

Classical offline DP Q-iteration Policy iteration

Approximate offline
fuzzy
Q-iteration (DP) approximate

policy iteration

Approximate online
approximate
Q-learning

online approximate
policy iteration
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Fuzzy Q-iteration

Fuzzy approximator

Basis functions: pyramidal membership functions (MFs)

= cross-product of triangular MFs

Each MF i has core (center) xi

θi,j can be seen as Q̂(xi , uj)
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Fuzzy Q-iteration

Fuzzy Q-iteration

Recall classical Q-iteration:

repeat at each iteration `

for all x , u do

Q`+1(x , u) = ρ(x , u) + γ maxu′ Q`(f (x , u), u′)
end for

until convergence

Fuzzy Q-iteration

repeat at each iteration `

for all cores xi , discrete actions uj do

θ`+1,i,j = ρ(xi , uj) + γ maxj ′ Q̂θ`(f (xi , uj), uj ′)
end for

until convergence
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Fuzzy Q-iteration

Fuzzy Q-iteration policy

Recall optimal policy:

h∗(x) = arg max
u

Q∗(x , u)

Fuzzy Q-iteration policy:

ĥ∗(x) = arg max
uj , j=1,...,M

Q̂θ∗(x , uj)

(θ∗ = converged parameter matrix)
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Fuzzy Q-iteration

Example: Inverted pendulum swing-up

x = [angle α, velocity α̇]T

u = voltage

ρ(x , u) = −xT

[
5 0

0 0.1

]
x − uT1u

Discount factor γ = 0.98

Goal: stabilize pointing up

Insufficient actuation⇒ need to swing back & forth
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Fuzzy Q-iteration

Inverted pendulum: Near-optimal solution

Left: Q-function for u = 0 Right: policy

Replay
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Fuzzy Q-iteration

Inverted pendulum: Fuzzy Q-iteration demo

MFs: 41× 21 equidistant grid

Discretization: 5 actions, logarithmically spaced around 0
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Fuzzy Q-iteration

Inverted pendulum: Fuzzy Q-iteration demo

Demo
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Fuzzy Q-iteration

Fuzzy Q-iteration convergence

Like classical Q-iteration:

Each update is a contraction with factor γ:

‖θ`+1 − θ∗‖∞ ≤ γ‖θ` − θ∗‖∞

⇒ Monotonic convergence to θ∗

θ∗ leads to near-optimal Q̂∗, ĥ∗
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Approximate policy iteration

Offline, on-policy: Approximate policy iteration

Off-policy On-policy

Classical offline DP Q-iteration Policy iteration

Approximate offline fuzzy
Q-iteration

approximate
policy iteration (RL)

Approximate online approximate

Q-learning

online approximate

policy iteration
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Approximate policy iteration

Approximate policy iteration

Recall classical policy iteration:

starting from an initial policy

repeat at each iteration `

policy evaluation: find Qh`

policy improv ement: h`+1(x)← arg maxu Qh`(x , u)
until conv ergence

Approximate policy iteration (API)

starting from an initial policy

repeat at each iteration `

approximate policy ev aluation: find θ so that Q̂θ
≈ Qh`

policy improv ement: h`+1(x)← arg maxu Q̂θ(x , u)
until conv ergence
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Approximate policy iteration

Inverted pendulum: API demo

Basis functions: 15× 9 grid of RBFs

Discretization: 3 equidistant actions
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Approximate policy iteration

Inverted pendulum: API demo

Demo
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Online approximate policy iteration

Online, on-policy: Online API

Off-policy On-policy

Classical offline DP Q-iteration Policy iteration

Approximate offline fuzzy

Q-iteration

approximate

policy iteration

Approximate online approximate

Q-learning

online approximate

policy iteration (RL)
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Online approximate policy iteration

Inverted pendulum: Online API demo

Real-time learning control

Approximator: similar to offline API (except 11× 11 RBFs)
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Approximate Q-learning

Online, off-policy: Approximate Q-learning

Off-policy On-policy

Classical offline DP Q-iteration Policy iteration

Approximate offline fuzzy

Q-iteration

approximate

policy iteration

Approximate online
approximate

Q-learning (RL) online approximate

policy iteration
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Approximate Q-learning

Demo: Q-learning for w alking robot (Erik Schuitema)
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Approximate Q-learning

Recall: Experience replay

Store each transition sample (xk , uk , xk+1, rk+1)
into a database

At every step, replay several transitions from the database
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Approximate Q-learning

Demo: Q-learning for goalkeeper robot (Sander Adam)

Real-time learning control

Employs experience replay

Conclusion

T ake-home message

Approximate reinforcement learning =

Learn how to optimally control

complex systems from scratch


