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3

Dynamic programming and reinforcement
learning in large and continuous spaces

This chapter describes dynamic programming and reinforcement learning for large

and continuous-space problems. In such problems, exact solutions cannot be found in

general, and approximation is necessary. The algorithms of the previous chapter can

therefore no longer be applied in their original form. Instead, approximate versions of

value iteration, policy iteration, and policy search are introduced. Theoretical guar-

antees are provided on the performance of the algorithms, and numerical examples

are used to illustrate their behavior. Techniques to automatically find value function

approximators are reviewed, and the three categories of algorithms are compared.

3.1 Introduction

The classical dynamic programming (DP) and reinforcement learning (RL) algo-

rithms introduced in Chapter 2 require exact representations of the value func-

tions and policies. In general, an exact value function representation can only be

achieved by storing distinct estimates of the return for every state-action pair (when

Q-functions are used) or for every state (in the case of V-functions). Similarly, to rep-

resent policies exactly, distinct actions have to be stored for every state. When some

of the variables have a very large or infinite number of possible values (e.g., when

they are continuous), such exact representations are no longer possible, and value

functions and policies need to be represented approximately. Since most problems of

practical interest have large or continuous state and action spaces, approximation is

essential in DP and RL.

Approximators can be separated into two main types: parametric and nonpara-

metric. Parametric approximators are mappings from a parameter space into the

space of functions they aim to represent. The form of the mapping and the number of

parameters are given a priori, while the parameters themselves are tuned using data

about the target function. A representative example is a weighted linear combination

of a fixed set of basis functions, in which the weights are the parameters. In contrast,

the structure of a nonparametric approximator is derived from the data. Despite its

name, a nonparametric approximator typically still has parameters, but unlike in the

parametric case, the number of parameters (as well as their values) is determined

43



44 Chapter 3. DP and RL in large and continuous spaces

from the data. For instance, kernel-based approximators considered in this book de-

fine one kernel per data point, and represent the target function as a weighted linear

combination of these kernels, where again the weights are the parameters.

This chapter provides an extensive, in-depth review of approximate DP and RL

in large and continuous-space problems. The three basic classes of DP and RL al-

gorithms discussed in Chapter 2, namely value iteration, policy iteration, and policy

search, are all extended to use approximation, resulting in approximate value itera-

tion, approximate policy iteration, and approximate policy search. Algorithm deriva-

tions are complemented by theoretical guarantees on their performance, by numerical

examples illustrating their behavior, and by comparisons of the different approaches.

Several other important topics in value function and policy approximation are also

treated. To help in navigating this large body of material, Figure 3.1 presents a road

map of the chapter in graphical form, and the remainder of this section details this

road map.

Section 3.1

Introduction

Section 3.2

The need for approximation

Section 3.3

Approximation architectures

Section 3.7

Approximate policy search

Section 3.4

Approximate value iteration
Section 3.5

Approximate policy iteration

Section 3.9

Summary and discussion

Section 3.6

Finding value function
approximators automatically

Section 3.8

Comparison

FIGURE 3.1

A road map of this chapter. The arrows indicate the recommended sequence of reading. Dashed

arrows indicate optional ordering.

In Section 3.2, the need for approximation in DP and RL for large and continu-

ous spaces is explained. Approximation is not only a problem of compact represen-

tation, but also plays a role in several other parts of DP and RL algorithms. In Sec-
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tion 3.3, parametric and nonparametric approximation architectures are introduced

and compared.

This introduction is followed by an in-depth discussion of approximate value iter-

ation in Section 3.4, and of approximate policy iteration in Section 3.5. Techniques to

automatically derive value function approximators, useful in approximate value iter-

ation and policy iteration, are reviewed right after these two classes of algorithms, in

Section 3.6. Approximate policy search is discussed in detail in Section 3.7. Repre-

sentative algorithms from each of the three classes are applied to a numerical example

involving the optimal control of a DC motor.

In closing the chapter, approximate value iteration, policy iteration, and poli-

cy search are compared in Section 3.8, while Section 3.9 provides a summary and

discussion.

In order to reasonably restrict the scope of this chapter, several choices are made

regarding the material that will be presented:

• In the context of value function approximation, we focus on Q-function ap-

proximation and Q-function based algorithms, because a significant portion of

the remainder of this book concerns such algorithms. Nevertheless, a majority

of the concepts and algorithms introduced extend in a straightforward manner

to the case of V-function approximation.

• We mainly consider parametric approximation, because the remainder of the

book relies on this type of approximation, but we also review nonparametric

approaches to approximate value iteration and policy iteration.

• When discussing parametric approximation, whenever appropriate, we con-

sider general (possibly nonlinear) parametrizations. Sometimes, however, we

consider linear parametrizations in more detail, e.g., because they allow

the derivation of better theoretical guarantees on the resulting approximate

solutions.

Next, we give some additional details about the organization of the core material

of this chapter, which consists of approximate value iteration (Section 3.4), approx-

imate policy iteration (Section 3.5), and approximate policy search (Section 3.7). To

this end, Figure 3.2 shows how the algorithms selected for presentation are orga-

nized, using a graphical tree format. This organization will be explained below. All

the terminal (right-most) nodes in the trees correspond to subsections in Sections 3.4,

3.5, and 3.7. Note that Figure 3.2 does not contain an exhaustive taxonomy of all the

approaches.

Within the context of approximate value iteration, algorithms employing para-

metric approximation are presented first, separating model-based from model-free

approaches. Then, value iteration with nonparametric approximation is reviewed.

Approximate policy iteration consists of two distinct problems: approximate pol-

icy evaluation, i.e., finding an approximate value function for a given policy, and pol-

icy improvement. Out of these two problems, approximate policy evaluation poses

more interesting theoretical questions, because, like approximate value iteration, it
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approximate
policy search

gradient-based policy search,
actor-critic methods

gradient-free policy search

approximate
policy evaluation

model-free policy evaluation with
linearly parameterized approximation

policy evaluation with
nonparametric approximation

model-based approximate policy evaluation with
rollouts

policy improvement

approximate
policy iteration

value iteration-like algorithms for
approximate policy evaluation

approximate
value iteration

model-based value iteration with
parametric approximation

model-free value iteration with
parametric approximation

value iteration with
nonparametric approximation

FIGURE 3.2

The organization of the algorithms for approximate value iteration, policy iteration, and policy

search presented in this chapter.

involves finding an approximate solution to a Bellman equation. Special require-

ments have to be imposed to ensure that a meaningful approximate solution exists

and can be found by appropriate algorithms. In contrast, policy improvement relies

on solving maximization problems over the action variables, which involve fewer

technical difficulties (although they may still be hard to solve when the action space

is large). Therefore, we pay special attention to approximate policy evaluation in

our presentation. We first describe a class of algorithms for policy evaluation that

are derived along the same lines as approximate value iteration. Then, we introduce

model-free policy evaluation with linearly parameterized approximation, and briefly

review nonparametric approaches to approximate policy evaluation. Additionally, a

model-based, direct simulation approach for policy evaluation is discussed that em-

ploys Monte Carlo estimates called “rollouts.”

From the class of approximate policy search methods (Section 3.7), gradient-

based and gradient-free methods for policy optimization are discussed in turn. In the

context of gradient-based methods, special attention is paid to the important category

of actor-critic techniques.
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3.2 The need for approximation in large and continuous spaces

The algorithms for exact value iteration (Section 2.3) require the storage of distinct

return estimates for every state (if V-functions are used) or for every state-action pair

(in the case of Q-functions). When some of the state variables have a very large or in-

finite number of possible values (e.g., when they are continuous), exact storage is no

longer possible, and the value functions must be represented approximately. Large or

continuous action spaces make the representation of Q-functions additionally chal-

lenging. In policy iteration (Section 2.4), value functions and sometimes policies also

need to be represented approximately in general. Similarly, in policy search (Sec-

tion 2.5), policies must be represented approximately when the state space is large or

continuous.

Approximation in DP/RL is not only a problem of representation. Two additional

types of approximation are needed. First, sample-based approximation is necessary

in any DP/RL algorithm. Second, value iteration and policy iteration must repeatedly

solve potentially difficult nonconcave maximization problems over the action vari-

ables, whereas policy search must find optimal policy parameters, which involves

similar difficulties. In general, these optimization problems can only be solved ap-

proximately. These two types of approximation are detailed below.

Sample-based approximation is required for two distinct purposes in value func-

tion estimation. Consider first, as an example, the Q-iteration algorithm for determin-

istic problems, namely Algorithm 2.1. Every iteration of this algorithm would have

to be implemented as follows:

for every (x,u) do: Qℓ+1(x,u) = ρ(x,u)+ γ max
u′

Qℓ( f (x,u),u′) (3.1)

When the state-action space contains an infinite number of elements, it is impos-

sible to loop over all the state-action pairs in finite time. Instead, a sample-based,

approximate update has to be used that only considers a finite number of state-action

samples.

Such sample-based updates are also necessary in stochastic problems. Moreover,

in the stochastic case, sample-based approximation is required for a second, distinct

purpose. Consider, e.g., the Q-iteration algorithm for general stochastic problems,

which for every state-action pair (x,u) considered would have to be implemented as

follows:

Qℓ+1(x,u) = Ex′∼ f̃ (x,u,·)

{
ρ̃(x,u,x′)+ γ max

u′
Qℓ(x

′,u′)

}
(3.2)

Clearly, the expectation on the right-hand side of (3.2) cannot be computed exactly in

general, and must be estimated from a finite number of samples, e.g., by using Monte

Carlo methods. Note that, in many RL algorithms, the estimation of the expectation

does not appear explicitly, but is performed implicitly while processing samples.

For instance, Q-learning (Algorithm 2.3) is such an algorithm, in which stochastic

approximation is employed to estimate the expectation.

The maximization over the action variable in (3.1) or (3.2) (as well as in other
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value iteration algorithms) has to be solved for every sample considered. In large or

continuous action spaces, this maximization is a potentially difficult nonconcave op-

timization problem, which can only be solved approximately in general. To simplify

this problem, many algorithms discretize the action space in a small number of val-

ues, compute the value function for all the discrete actions, and find the maximum

among these values using enumeration.

In policy iteration, sample-based approximation is required at the policy eval-

uation step, for reasons similar to those explained above. The maximization issues

affect the policy improvement step, which in the case of Q-functions computes a

policy hℓ+1 using (2.34), repeated here for easy reference:

hℓ+1(x) ∈ argmax
u

Qhℓ(x,u)

Note that these sampling and maximization issues also affect algorithms that em-

ploy V-functions.

In policy search, some methods (e.g., actor-critic algorithms) estimate value func-

tions and are therefore affected by the sampling issues mentioned above. Even meth-

ods that do not employ value functions must estimate returns in order to evaluate the

policies, and return estimation requires sample-based approximation, as described

next. In principle, a policy that maximizes the return from every initial state should

be found. However, the return can only be estimated for a finite subset of initial states

(samples) from the possibly infinite state space. Additionally, in stochastic problems,

for every initial state considered, the expected return (2.15) must be evaluated using

a finite set of sampled trajectories, e.g., by using Monte Carlo methods.

Besides these sampling problems, policy search methods must of course find the

best policy within the class of policies considered. This is a difficult optimization

problem, which can only be solved approximately in general. However, it only needs

to be solved once, unlike the maximization over actions in value iteration and pol-

icy iteration, which needs to be solved for every sample considered. In this sense,

policy search methods are less affected from the maximization difficulties than value

iteration or policy iteration.

A different view on the benefits of approximation can be taken in the model-free,

RL setting. Consider a value iteration algorithm that estimates Q-functions, such

as Q-learning (Algorithm 2.3). Without approximation, the Q-value of every state-

action pair must be estimated separately (assuming it is possible to do so). If little or

no data is available for some states, their Q-values are poorly estimated, and the al-

gorithm makes poor control decisions in those states. However, when approximation

is used, the approximator can be designed so that the Q-values of each state influence

the Q-values of other, usually nearby, states (this requires the assumption of a certain

degree of smoothness for the Q-function). Then, if good estimates of the Q-values

of a certain state are available, the algorithm can also make reasonable control deci-

sions in nearby states. This is called generalization in the RL literature, and can help

algorithms work well despite using only a limited number of samples.
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3.3 Approximation architectures

Two major classes of approximators can be identified, namely parametric and non-

parametric approximators. We introduce parametric approximators in Section 3.3.1,

nonparametric approximators in Section 3.3.2, and compare the two classes in Sec-

tion 3.3.3. Section 3.3.4 contains some additional remarks.

3.3.1 Parametric approximation

Parametric approximators are mappings from a parameter space into the space of

functions they aim to represent (in DP/RL, value functions or policies). The func-

tional form of the mapping and the number of parameters are typically established

in advance and do not depend on the data. The parameters of the approximator are

tuned using data about the target function.

Consider a Q-function approximator parameterized by an n-dimensional vector1

θ . The approximator is denoted by an approximation mapping F : R
n →Q, where

R
n is the parameter space and Q is the space of Q-functions. Every parameter vector

θ provides a compact representation of a corresponding approximate Q-function:

Q̂ = F(θ)

or equivalently, element-wise:

Q̂(x,u) = [F(θ)](x,u)

where [F(θ)](x,u) denotes the Q-function F(θ) evaluated at the state-action pair

(x,u). So, instead of storing distinct Q-values for every pair (x,u), which would be

impractical in many cases, it is only necessary to store n parameters. When the state-

action space is discrete, n is usually much smaller than |X | · |U |, thereby providing

a compact representation (recall that, when applied to sets, the notation |·| stands

for cardinality). However, since the set of Q-functions representable by F is only a

subset of Q, an arbitrary Q-function can generally only be represented up to a certain

approximation error, which must be accounted for.

In general, the mapping F can be nonlinear in the parameters. A typical exam-

ple of a nonlinearly parameterized approximator is a feed-forward neural network

(Hassoun, 1995; Bertsekas and Tsitsiklis, 1996, Chapter 3). However, linearly pa-

rameterized approximators are often preferred in DP and RL, because they make

it easier to analyze the theoretical properties of the resulting DP/RL algorithms.

A linearly parameterized Q-function approximator employs n basis functions (BFs)

φ1, . . . ,φn : X ×U → R and an n-dimensional parameter vector θ . Approximate Q-

values are computed with:

[F(θ)](x,u) =
n

∑
l=1

φl(x,u)θl = φ T(x,u)θ (3.3)

1All the vectors used in this book are column vectors.
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where φ(x,u) = [φ1(x,u), . . . ,φn(x,u)]T is the vector of BFs. In the literature, the BFs

are also called features (Bertsekas and Tsitsiklis, 1996).

Example 3.1 Approximating Q-functions with state-dependent BFs and dis-

crete actions. As explained in Section 3.2, in order to simplify the maximization

over actions, in many DP/RL algorithms the action space is discretized into a small

number of values. In this example we consider such a discrete-action approximator,

which additionally employs state-dependent BFs to approximate over the state space.

A discrete, finite set of actions u1, . . . ,uM is chosen from the original action space

U . The resulting discretized action space is denoted by Ud = {u1, . . . ,uM}. A number

of N state-dependent BFs φ̄1, . . . , φ̄N : X → R are defined and replicated for each

discrete action in Ud. Approximate Q-values can be computed for any state-discrete

action pair with:

[F(θ)](x,u j) = φ T(x,u j)θ , (3.4)

where, in the state-action BF vector φ T(x,u j), all the BFs that do not correspond to

the current discrete action are taken to be equal to 0:

φ(x,u j) = [0, . . . ,0︸ ︷︷ ︸
u1

, . . . ,0, φ̄1(x), . . . , φ̄N(x)︸ ︷︷ ︸
u j

,0, . . . ,0, . . . ,0︸ ︷︷ ︸
uM

]T ∈ R
NM (3.5)

The parameter vector θ therefore has NM elements. This type of approximator can

be seen as representing M distinct state-dependent slices through the Q-function, one

slice for each of the M discrete actions. Note that it is only meaningful to use such an

approximator for the discrete actions in Ud; for any other actions, the approximator

outputs 0. For this reason, only the discrete actions are considered in (3.4) and (3.5).

In this book, we will often use such discrete-action approximators. For instance,

consider normalized (elliptical) Gaussian radial basis functions (RBFs). This type of

RBF can be defined as follows:

φ̄i(x) =
φ ′i (x)

∑N
i′=1 φ ′

i′
(x)

, φ ′i (x) = exp

(
−

1

2
[x− ci]

TBi
−1[x− ci]

)
(3.6)

Here, φ ′i are the nonnormalized RBFs, the vector ci = [ci,1, . . . ,ci,D]T ∈R
D is the cen-

ter of the ith RBF, and the symmetric positive-definite matrix Bi ∈R
D×D is its width.

Depending on the structure of the width matrix, RBFs of various shapes can be ob-

tained. For a general width matrix, the RBFs are elliptical, while axis-aligned RBFs

are obtained if the width matrix is diagonal, i.e., if Bi = diag(bi,1, . . . ,bi,D). In this

case, the width of an RBF can also be expressed using a vector bi = [bi,1, . . . ,bi,D]T.

Furthermore, spherical RBFs are obtained if, in addition, bi,1 = · · ·= bi,D.

Another class of discrete-action approximators uses state aggregation (Bertsekas

and Tsitsiklis, 1996, Section 6.7). For state aggregation, the state space is partitioned

into N disjoint subsets. Let Xi be the ith subset in this partition, for i = 1, . . . ,N.

For a given action, the approximator assigns the same Q-values for all the states in

Xi. This corresponds to a BF vector of the form (3.5), with binary-valued (0 or 1)
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state-dependent BFs:

φ̄i(x) =

{
1 if x ∈ Xi

0 otherwise
(3.7)

Because the subsets Xi are disjoint, exactly one BF is active at any point in the state

space. All the individual states belonging to Xi can thus be seen as a single, larger

aggregate (or quantized) state; hence the name “state aggregation” (or state quantiza-

tion). By additionally identifying each subset Xi with a prototype state xi ∈ Xi, state

aggregation can also be seen as state discretization, where the discretized state space

is Xd = {x1, . . . ,xN}. The prototype state can be, e.g., the geometrical center of Xi

(assuming this center belongs to Xi), or some other representative state.

Using the definition (3.7) of the state-dependent BFs and the expression (3.5) for

the state-action BFs, the state-action BFs can be written compactly as follows:

φ[i, j](x,u) =

{
1 if x ∈ Xi and u = u j

0 otherwise
(3.8)

The notation [i, j] represents the scalar index corresponding to i and j, which can be

computed as [i, j] = i +( j− 1)N. If the n elements of the BF vector were arranged

into an N×M matrix, by first filling in the first column with the first N elements,

then the second column with the subsequent N elements, etc., then the element at

index [i, j] of the vector would be placed at row i and column j of the matrix. Note

that exactly one state-action BF (3.8) is active at any point of X ×Ud, and no BF is

active if u /∈Ud. �

Other types of linearly parameterized approximators used in the literature in-

clude tile coding (Watkins, 1989; Sherstov and Stone, 2005), multilinear interpola-

tion (Davies, 1997), and Kuhn triangulation (Munos and Moore, 2002).

3.3.2 Nonparametric approximation

Nonparametric approximators, despite their name, still have parameters. However,

unlike in the parametric case, the number of parameters, as well as the form of the

nonparametric approximator, are derived from the available data.

Kernel-based approximators are typical representatives of the nonparametric

class. Consider a kernel-based approximator of the Q-function. In this case, the ker-

nel function is a function defined over two state-action pairs, κ : X×U×X×U→R:

(x,u,x′,u′) 7→ κ((x,u),(x′,u′)) (3.9)

that must also satisfy certain additional conditions (see, e.g., Smola and Schölkopf,

2004). Under these conditions, the function κ can be interpreted as an inner prod-

uct between feature vectors of its two arguments (the two state-action pairs) in a

high-dimensional feature space. Using this property, a powerful approximator can

be obtained by only computing the kernels, without ever working explicitly in the
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feature space. Note that in (3.9), as well as in the sequel, the state-action pairs are

grouped together for clarity.

A widely used type of kernel is the Gaussian kernel, which for the problem of

approximating the Q-function is given by:

κ((x,u),(x′,u′)) = exp

(
−

1

2

[
x− x′

u−u′

]T

B−1

[
x− x′

u−u′

])
(3.10)

where the kernel width matrix B ∈ R
(D+C)×(D+C) must be symmetric and positive

definite. Here, D denotes the number of state variables and C denotes the number of

action variables. For instance, a diagonal matrix B = diag(b1, . . . ,bD+C) can be used.

Note that, when the pair (x′,u′) is fixed, the kernel (3.10) has the same shape as a

Gaussian state-action RBF centered on (x′,u′).
Assume that a set of state-action samples is available: {(xls ,uls) | ls = 1, . . . ,ns }.

For this set of samples, the kernel-based approximator takes the form:

Q̂(x,u) =
ns

∑
ls=1

κ((x,u),(xls ,uls))θls (3.11)

where θ1, . . . ,θns are the parameters. This form is superficially similar to the linearly

parameterized approximator (3.3). However, there is a crucial difference between

these two approximators. In the parametric case, the number and form of the BFs

were defined in advance, and therefore led to a fixed functional form F of the ap-

proximator. In contrast, in the nonparametric case, the number of kernels and their

form, and thus also the number of parameters and the functional form of the approx-

imator, are determined from the samples.

One situation in which the kernel-based approximator can be seen as a parametric

approximator is when the set of samples is selected in advance. Then, the resulting

kernels can be identified with predefined BFs:

φls(x,u) = κ((x,u),(xls ,uls)), ls = 1, . . . ,ns

and the kernel-based approximator (3.11) is equivalent to a linearly parameterized

approximator (3.3). However, in many cases, such as in online RL, the samples are

not available in advance.

Important classes of nonparametric approximators that have been used in DP

and RL include kernel-based methods (Shawe-Taylor and Cristianini, 2004), among

which support vector machines are the most popular (Schölkopf et al., 1999; Cris-

tianini and Shawe-Taylor, 2000; Smola and Schölkopf, 2004), Gaussian processes,

which also employ kernels (Rasmussen and Williams, 2006), and regression trees

(Breiman et al., 1984; Breiman, 2001). For instance, kernel-based and related

approximators have been applied to value iteration (Ormoneit and Sen, 2002; Deisen-

roth et al., 2009; Farahmand et al., 2009a) and to policy evaluation and policy itera-

tion (Lagoudakis and Parr, 2003b; Engel et al., 2003, 2005; Xu et al., 2007; Jung and

Polani, 2007a; Bethke et al., 2008; Farahmand et al., 2009b). Ensembles of regres-

sion trees have been used with value iteration by Ernst et al. (2005, 2006a) and with

policy iteration by Jodogne et al. (2006).
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Note that nonparametric approximators are themselves driven by certain meta-

parameters, such as the width B of the Gaussian kernel (3.10). These meta-parameters

influence the accuracy of the approximator and may require tuning, which can be

difficult to perform manually. However, there also exist methods for automating the

tuning process (Deisenroth et al., 2009; Jung and Stone, 2009).

3.3.3 Comparison of parametric and nonparametric approximation

Because they are designed in advance, parametric approximators have to be flexi-

ble enough to accurately model the target functions solely by tuning the parameters.

Highly flexible, nonlinearly parameterized approximators are available, such as neu-

ral networks. However, when used to approximate value functions in DP and RL,

general nonlinear approximators make it difficult to guarantee the convergence of the

resulting algorithms, and indeed can sometimes lead to divergence. Often, linearly

parameterized approximators (3.3) must be used to guarantee convergence. Such ap-

proximators are specified by their BFs. When prior knowledge is not available to

guide the selection of BFs (as is usually the case), a large number of BFs must be de-

fined to evenly cover the state-action space. This is impractical in high-dimensional

problems. To address this issue, methods have been proposed to automatically derive

a small number of good BFs from data. We review these methods in Section 3.6.

Because they derive BFs from data, such methods can be seen as residing between

parametric and nonparametric approximation.

Nonparametric approximators are highly flexible. However, because their shape

depends on the data, it may change while the DP/RL algorithm is running, which

makes it difficult to provide convergence guarantees. A nonparametric approximator

adapts its complexity to the amount of available data. This is beneficial in situations

where data is costly or difficult to obtain. It can, however, become a disadvantage

when a large amount of data is used, because the computational and memory de-

mands of the approximator usually grow with the number of samples. For instance,

the kernel-based approximator (3.11) has a number of parameters equal to the num-

ber of samples ns used. This is especially problematic in online RL algorithms, which

keep receiving new samples for their entire lifetime. There exist approaches to mit-

igate this problem. For instance, in kernel-based methods, the number of samples

used to derive the approximator can be limited by only employing a subset of sam-

ples that contribute significantly to the accuracy of the approximation, and discarding

the rest. Various measures can be used for the contribution of a given sample to the

approximation accuracy. Such kernel sparsification methods were employed by Xu

et al. (2007); Engel et al. (2003, 2005), and a related, so-called subset of regressors

method was applied by Jung and Polani (2007a). Ernst (2005) proposed the selec-

tion of informative samples for an offline RL algorithm by iteratively choosing those

samples for which the error in the Bellman equation is maximal under the current

value function.
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3.3.4 Remarks

The approximation architectures introduced above for Q-functions can be extended

in a straightforward manner to V-function and policy approximation. For instance,

a linearly parameterized policy approximator can be described as follows. A set of

state-dependent BFs ϕ1, . . . ,ϕN : X → R are defined, and given a parameter vector

ϑ ∈ R
N , the approximate policy is:

ĥ(x) =
N

∑
i=1

ϕi(x)ϑi = ϕT(x)ϑ (3.12)

where ϕ(x) = [ϕ1(x), . . . ,ϕN (x)]T. For simplicity, the parametrization (3.12) is only

given for scalar actions, but it can easily be extended to the case of multiple action

variables. Note that we use calligraphic notation to differentiate variables related to

policy approximation from variables related to value function approximation. So, the

policy parameter is ϑ and the policy BFs are denoted by ϕ , whereas the value func-

tion parameter is θ and the value function BFs are denoted by φ . Furthermore, the

number of policy parameters and BFs is N . When samples are used to approximate

the policy, their number is denoted by Ns.

In the parametric case, whenever we wish to explicitly highlight the dependence

of an approximate policy ĥ on the parameter vector ϑ , we will use the notation

ĥ(x;ϑ). Similarly, when the dependence of a value function on the parameters needs

to be made explicit without using the mapping F , we will use Q̂(x,u;θ) and V̂ (x;θ)
to denote Q-functions and V-functions, respectively.

Throughout the remainder of this chapter, we will mainly focus on DP and RL

with parametric approximation, because the remainder of the book relies on this type

of approximation, but we will also overview nonparametric approaches to value iter-

ation and policy iteration.

3.4 Approximate value iteration

In order to apply value iteration to large or continuous-space problems, the value

function must be approximated. Figure 3.3 (repeated from the relevant part of Fig-

ure 3.2) shows how our presentation of the algorithms for approximate value iteration

is organized. First, we describe value iteration with parametric approximation in de-

tail. Specifically, in Section 3.4.1 we present model-based algorithms from this class,

and in Section 3.4.2 we describe offline and online model-free algorithms. Then, in

Section 3.4.3, we briefly review value iteration with nonparametric approximation.

Having completed our review of the algorithms for approximate value iteration,

we then provide convergence guarantees for these algorithms, in Section 3.4.4. Fi-

nally, in Section 3.4.5, we apply two representative algorithms for approximate value

iteration to a DC motor control problem.
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approximate
value iteration

model-based value iteration with
parametric approximation

model-free value iteration with
parametric approximation

value iteration with
nonparametric approximation

FIGURE 3.3

The organization of the algorithms for approximate value iteration presented in this section.

3.4.1 Model-based value iteration with parametric approximation

This section considers Q-iteration with a general parametric approximator, which is

a representative model-based algorithm for approximate value iteration.

Approximate Q-iteration is an extension of the exact Q-iteration algorithm in-

troduced in Section 2.3.1. Recall that exact Q-iteration starts from an arbitrary Q-

function Q0 and at each iteration ℓ updates the Q-function using the rule (2.25),

repeated here for easy reference:

Qℓ+1 = T (Qℓ)

where T is the Q-iteration mapping (2.22) or (2.23). In approximate Q-iteration,

the Q-function Qℓ cannot be represented exactly. Instead, an approximate version is

compactly represented by a parameter vector θℓ ∈R
n, using a suitable approximation

mapping F : R
n→Q (see Section 3.3):

Q̂ℓ = F(θℓ)

This approximate Q-function is provided, instead of Qℓ, as an input to the Q-iteration

mapping T . So, the Q-iteration update would become:

Q
‡
ℓ+1 = (T ◦F)(θℓ) (3.13)

However, in general, the newly found Q-function Q
‡
ℓ+1 cannot be explicitly stored,

either. Instead, it must also be represented approximately, using a new parameter

vector θℓ+1. This parameter vector is obtained by a projection mapping P : Q→R
n:

θℓ+1 = P(Q‡
ℓ+1)

which ensures that Q̂ℓ+1 = F(θℓ+1) is as close as possible to Q
‡
ℓ+1. A natural choice

for P is least-squares regression, which, given a Q-function Q, produces:2

P(Q) = θ ‡, where θ ‡ ∈ argmin
θ

ns

∑
ls=1

(Q(xls ,uls)− [F(θ)](xls ,uls))
2 (3.14)

2In the absence of additional restrictions, the use of least-squares projections can cause convergence

problems, as we will discuss in Section 3.4.4.
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for some set of state-action samples {(xls ,uls) | ls = 1, . . . ,ns }. Some care is required

to ensure that θ ‡ exists and that it is not too difficult to find. For instance, when the

approximator F is linearly parameterized, (3.14) is a convex quadratic optimization

problem.

To summarize, approximate Q-iteration starts with an arbitrary (e.g., identically

0) parameter vector θ0, and updates this vector at every iteration ℓ using the compo-

sition of mappings P, T , and F :

θℓ+1 = (P◦T ◦F)(θℓ) (3.15)

Of course, in practice, the intermediate results of F and T cannot be fully computed

and stored. Instead, P◦T ◦F can be implemented as a single mapping, or T and F can

be sampled at a finite number of points. The algorithm is stopped once a satisfactory

parameter vector θ̂ ∗ has been found (see below for examples of stopping criteria).

Ideally, θ̂ ∗ is near to a fixed point θ ∗ of P ◦ T ◦F . In Section 3.4.4, we will give

conditions under which a unique fixed point exists and is obtained asymptotically as

ℓ→ ∞.

Given θ̂ ∗, a greedy policy in F(θ̂ ∗) can be found, i.e., a policy h that satisfies:

h(x) ∈ argmax
u

[F(θ̂ ∗)](x,u) (3.16)

Here, as well as in the sequel, we assume that the Q-function approximator is struc-

tured in a way that guarantees the existence of at least one maximizing action for any

state. Because the approximator is under the control of the designer, ensuring this

property should not be too difficult.

Figure 3.4 illustrates approximate Q-iteration and the relations between the vari-

ous mappings, parameter vectors, and Q-functions considered by the algorithm.

P

parameter space

space of Q-functions

T

F

θ0 θ1= P F( )( )○ ○ θ0T

F θ( )0

( )( )○F θ0T

.....θ2 θ*

F θ*( )

FIGURE 3.4

A conceptual illustration of approximate Q-iteration. At every iteration, the approximation

mapping F is applied to the current parameter vector to obtain an approximate Q-function,

which is then passed through the Q-iteration mapping T . The result of T is then projected back

onto the parameter space with the projection mapping P. Ideally, the algorithm asymptotically

converges to a fixed point θ∗, which leads back to itself when passed through P ◦T ◦F . The

asymptotically obtained solution of approximate Q-iteration is then the Q-function F(θ∗).
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Algorithm 3.1 presents an example of approximate Q-iteration for a deterministic

Markov decision process (MDP), using the least-squares projection (3.14). At line 4

of this algorithm, Q
‡
ℓ+1(xls ,uls) has been computed according to (3.13), in which the

definition (2.22) of the Q-iteration mapping has been substituted.

ALGORITHM 3.1 Least-squares approximate Q-iteration for deterministic MDPs.

Input: dynamics f , reward function ρ , discount factor γ ,

approximation mapping F , samples {(xls ,uls) | ls = 1, . . . ,ns }
1: initialize parameter vector, e.g., θ0← 0

2: repeat at every iteration ℓ = 0,1,2, . . .
3: for ls = 1, . . . ,ns do

4: Q
‡
ℓ+1(xls ,uls)← ρ(xls ,uls)+ γ maxu′ [F(θℓ)]( f (xls ,uls),u

′)
5: end for

6: θℓ+1← θ ‡, where θ ‡ ∈ argminθ ∑
ns
ls=1

(
Q

‡
ℓ+1(xls ,uls)− [F(θ)](xls ,uls)

)2

7: until θℓ+1 is satisfactory

Output: θ̂ ∗ = θℓ+1

There still remains the question of when to stop approximate Q-iteration, i.e.,

when to consider the parameter vector satisfactory. One possibility is to stop after

a predetermined number of iterations L. Under the (reasonable) assumption that, at

every iteration ℓ, the approximate Q-function Q̂ℓ = F(θℓ) is close to the Q-function

Qℓ that would have been obtained by exact Q-iteration, the number L of iterations

can be chosen with Equation (2.27) of Section 2.3.1, repeated here:

L =

⌈
logγ

ςQI(1− γ)2

2‖ρ‖∞

⌉

where ςQI > 0 is a desired bound on the suboptimality of a policy greedy in the Q-

function obtained at iteration L. Of course, because F(θℓ) is not identical to Qℓ, it

cannot be guaranteed that this bound is achieved. Nevertheless, L is still useful as an

initial guess for the number of iterations needed to achieve a good performance.

Another possibility is to stop the algorithm when the distance between θℓ+1 and

θℓ decreases below a certain threshold εQI > 0. This criterion is only useful if approx-

imate Q-iteration is convergent to a fixed point (see Section 3.4.4 for convergence

conditions). When convergence is not guaranteed, this criterion should be combined

with a maximum number of iterations, to ensure that the algorithm stops in finite

time.

Note that we have not explicitly considered the maximization issues or the es-

timation of expected values in the stochastic case. As explained in Section 3.2, one

way to address the maximization difficulties is to discretize the action space. The

expected values in the Q-iteration mapping for the stochastic case (2.23) need to

be estimated from samples. For additional insight into this problem, see the fitted

Q-iteration algorithm introduced in the next section.

A similar derivation can be given for approximate V-iteration, which is more pop-
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ular in the literature (Gonzalez and Rofman, 1985; Chow and Tsitsiklis, 1991; Gor-

don, 1995; Tsitsiklis and Van Roy, 1996; Munos and Moore, 2002; Grüne, 2004).

Many results from the literature deal with the discretization of continuous-variable

problems (Gonzalez and Rofman, 1985; Chow and Tsitsiklis, 1991; Munos and

Moore, 2002; Grüne, 2004). Such discretization procedures sometimes use interpo-

lation, which leads to linearly parameterized approximators similar to (3.3).

3.4.2 Model-free value iteration with parametric approximation

From the class of model-free algorithms for approximate value iteration, we first

discuss offline, batch algorithms, followed by online algorithms. Online algorithms,

mainly approximate versions of Q-learning, have been studied since the beginning

of the nineties (Lin, 1992; Singh et al., 1995; Horiuchi et al., 1996; Jouffe, 1998;

Glorennec, 2000; Tuyls et al., 2002; Szepesvári and Smart, 2004; Murphy, 2005;

Sherstov and Stone, 2005; Melo et al., 2008). A strong research thread in offline

model-free value iteration emerged later (Ormoneit and Sen, 2002; Ernst et al., 2005;

Riedmiller, 2005; Szepesvári and Munos, 2005; Ernst et al., 2006b; Antos et al.,

2008a; Munos and Szepesvári, 2008; Farahmand et al., 2009a).

Offline model-free approximate value iteration

In the offline model-free case, the transition dynamics f and the reward function ρ
are unknown.3 Instead, only a batch of transition samples is available:

{(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns}

where for every ls, the next state x′ls and the reward rls have been obtained as a result

of taking action uls in the state xls . The transition samples may be independent, they

may belong to a set of trajectories, or to a single trajectory. For instance, when the

samples come from a single trajectory, they are typically ordered so that xls+1 = x′ls
for all ls < ns.

In this section, we present fitted Q-iteration (Ernst et al., 2005), a model-free

version of approximate Q-iteration (3.15) that employs such a batch of samples. To

obtain this version, two changes are made in the original, model-based algorithm.

First, one has to use a sample-based projection mapping that considers only the sam-

ples (xls ,uls), such as the least-squares regression (3.14). Second, because f and ρ

are not available, the updated Q-function Q
‡
ℓ+1 = (T ◦F)(θℓ) (3.13) at a given itera-

tion ℓ cannot be computed directly. Instead, the Q-values Q
‡
ℓ+1(xls ,uls) are replaced

by quantities derived from the available data.

To understand how this is done, consider first the deterministic case. In this case,

3We take the point of view prevalent in the RL literature, which considers that the learning controller

has no prior information about the problem to be solved. This means the reward function is unknown. In

practice, of course, the reward function is almost always designed by the experimenter and is therefore

known.
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the updated Q-values are:

Q
‡
ℓ+1(xls ,uls) = ρ(xls ,uls)+ γ max

u′
[F(θℓ)]( f (xls ,uls),u

′) (3.17)

where the Q-iteration mapping (2.22) has been used. Recall that ρ(xls ,uls) = rls and

that f (xls ,uls) = x′ls . By performing these substitutions in (3.17), we get:

Q
‡
ℓ+1(xls ,uls) = rls + γ max

u′
[F(θℓ)](x

′
ls
,u′) (3.18)

and hence the updated Q-value can be computed exactly from the transition sample

(xls ,uls ,x
′
ls
,rls), without using f or ρ .

Fitted Q-iteration works in deterministic and stochastic problems, and replaces

each Q-value Q
‡
ℓ+1(xls ,uls) by the quantity:

Q
‡
ℓ+1,ls

= rls + γ max
u′

[F(θℓ)](x
′
ls
,u′) (3.19)

identical to the right-hand side of (3.18). As already discussed, in the deterministic

case, this replacement is exact. In the stochastic case, the updated Q-value is the

expectation of a random variable, of which Q
‡
ℓ+1,ls

is only a sample. This updated

Q-value is:

Q
‡
ℓ+1(xls ,uls) = Ex′∼ f̃ (xls ,uls ,·)

{
ρ̃(xls ,uls ,x

′)+ γ max
u′

[F(θℓ)](x
′,u′)

}

where the Q-iteration mapping (2.23) has been used (note that Q
‡
ℓ+1(xls ,uls) is the

true Q-value and not a data point, so it is no longer subscripted by the sample index

ls). Nevertheless, most projection algorithms, including the least-squares regression

(3.14), seek to approximate the expected value of their output variable conditioned

by the input. In fitted Q-iteration, this means that the projection actually looks for

θℓ such that F(θℓ) ≈ Q
‡
ℓ+1, even though only samples of the form (3.19) are used.

Therefore, the algorithm remains valid in the stochastic case.

Algorithm 3.2 presents fitted Q-iteration using least-squares projection (3.14).

Note that, in the deterministic case, fitted Q-iteration is identical to model-based ap-

proximate Q-iteration (e.g., Algorithm 3.1), whenever both algorithms use the same

approximator F , the same projection P, and the same state-action samples (xls ,uls).
The considerations of Section 3.4.1 about the stopping criteria of approximate Q-

iteration also apply to fitted Q-iteration, so they will not be repeated here. Moreover,

once fitted Q-iteration has found a satisfactory parameter vector, a policy can be

derived with (3.16).

We have introduced fitted Q-iteration in the parametric case, to clearly establish

its link with model-based approximate Q-iteration. Neural networks are one class of

parametric approximators that have been combined with fitted Q-iteration, leading

to the so-called “neural fitted Q-iteration” (Riedmiller, 2005). However, fitted Q-

iteration is more popular in combination with nonparametric approximators, so we

will revisit it in the nonparametric context in Section 3.4.3.
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ALGORITHM 3.2 Least-squares fitted Q-iteration with parametric approximation.

Input: discount factor γ ,

approximation mapping F , samples {(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns}

1: initialize parameter vector, e.g., θ0← 0

2: repeat at every iteration ℓ = 0,1,2, . . .
3: for ls = 1, . . . ,ns do

4: Q
‡
ℓ+1,ls

← rls + γ maxu′ [F(θℓ)](x
′
ls
,u′)

5: end for

6: θℓ+1← θ ‡, where θ ‡ ∈ argminθ ∑
ns
ls=1

(
Q

‡
ℓ+1,ls

− [F(θ)](xls ,uls)
)2

7: until θℓ+1 is satisfactory

Output: θ̂ ∗ = θℓ+1

Although we have assumed that the batch of samples is given in advance, fitted Q-

iteration, together with other offline RL algorithms, can also be modified to use dif-

ferent batches of samples at different iterations. This property can be exploited, e.g.,

to add new, more informative samples in-between iterations. Ernst et al. (2006b) pro-

posed a different, but related approach that integrates fitted Q-iteration into a larger

iterative process. At every larger iteration, the entire fitted Q-iteration algorithm is

run on the current batch of samples. Then, the solution obtained by fitted Q-iteration

is used to generate new samples, e.g., by using an ε-greedy policy in the obtained

Q-function. The entire cycle is then repeated.

Online model-free approximate value iteration

From the class of online algorithms for approximate value iteration, approximate

versions of Q-learning are the most popular (Lin, 1992; Singh et al., 1995; Horiuchi

et al., 1996; Jouffe, 1998; Glorennec, 2000; Tuyls et al., 2002; Szepesvári and Smart,

2004; Murphy, 2005; Sherstov and Stone, 2005; Melo et al., 2008). Recall from

Section 2.3.2 that the original Q-learning updates the Q-function with (2.30):

Qk+1(xk,uk) = Qk(xk,uk)+αk[rk+1 + γ max
u′

Qk(xk+1,u
′)−Qk(xk,uk)]

after observing the next state xk+1 and reward rk+1, as a result of taking action uk

in state xk. A straightforward way to integrate approximation in Q-learning is by

using gradient descent. We next explain how gradient-based Q-learning is obtained,

following Sutton and Barto (1998, Chapter 8). We require that the approximation

mapping F is differentiable in the parameters.

To simplify the formulas below, we denote the approximate Q-function at time k

by Q̂k(xk,uk) = [F(θk)](xk,uk), leaving the dependence on the parameter vector im-

plicit. In order to derive gradient-based Q-learning, assume for now that after taking

action uk in state xk, the algorithm is provided with the true optimal Q-value of the

current state action pair, Q∗(xk,uk), in addition to the next state xk+1 and reward rk+1.

Under these circumstances, the algorithm could aim to minimize the squared error
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between this optimal value and the current Q-value:

θk+1 = θk−
1

2
αk

∂

∂θk

[
Q∗(xk,uk)− Q̂k(xk,uk)

]2

= θk +αk

[
Q∗(xk,uk)− Q̂k(xk,uk)

] ∂

∂θk

Q̂k(xk,uk)

Of course, Q∗(xk,uk) is not available, but it can be replaced by an estimate derived

from the Q-iteration mapping (2.22) or (2.23):

rk+1 + γ max
u′

Q̂k(xk+1,u
′)

Note the similarity with the Q-function samples (3.19) used in fitted Q-iteration. The

substitution leads to the approximate Q-learning update:

θk+1 = θk +αk

[
rk+1 + γ max

u′
Q̂k(xk+1,u

′)− Q̂k(xk,uk)

]
∂

∂θk

Q̂k(xk,uk) (3.20)

We have actually obtained, in the square brackets, an approximation of the tempo-

ral difference. With a linearly parameterized approximator (3.3), the update (3.20)

simplifies to:

θk+1 = θk +αk

[
rk+1 + γ max

u′

(
φ T(xk+1,u

′)θk

)
−φ T(xk,uk)θk

]
φ(xk,uk) (3.21)

Note that, like the original Q-learning algorithm of Section 2.3.2, approximate

Q-learning requires exploration. As an example, Algorithm 3.3 presents gradient-

based Q-learning with a linear parametrization and ε-greedy exploration. For an ex-

planation and examples of the learning rate and exploration schedules used in this

algorithm, see Section 2.3.2.

ALGORITHM 3.3 Q-learning with a linear parametrization and ε-greedy exploration.

Input: discount factor γ ,

BFs φ1, . . . ,φn : X×U → R,

exploration schedule {εk}
∞
k=0, learning rate schedule {αk}

∞
k=0

1: initialize parameter vector, e.g., θ0← 0

2: measure initial state x0

3: for every time step k = 0,1,2, . . . do

4: uk←

{
u ∈ argmaxū

(
φ T(xk, ū)θk

)
with probability 1− εk (exploit)

a uniform random action in U with probability εk (explore)

5: apply uk, measure next state xk+1 and reward rk+1

6: θk+1← θk +αk

[
rk+1 + γ maxu′

(
φ T(xk+1,u

′)θk

)
−φ T(xk,uk)θk

]
φ(xk,uk)

7: end for
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In the literature, Q-learning has been combined with a variety of approximators,

for example:

• linearly parameterized approximators, including tile coding (Watkins, 1989;

Sherstov and Stone, 2005), as well as so-called interpolative representations

(Szepesvári and Smart, 2004) and “soft” state aggregation (Singh et al., 1995).

• fuzzy rule-bases (Horiuchi et al., 1996; Jouffe, 1998; Glorennec, 2000), which

can also be linear in the parameters.

• neural networks (Lin, 1992; Touzet, 1997).

While approximate Q-learning is easy to use, it typically requires many transi-

tion samples (i.e., many steps, k) before it can obtain a good approximation of the

optimal Q-function. One possible approach to alleviate this problem is to store tran-

sition samples in a database and reuse them multiple times, similarly to how the

batch algorithms of the previous section work. This procedure is known as expe-

rience replay (Lin, 1992; Kalyanakrishnan and Stone, 2007). Another option is to

employ so-called eligibility traces, which allow the parameter updates at the current

step to also incorporate information about recently observed transitions (e.g., Singh

and Sutton, 1996). This mechanism makes use of the fact that the latest transition is

the causal result of an entire trajectory.

3.4.3 Value iteration with nonparametric approximation

In this section, we first describe fitted Q-iteration with nonparametric approximation.

We then point out some other algorithms that combine value iteration with nonpara-

metric approximators.

The fitted Q-iteration algorithm was introduced in a parametric context in Sec-

tion 3.4.2, see Algorithm 3.2. In the nonparametric case, fitted Q-iteration can no

longer be described using approximation and projection mappings that remain un-

changed from one iteration to the next. Instead, fitted Q-iteration can be regarded

as generating an entirely new, nonparametric approximator at every iteration. Algo-

rithm 3.4 outlines a general template for fitted Q-iteration with nonparametric ap-

proximation. The nonparametric regression at line 6 is responsible for generating

a new approximator Q̂ℓ+1 that accurately represents the updated Q-function Q
‡
ℓ+1,

using the information provided by the available samples Q
‡
ℓ+1,ls

, ls = 1, . . .ns.

Fitted Q-iteration has been combined with several types of nonparametric ap-

proximators, including kernel-based approximators (Farahmand et al., 2009a) and

ensembles of regression trees (Ernst et al., 2005, 2006b); see Appendix ?? for a de-

scription of such an ensemble.

Of course, other DP and RL algorithms besides fitted Q-iteration can also be

combined with nonparametric approximation. For instance, Deisenroth et al. (2009)

employed Gaussian processes in approximate value iteration. They proposed two

algorithms: one that assumes that a model of the (deterministic) dynamics is known,

and another that estimates a Gaussian-process approximation of the dynamics from
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ALGORITHM 3.4 Fitted Q-iteration with nonparametric approximation.

Input: discount factor γ ,

samples {(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns}

1: initialize Q-function approximator, e.g., Q̂0← 0

2: repeat at every iteration ℓ = 0,1,2, . . .
3: for ls = 1, . . . ,ns do

4: Q
‡
ℓ+1,ls

← rls + γ maxu′ Q̂ℓ(x
′
ls
,u′)

5: end for

6: find Q̂ℓ+1 using

nonparametric regression on {((xls ,uls),Q
‡
ℓ+1,ls

) | ls = 1, . . . ,ns}

7: until Q̂ℓ+1 is satisfactory

Output: Q̂∗ = Q̂ℓ+1

transition data. Ormoneit and Sen (2002) employed kernel-based approximation in

model-free approximate value iteration for discrete-action problems.

3.4.4 Convergence and the role of nonexpansive approximation

An important question in approximate DP/RL is whether the approximate solution

computed by the algorithm converges, and, if it does converge, how far the conver-

gence point is from the optimal solution. Convergence is important because a conver-

gent algorithm is more amenable to analysis and meaningful performance guarantees.

Convergence of model-based approximate value iteration

The convergence proofs for approximate value iteration often rely on contraction

mapping arguments. Consider for instance approximate Q-iteration (3.15). The Q-

iteration mapping T is a contraction in the infinity norm with factor γ < 1, as already

explained in Section 2.3.1. If the composite mapping P ◦ T ◦F of approximate Q-

iteration is also a contraction, i.e., if for any pair of parameter vectors θ ,θ ′ and for

some γ ′ < 1:

‖(P◦T ◦F)(θ)− (P◦T ◦F)(θ ′)‖∞ ≤ γ ′‖θ −θ ′‖∞

then approximate Q-iteration asymptotically converges to a unique fixed point, which

we denote by θ ∗.
One way to ensure that P ◦ T ◦F is a contraction is to require F and P to be

nonexpansions, i.e.:

‖F(θ)−F(θ ′)‖∞ ≤ ‖θ −θ ′‖∞ for all pairs θ ,θ ′

‖P(Q)−P(Q′)‖∞ ≤ ‖Q−Q′‖∞ for all pairs Q,Q′

Note that in this case the contraction factor of P ◦ T ◦F is the same as that of T :

γ ′ = γ < 1. Under these conditions, as we will describe next, suboptimality bounds
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can be derived on the approximate Q-function F(θ ∗) and on any policy ĥ∗ that is

greedy in this Q-function, i.e., that satisfies:

ĥ∗(x) ∈ argmax
u

[F(θ ∗)](x,u) (3.22)

Denote by FF◦P ⊂ Q the set of fixed points of the composite mapping F ◦P,

which is assumed nonempty. Define the minimum distance between Q∗ and any fixed

point of F ◦P:4

ς∗QI = min
Q′∈FF◦P

‖Q∗−Q′‖∞

This distance characterizes the representation power of the approximator: the better

the representation power, the closer the nearest fixed point of F ◦P will be to Q∗, and

the smaller ς∗QI will be. Using this distance, the convergence point θ ∗ of approximate

Q-iteration satisfies the following suboptimality bounds:

‖Q∗−F(θ ∗)‖∞ ≤
2ς∗QI

1− γ
(3.23)

‖Q∗−Qĥ∗‖∞ ≤
4γς∗QI

(1− γ)2
(3.24)

where Qĥ∗ is the Q-function of the near-optimal policy ĥ∗ (3.22). These bounds can

be derived similarly to those for approximate V-iteration found by Gordon (1995);

Tsitsiklis and Van Roy (1996). Equation (3.23) gives the suboptimality bound of the

approximately optimal Q-function, whereas (3.24) gives the suboptimality bound of

the resulting approximately optimal policy, and may be more relevant in practice. The

following relationship between the policy suboptimality and the Q-function subopti-

mality was used to obtain (3.24), and is also valid in general:

‖Q∗−Qh‖∞ ≤
2γ

(1− γ)
‖Q∗−Q‖∞ (3.25)

where the policy h is greedy in the (arbitrary) Q-function Q.

Ideally, the optimal Q-function Q∗ is a fixed point of F ◦P, in which case ς∗QI = 0,

and approximate Q-iteration asymptotically converges to Q∗. For instance, when Q∗

happens to be exactly representable by F , a well-chosen tandem of approximation

and projection mappings should ensure that Q∗ is in fact a fixed point of F ◦ P.

In practice, of course, ς∗QI will rarely be 0, and only near-optimal solutions can be

obtained.

In order to take advantage of these theoretical guarantees, F and P should be

nonexpansions. When F is linearly parameterized (3.3), it is fairly easy to ensure its

nonexpansiveness by normalizing the BFs φl , so that for every x and u, we have:

n

∑
l=1

φl(x,u) = 1

4For simplicity, we assume that the minimum in this equation exists. If the minimum does not exist,

then ς∗QI should be taken as small as possible so that there still exists a Q′ ∈FF◦P with ‖Q′−Q∗‖∞ ≤ ς∗QI.
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Ensuring that P is nonexpansive is more difficult. For instance, the least-squares pro-

jection (3.14) can in general be an expansion, and examples of divergence when

using it have been given (Tsitsiklis and Van Roy, 1996; Wiering, 2004). One way to

make least-squares projection nonexpansive is to choose exactly ns = n state-action

samples (xl ,ul), l = 1, . . . ,n, and require that:

φl(xl ,ul) = 1, φl′(xl ,ul) = 0 ∀l′ 6= l

These samples could be, e.g., the centers of the BFs. Then, the projection (3.14)

simplifies to an assignment that associates each parameter with the Q-value of the

corresponding sample:

[P(Q)]l = Q(xl ,ul) (3.26)

where the notation [P(Q)]l refers to the lth component in the parameter vector P(Q).
This mapping is clearly nonexpansive. More general, but still restrictive conditions

on the BFs under which convergence and near optimality are guaranteed are given in

(Tsitsiklis and Van Roy, 1996).

Convergence of model-free approximate value iteration

Like in the model-based case, convergence guarantees for offline, batch model-free

value iteration typically rely on nonexpansive approximation. In fitted Q-iteration

with parametric approximation (Algorithm 3.2), care must be taken when selecting

F and P, to prevent possible expansion and divergence. Similarly, in fitted Q-iteration

with nonparametric approximation (Algorithm 3.4), the nonparametric regression

algorithm should have nonexpansive properties. Certain types of kernel-based ap-

proximators satisfy this condition (Ernst et al., 2005). The convergence of the kernel-

based V-iteration algorithm of Ormoneit and Sen (2002) is also guaranteed under

nonexpansiveness assumptions.

More recently, a different class of theoretical results for batch value iteration

have been developed, which do not rely on nonexpansion properties and do not con-

cern the asymptotic case. Instead, these results provide probabilistic bounds on the

suboptimality of the policy obtained by using a finite number of samples, after a

finite number of iterations. Besides the number of samples and iterations, such finite-

sample bounds typically depend on the representation power of the approximator

and on certain properties of the MDP. For instance, Munos and Szepesvári (2008)

provided finite-sample bounds for approximate V-iteration in discrete-action MDPs,

while Farahmand et al. (2009a) focused on fitted Q-iteration in the same type of

MDPs. Antos et al. (2008a) gave finite-sample bounds for fitted Q-iteration in the

more difficult case of continuous-action MDPs.

In the area of online approximate value iteration, as already discussed in Sec-

tion 3.4.2, the main representative is approximate Q-learning. Many variants of ap-

proximate Q-learning are heuristic and do not guarantee convergence (Horiuchi et al.,

1996; Touzet, 1997; Jouffe, 1998; Glorennec, 2000; Millán et al., 2002). Conver-

gence of approximate Q-learning has been proven for linearly parameterized ap-

proximators, under the requirement that the policy followed by Q-learning remains

unchanged during the learning process (Singh et al., 1995; Szepesvári and Smart,
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2004; Melo et al., 2008). This requirement is restrictive, because it does not allow the

controller to improve its performance, even if it has gathered knowledge that would

enable it to do so. Among these results, Singh et al. (1995) and Szepesvári and Smart

(2004) proved the convergence of approximate Q-learning with nonexpansive, lin-

early parameterized approximation. Melo et al. (2008) showed that gradient-based

Q-learning (3.21) converges without requiring nonexpansive approximation, but at

the cost of other restrictive assumptions.

Consistency of approximate value iteration

Besides convergence, another important theoretical property of algorithms for ap-

proximate DP and RL is consistency. In model-based value iteration, and more gen-

erally in DP, an algorithm is said to be consistent if the approximate value function

converges to the optimal one as the approximation accuracy increases (e.g., Gonza-

lez and Rofman, 1985; Chow and Tsitsiklis, 1991; Santos and Vigo-Aguiar, 1998).

In model-free value iteration, and more generally in RL, consistency is sometimes

understood as the convergence to a well-defined solution as the number of samples

increases. The stronger result of convergence to an optimal solution as the approxi-

mation accuracy also increases was proven in (Ormoneit and Sen, 2002; Szepesvári

and Smart, 2004).

3.4.5 Example: Approximate Q-iteration for a DC motor

In closing the discussion on approximate value iteration, we provide a numerical

example involving a DC motor control problem. This example shows how approxi-

mate value iteration algorithms can be used in practice. The first part of the example

concerns a basic version of approximate Q-iteration that relies on a gridding of the

state space and on a discretization of the action space, while the second part employs

the state-of-the-art, fitted Q-iteration algorithm with nonparametric approximation

(Algorithm 3.4).

Consider a second-order discrete-time model of an electrical DC (direct current)

motor:

xk+1 = f (xk,uk) = Axk +Buk

A =

[
1 0.0049

0 0.9540

]
, B =

[
0.0021

0.8505

]
(3.27)

This model was obtained by discretizing a continuous-time model of the DC mo-

tor, which was developed by first-principles modeling (e.g., Khalil, 2002, Chapter

1) of a real DC motor. The discretization was performed with the zero-order-hold

method (Franklin et al., 1998), using a sampling time of Ts = 0.005 s. Using satura-

tion, the shaft angle x1,k = α is bounded to [−π,π] rad, the angular velocity x2,k = α̇
to [−16π,16π] rad/s, and the control input uk to [−10,10] V.

The control goal is to stabilize the DC motor in the zero equilibrium (x = 0). The
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following quadratic reward function is chosen to express this goal:

rk+1 = ρ(xk,uk) =−xT
k Qrewxk−Rrewu2

k

Qrew =

[
5 0

0 0.01

]
, Rrew = 0.01

(3.28)

This reward function leads to a discounted quadratic regulation problem. A

(near-)optimal policy will drive the state (close) to 0, while also minimizing the mag-

nitude of the states along the trajectory and the control effort. The discount factor was

chosen to be γ = 0.95, which is sufficiently large to lead to an optimal policy that

produces a good stabilizing control behavior.5

Figure 3.5 presents a near-optimal solution to this problem, including a represen-

tative state-dependent slice through the Q-function (obtained by setting the action
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(c) Controlled trajectory from x0 = [−π,0]T.

FIGURE 3.5 A near-optimal solution for the DC motor.

5Note that a distinction is made between the optimality under the chosen reward function and discount

factor, and the actual (albeit subjective) quality of the control behavior.
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argument u to 0), a greedy policy in this Q-function, and a representative trajectory

that is controlled by this policy. To find the near-optimal solution, the convergent and

consistent fuzzy Q-iteration algorithm (which will be discussed in detail in Chap-

ter 4) was applied. An accurate approximator over the state space was used, together

with a fine discretization of the action space, which contains 31 equidistant actions.

Grid Q-iteration

As an example of approximate value iteration, we apply a Q-iteration algorithm that

relies on state aggregation and action discretization, a type of approximator intro-

duced in Example 3.1. The state space is partitioned into N disjoint rectangles. De-

note by Xi the ith rectangle in the state space partition. For this problem, the following

three discrete actions suffice to produce an acceptable stabilizing control behavior:

u1 =−10, u2 = 0, u3 = 10 (i.e., applying maximum torque in either direction, and no

torque at all). So, the discrete action space is Ud = {−10,0,10}. Recall from Exam-

ple 3.1 that the state-action BFs are given by (3.8), repeated here for easy reference:

φ[i, j](x,u) =

{
1 if x ∈ Xi and u = u j

0 otherwise
(3.29)

where [i, j] = i + ( j− 1)N. To derive the projection mapping P, the least-squares

projection (3.14) is used, taking the cross-product of the sets {x1, . . . ,xN} and Ud

as state-action samples, where xi denotes the center of the ith rectangle Xi. These

samples satisfy the conditions to simplify P to an assignment of the form (3.26),

namely:

[P(Q)][i, j] = Q(xi,u j) (3.30)

Using a linearly parameterized approximator with the BFs (3.29) and the projection

(3.30) yields the grid Q-iteration algorithm. Because F and P are nonexpansions, the

algorithm is convergent.

To apply grid Q-iteration to the DC motor problem, two different grids over the

state space are used: a coarse grid, with 20 equidistant bins on each axis (leading to

202 = 400 rectangles); and a fine grid, with 400 equidistant bins on each axis (leading

to 4002 = 160000 rectangles). The algorithm is considered to have converged when

the maximum amount by which any parameter changes between two consecutive

iterations does not exceed εQI = 0.001. For the coarse grid, convergence occurred

after 160 iterations, and for the fine grid, after 123. This shows that the number of

iterations required for convergence does not necessarily increase with the number of

parameters.

Figure 3.6 shows slices through the resulting Q-functions, together with corre-

sponding policies and representative controlled trajectories. The accuracy in repre-

senting the Q-function and policy is better for the fine grid (Figures 3.6(b) and 3.6(d))

than for the coarse grid (Figures 3.6(a) and 3.6(c)). Axis-oriented policy artifacts ap-

pear for both grid sizes, due to the limitations of the chosen type of approximator.

For instance, the piecewise-constant nature of the approximator is clearly visible in

Figure 3.6(a). Compared to the near-optimal trajectory of Figure 3.5(c), the grid Q-

iteration trajectories in Figures 3.6(e) and 3.6(f) do not reach the goal state x = 0 with
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the same accuracy. With the coarse-grid policy, there is a large steady-state error of

the angle α , while the fine-grid policy leads to chattering of the control action.

The execution time of grid Q-iteration was 0.06 s for the coarse grid, and 7.80 s
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(b) Slice through fine-grid Q-function, for u = 0.
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(d) Fine-grid policy.
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(e) Trajectory from x0 = [−π,0]T, controlled by

the coarse-grid policy.
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(f) Trajectory from x0 = [−π,0]T, controlled by

the fine-grid policy.

FIGURE 3.6

Grid Q-iteration solutions for the DC motor. The results obtained with the coarse grid are

shown on the left-hand side of the figure, and those obtained with the fine grid on the right-

hand side.
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for the fine grid.6 The fine grid is significantly more computationally expensive to

use, because it has a much larger number of parameters to update (480000, versus

1200 for the coarse grid).

Fitted Q-iteration

Next, we apply fitted Q-iteration (Algorithm 3.4) to the DC motor problem, using

ensembles of extremely randomized trees (Geurts et al., 2006) to approximate the Q-

function. For a description of this approximator, see Appendix ??. The same discrete

actions are employed as for grid Q-iteration: Ud = {−10,0,10}. A distinct ensemble

of regression trees is used to approximate the Q-function for each of these discrete

actions – in analogy to the discrete-action grid approximator. The construction of the

tree ensembles is driven by three meta-parameters:

• Each ensemble contains Ntr trees. We set this parameter equal to 50.

• To split a node, Ktr randomly chosen cut directions are evaluated, and the one

that maximizes a certain score is selected. We set Ktr equal to the dimension-

ality 2 of the input to the regression trees (the 2-dimensional state variable),

which is its recommended default value (Geurts et al., 2006).

• A node is only split further when it is associated with at least nmin
tr samples.

Otherwise, it remains a leaf node. We set nmin
tr to its default value of 2, which

means that the trees are fully developed.

Fitted Q-iteration is supplied with a set of samples consisting of the cross-product be-

tween a regular grid of 100×100 points in the state space, and the 3 discrete actions.

This ensures the meaningfulness of the comparison with grid Q-iteration, which em-

ployed similarly placed samples. Fitted Q-iteration is run for a predefined number

of 100 iterations, and the Q-function found after the 100th iteration is considered

satisfactory.

Figure 3.7 shows the solution obtained. This is similar in quality to the solution

obtained by grid Q-iteration with the fine grid, and better than the solution obtained

with the coarse grid (Figure 3.6).

The execution time of fitted Q-iteration was approximately 2151 s, several orders

of magnitude larger than the execution time of grid Q-iteration (recall that the latter

was 0.06 s for the coarse grid, and 7.80 s for the fine grid). Clearly, finding a more

powerful nonparametric approximator is much more computationally intensive than

updating the parameters of the simple, grid-based approximator.

6All the execution times reported in this chapter were recorded while running the algorithms in

MATLAB R© 7 on a PC with an Intel Core 2 Duo T9550 2.66 GHz CPU and with 3 GB RAM. For value

iteration and policy iteration, the reported execution times do not include the time required to simulate the

system for every state-action sample in order to obtain the next state and reward.
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FIGURE 3.7 Fitted Q-iteration solution for the DC motor.

3.5 Approximate policy iteration

Policy iteration algorithms evaluate policies by constructing their value functions,

and use these value functions to find new, improved policies. They were introduced

in Section 2.4. In large or continuous spaces, policy evaluation cannot be solved ex-

actly, and the value function has to be approximated. Approximate policy evaluation

is a difficult problem, because, like approximate value iteration, it involves finding

an approximate solution to a Bellman equation. Special requirements must be im-

posed to ensure that a meaningful approximate solution exists and can be found by

appropriate algorithms. Policy improvement relies on solving maximization prob-

lems over the action variables, which involve fewer technical difficulties (although

they may still be hard to solve when the action space is large). Often, an explicit rep-

resentation of the policy can be avoided, by computing improved actions on demand

from the current value function. Alternatively, the policy can be represented explic-



72 Chapter 3. DP and RL in large and continuous spaces

itly, in which case policy approximation is generally required. In this case, solving a

classical supervised learning problem is necessary to perform policy improvement.

Algorithm 3.5 outlines a general template for approximate policy iteration with

Q-function policy evaluation. Note that at line 4, when there are multiple maximiz-

ing actions, the expression “≈ argmaxu . . .” should be interpreted as “approximately

equal to one of the maximizing actions.”

ALGORITHM 3.5 Approximate policy iteration with Q-functions.

1: initialize policy ĥ0

2: repeat at every iteration ℓ = 0,1,2, . . .

3: find Q̂ĥℓ , an approximate Q-function of ĥℓ ⊲ policy evaluation

4: find ĥℓ+1 so that ĥℓ+1(x)≈ argmaxu Q̂ĥℓ(x,u),∀x ∈ X ⊲ policy improvement

5: until ĥℓ+1 is satisfactory

Output: ĥ∗ = ĥℓ+1

Figure 3.8 (repeated from the relevant part of Figure 3.2) illustrates the struc-

ture of our upcoming presentation. We first discuss in detail the approximate policy

evaluation component, starting in Section 3.5.1 with a class of algorithms that can

be derived along the same lines as approximate value iteration. In Section 3.5.2,

model-free policy evaluation algorithms with linearly parameterized approximation

are introduced, which aim to solve a projected form of the Bellman equation. Sec-

tion 3.5.3 briefly reviews policy evaluation with nonparametric approximation, and

Section 3.5.4 outlines a model-based, direct simulation approach for policy evalu-

ation. In Section 3.5.5, we move on to the policy improvement component and the

resulting approximate policy iteration. Theoretical results about approximate policy

iteration are reviewed in Section 3.5.6, and a numerical example is provided in Sec-

tion 3.5.7 (the material of these last two sections is not represented in Figure 3.8).

approximate
policy evaluation

model-free policy evaluation with
linearly parameterized approximation

policy evaluation with
nonparametric approximation

model-based approximate policy evaluation with
rollouts

policy improvement

approximate
policy iteration

value iteration-like algorithms for
approximate policy evaluation

FIGURE 3.8

The organization of the algorithms for approximate policy evaluation and policy improvement

presented in the sequel.
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3.5.1 Value iteration-like algorithms for approximate policy evaluation

We start our discussion of approximate policy evaluation with a class of algorithms

that can be derived along entirely similar lines to approximate value iteration. These

algorithms can be model-based or model-free, and can use parametric or nonparamet-

ric approximation. We focus here on the parametric case, and discuss two represen-

tative algorithms, one model-based and the other model-free. These two algorithms

are similar to approximate Q-iteration (Section 3.4.1) and to fitted Q-iteration (Sec-

tion 3.4.2), respectively. In order to streamline the presentation, we will often refer

to these counterparts and to their derivation.

The first algorithm that we develop is based on the model-based, iterative policy

evaluation for Q-functions (Section 2.3.1). Denote the policy to be evaluated by h.

Recall that policy evaluation for Q-functions starts from an arbitrary Q-function Qh
0,

which is updated at each iteration τ using (2.38), repeated here for easy reference:

Qh
τ+1 = T h(Qh

τ)

where T h is the policy evaluation mapping, given by (2.35) in the deterministic case

and by (2.36) in the stochastic case. The algorithm asymptotically converges to the

Q-function Qh of the policy h, which is the solution of the Bellman equation (2.39),

also repeated here:

Qh = T h(Qh) (3.31)

Policy evaluation for Q-functions can be extended to the approximate case in

a similar way as approximate Q-iteration (see Section 3.4.1). As with approximate

Q-iteration, an approximation mapping F : R
n→Q is used to compactly represent

Q-functions using parameter vectors θ h ∈R
n, and a projection mapping P : Q→R

n

is used to find parameter vectors that represent the updated Q-functions well.

The iterative, approximate policy evaluation for Q-functions starts with an ar-

bitrary (e.g., identically 0) parameter vector θ h
0 , and updates this vector at every

iteration τ using the composition of mappings P, T h, and F :

θ h
τ+1 = (P◦T h ◦F)(θ h

τ ) (3.32)

The algorithm is stopped once a satisfactory parameter vector θ̂ h has been found.

Under conditions similar to those for value iteration (Section 3.4.4), the composite

mapping P ◦ T h ◦ F is a contraction, and therefore has a fixed point θ h to which

the update (3.32) asymptotically converges. This is true, e.g., if both F and P are

nonexpansions.

As an example, Algorithm 3.6 shows approximate policy evaluation for Q-

functions in the case of deterministic MDPs, using the least-squares projection

(3.14). In this algorithm, Q
h,‡
τ+1 denotes the intermediate, updated Q-function:

Q
h,‡
τ+1 = (T h ◦F)(θ h

τ )

Because deterministic MDPs are considered, Q
h,‡
τ+1(xls ,uls) is computed at line 4 us-

ing the policy evaluation mapping (2.35). Note the similarity of Algorithm 3.6 with

the approximate Q-iteration for MDPs (Algorithm 3.1).
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ALGORITHM 3.6 Approximate policy evaluation for Q-functions in deterministic MDPs.

Input: policy h to be evaluated, dynamics f , reward function ρ , discount factor γ ,

approximation mapping F , samples {(xls ,uls) | ls = 1, . . . ,ns }
1: initialize parameter vector, e.g., θ h

0 ← 0

2: repeat at every iteration τ = 0,1,2, . . .
3: for ls = 1, . . . ,ns do

4: Q
h,‡
τ+1(xls ,uls)← ρ(xls ,uls)+ γ[F(θ h

τ )]( f (xls ,uls),h( f (xls ,uls)))
5: end for

6: θ h
τ+1← θ h,‡, where θ h,‡ ∈ argminθ ∑

ns
ls=1

(
Q

h,‡
τ+1(xls ,uls)− [F(θ)](xls ,uls)

)2

7: until θ h
τ+1 is satisfactory

Output: θ̂ h = θ h
τ+1

The second algorithm that we develop is an analogue of fitted Q-iteration, so it

will be called fitted policy evaluation for Q-functions. It can also be seen as a model-

free variant of the approximate policy evaluation for Q-functions developed above.

In this variant, a batch of transition samples is assumed to be available:

{(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns}

where for every ls, the next state x′ls and the reward rls have been obtained after taking

action uls in the state xls . At every iteration, samples of the updated Q-function Q
h,‡
τ+1

are computed with:

Q
h,‡
τ+1,ls

= rls + γ[F(θτ)](x
′
ls
,h(x′ls))

In the deterministic case, the quantity Q
h,‡
τ+1,ls

is identical to the updated Q-value

Q
h,‡
τ+1(xls ,uls) (see, e.g., line 4 of Algorithm 3.6). In the stochastic case, Q

h,‡
τ+1,ls

is

a sample of the random variable that has the updated Q-value as its expectation. A

complete iteration of the algorithm is obtained by computing an updated parameter

vector with a projection mapping, using the samples ((xls ,uls),Q
h,‡
τ+1,ls

).
Algorithm 3.7 presents fitted policy evaluation for Q-functions, using the least-

squares projection (3.14). Note that, in the deterministic case, fitted policy evaluation

is identical to model-based, approximate policy evaluation (e.g., Algorithm 3.6), if

both algorithms use the same approximation and projection mappings, together with

the same state-action samples (xls ,uls).

3.5.2 Model-free policy evaluation with linearly parameterized

approximation

A different, dedicated framework for approximate policy evaluation can be devel-

oped when linearly parameterized approximators are employed. By exploiting the

linearity of the approximator in combination with the linearity of the policy evalua-

tion mapping (see Section 2.4.1), it is possible to derive a specific approximate form
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ALGORITHM 3.7 Fitted policy evaluation for Q-functions.

Input: policy h to be evaluated, discount factor γ ,

approximation mapping F , samples {(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns}

1: initialize parameter vector, e.g., θ h
0 ← 0

2: repeat at every iteration τ = 0,1,2, . . .
3: for ls = 1, . . . ,ns do

4: Q
h,‡
τ+1,ls

← rls + γ[F(θ h
τ )](x′ls ,h(x′ls))

5: end for

6: θ h
τ+1← θ h,‡, where θ h,‡ ∈ argminθ ∑

ns
ls=1

(
Q

h,‡
τ+1,ls

− [F(θ)](xls ,uls)
)2

7: until θ h
τ+1 is satisfactory

Output: θ̂ h = θ h
τ+1

of the Bellman equation, called the “projected Bellman equation,” which is linear in

the parameter vector.7 Efficient algorithms can be developed to solve this equation. In

contrast, in approximate value iteration, the maximum operator leads to nonlinearity

even when the approximator is linearly parameterized.

We next introduce the projected Bellman equation, along with several important

model-free algorithms that can be used to solve it.

Projected Bellman equation

Assume for now that X and U have a finite number of elements, X = {x1, . . . ,xN̄},
U = {u1, . . . ,uM̄}. Because the state space is finite, a transition model of the form

(2.14) is appropriate, and the policy evaluation mapping T h can be written as a sum

(2.37), repeated here for easy reference:

[T h(Q)](x,u) = ∑
x′

f̄ (x,u,x′)
[
ρ̃(x,u,x′)+ γQ(x′,h(x′))

]
(3.33)

In the linearly parameterized case, an approximate Q-function Q̂h that has the form

(3.3) is sought:

Q̂h(x,u) = φ T(x,u)θ h

where φ(x,u) = [φ1(x,u), . . . ,φn(x,u)]T is the vector of BFs and θ h is the parameter

vector. This approximate Q-function satisfies the following approximate version of

7Another important class of policy evaluation approaches aims to minimize the Bellman error (resid-

ual), which is the difference between the two sides of the Bellman equation (Baird, 1995; Antos et al.,

2008b; Farahmand et al., 2009b). For instance, in the case of the Bellman equation for Qh (3.31), the

(quadratic) Bellman error is
∫

X×U (Q̂h(x,u)− [T h(Q̂h)](x,u))2d(x,u). We choose to focus on projected

policy evaluation instead, as this class of methods will be required later in the book.
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the Bellman equation for Qh (3.31), called the projected Bellman equation:8

Q̂h = (Pw ◦T h)(Q̂h) (3.34)

where Pw performs a weighted least-squares projection onto the space of repre-

sentable (approximate) Q-functions, i.e., the space spanned by the BFs:

{
φ T(x,u)θ |θ ∈ R

n
}

The projection Pw is defined by:

[Pw(Q)](x,u) = φ T(x,u)θ ‡, where

θ ‡ ∈ argmin
θ

∑
(x,u)∈X×U

w(x,u)
(
φ T(x,u)θ −Q(x,u)

)2 (3.35)

in which the weight function w : X ×U → [0,1] controls the distribution of the ap-

proximation error. The weight function is always interpreted as a probability distri-

bution over the state-action space, so it must satisfy ∑x,u w(x,u) = 1. For instance,

the distribution given by w will later be used to generate the samples used by some

model-free policy evaluation algorithms. Under appropriate conditions, the projected

Bellman mapping Pw ◦T h is a contraction, and so the solution (fixed point) Q̂h of the

projected Bellman equation exists and is unique (see Bertsekas (2007, Section 6.3)

for a discussion of the conditions in the context of V-function approximation).

Figure 3.9 illustrates the projected Bellman equation.

Matrix form of the projected Bellman equation

We will now derive a matrix form of the projected Bellman equation, which is given

in terms of the parameter vector. This form will be useful in the sequel, when devel-

oping algorithms to solve the projected Bellman equation. To introduce the matrix

form, it will be convenient to refer to the state and the actions using explicit indices,

e.g., xi, u j (recall that the states and actions were temporarily assumed to be discrete).

As a first step, the policy evaluation mapping (3.33) is written in matrix form

TTT h : R
N̄M̄ → R

N̄M̄ , as:

TTT h(QQQ) = ρ̃ρρ + γ f̄ff hhhQQQ (3.36)

Denote by [i, j] the scalar index corresponding to i and j, computed with [i, j] =
i+( j−1)N̄. The vectors and matrices in (3.36) are then defined as follows:9

8A multistep version of this equation can also be given. Instead of the (single-step) policy evaluation

mapping T h, this version uses the following multistep mapping, parameterized by the scalar λ ∈ [0,1):

T h
λ (Q) = (1−λ )

∞

∑
k=0

λ k(T h)k+1(Q)

where (T h)k denotes the k-times composition of T h with itself, i.e., T h ◦T h ◦ · · · ◦T h. In this chapter, as

well as in the remainder of the book, we only consider the single-step case, i.e., the case in which λ = 0.
9Note that boldface notation is used for vector or matrix representations of functions and mappings.

Ordinary vectors and matrices are displayed in normal font.
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A conceptual illustration of the projected Bellman equation. Applying T h and then Pw to an

ordinary approximate Q-function Q̂ leads to a different point in the space of approximate Q-

functions (left). In contrast, applying T h and then Pw to the fixed point Q̂h of the projected

Bellman equation leads back to the same point (right).

• QQQ ∈ R
N̄M̄ is a vector representation of Q, with QQQ[i, j] = Q(xi,u j).

• ρ̃ρρ ∈ R
N̄M̄ is a vector representation of ρ̃ , where the element ρ̃ρρ [i, j] is

the expected reward after taking action u j in state xi, i.e., ρ̃ρρ [i, j] =

∑i′ f̄ (xi,u j,xi′)ρ̃(xi,u j,xi′).

• f̄ff ∈ R
N̄M̄×N̄ is a matrix representation of f̄ , with f̄ff [i, j],i′ = f̄ (xi,u j,xi′). Here,

f̄ff [i, j],i′ denotes the element at row [i, j] and column i′ of matrix f̄ff .

• hhh∈R
N̄×N̄M̄ is a matrix representation of h, with hhhi′,[i, j] = 1 if i′ = i and h(xi) =

u j, and 0 otherwise. Note that stochastic policies can easily be represented, by

making hhhi,[i, j] equal to the probability of taking u j in xi, and hhhi′,[i, j] = 0 for all

i′ 6= i.

Consider now the setting of approximate policy evaluation. Define the BF matrix

φφφ ∈ R
N̄M̄×n and the diagonal weighting matrix www ∈ R

N̄M̄×N̄M̄ by:

φφφ [i, j],l = φl(xi,u j)

www[i, j],[i, j] = w(xi,u j)

Using φφφ , the approximate Q-vector corresponding to a parameter θ is:

Q̂QQ = φφφθ

The projected Bellman equation (3.34) can now be written as follows:

PPPwTTT h(Q̂QQ
h
) = Q̂QQ

h
(3.37)

where PPPw is a matrix representation of the projection operator Pw, which can be

written in a closed form (see, e.g., Lagoudakis and Parr, 2003a):

PPPw = φφφ(φφφ Twwwφφφ)−1φφφ Twww
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By substituting this closed-form expression for PPPw, the formula (3.36) for TTT h, and

the expression Q̂QQ
h
= φφφ θ h for the approximate Q-vector into (3.37), we get:

φφφ(φφφ Twwwφφφ)−1φφφ Twww(ρ̃ρρ + γ f̄ff hhhφφφ θ h) = φφφ θ h

Notice that this is a linear equation in the parameter vector θ h. After a left-

multiplication with φφφ Twww and a rearrangement of the terms, we have:

φφφ Twwwφφφ θ h = γφφφ Twww f̄ff hhhφφφ θ h +φφφ Twwwρ̃ρρ

By introducing the matrices Γ,Λ ∈ R
n×n and the vector z ∈ R

n, given by:

Γ = φφφ Twwwφφφ , Λ = φφφ Twww f̄ff hhhφφφ , z = φφφ Twwwρ̃ρρ

the projected Bellman equation can be written in the final, matrix form:

Γθ h = γΛθ h + z (3.38)

So, instead of the original, high-dimensional Bellman equation (3.31), approximate

policy evaluation only needs to solve the low-dimensional system (3.38). A solution

θ h of this system can be employed to find an approximate Q-function using (3.3).

It can also be shown that matrices Γ,Λ and vector z can be written as sums of

simpler matrices and vectors (e.g., Lagoudakis and Parr, 2003a):

Γ =
N̄

∑
i=1

M̄

∑
j=1

[
φ(xi,u j)w(xi,u j)φ

T(xi,u j)
]

Λ =
N̄

∑
i=1

M̄

∑
j=1

[
φ(xi,u j)w(xi,u j)

N̄

∑
i′=1

(
f̄ (xi,u j,xi′)φ

T(xi′ ,h(xi′))
)]

z =
N̄

∑
i=1

M̄

∑
j=1

[
φ(xi,u j)w(xi,u j)

N̄

∑
i′=1

(
f̄ (xi,u j,xi′)ρ(xi,u j,xi′)

)]

(3.39)

To understand why the summation over i′ enters the equation for z, recall that each

element ρ̃ρρ [i, j] of the vector ρ̃ρρ is the expected reward after taking action u j in state xi.

Model-free projected policy evaluation

Some of the most powerful algorithms for approximate policy evaluation solve the

matrix form (3.38) of the projected Bellman equation in a model-free fashion, by

estimating Γ, Λ, and z from transition samples. Because (3.38) is a linear system

of equations, these algorithms are computationally efficient. They are also sample-

efficient, i.e., they approach their solution quickly as the number of samples they

consider increases, as shown in the context of V-function approximation by Konda

(2002, Chapter 6) and by Yu and Bertsekas (2006, 2009).

Consider a set of transition samples:

{(xls ,uls ,x
′
ls
∼ f̄ (xls ,uls , ·),rls = ρ̃(xls ,uls ,x

′
ls
)) | ls = 1, . . . ,ns}
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This set is constructed by drawing state-action samples (x,u) from a distribution

given by the weight function w: the probability of each pair (x,u) is equal to its

weight w(x,u). Using this set of samples, estimates of Γ, Λ, and z can be constructed

as follows:
Γ0 = 0, Λ0 = 0, z0 = 0

Γls = Γls−1 +φ(xls ,uls)φ
T(xls ,uls)

Λls = Λls−1 +φ(xls ,uls)φ
T(x′ls ,h(x′ls))

zls = zls−1 +φ(xls ,uls)rls

(3.40)

These updates can be derived from (3.39).

The least-squares temporal difference for Q-functions (LSTD-Q) (Lagoudakis

et al., 2002; Lagoudakis and Parr, 2003a) is a policy evaluation algorithm that pro-

cesses the samples using (3.40) and then solves the equation:

1

ns
Γns θ̂

h = γ
1

ns
Λns θ̂

h +
1

ns
zns (3.41)

to find an approximate parameter vector θ̂ h. Notice that θ̂ h appears on both sides of

(3.41), so this equation can be simplified to:

1

ns
(Γns − γΛns)θ̂

h =
1

ns
zns

Although the division by ns is not necessary from a formal point of view, it helps to

increase the numerical stability of the algorithm (the elements in the Γns , Λns , zns can

be very large when ns is large). LSTD-Q is an extension of an earlier, similar algo-

rithm for V-functions, called least-squares temporal difference (Bradtke and Barto,

1996; Boyan, 2002).

Another method, the least-squares policy evaluation for Q-functions (LSPE-Q)

(e.g., Jung and Polani, 2007a) starts with an arbitrary initial parameter vector θ0 and

updates it incrementally, with:

θls = θls−1 +α(θ ‡
ls
−θls−1), where:

1

ls
Γlsθ

‡
ls

= γ
1

ls
Λlsθls−1 +

1

ls
zls

(3.42)

in which α is a step size parameter. To ensure the invertibility of the matrix Γ at the

start of the learning process, when only a few samples have been processed, it can

be initialized to a small multiple of the identity matrix. The division by ls increases

the numerical stability of the updates. Like LSTD-Q, LSPE-Q is an extension of

an earlier algorithm for V-functions, called least-squares policy evaluation (LSPE)

(Bertsekas and Ioffe, 1996).

Algorithms 3.8 and 3.9 present LSTD-Q and LSPE-Q in a procedural form.

LSTD-Q is a one-shot algorithm, and the parameter vector it computes does not

depend on the order in which the samples are processed. On the other hand, LSPE-Q
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ALGORITHM 3.8 Least-squares temporal difference for Q-functions.

Input: policy h to be evaluated, discount factor γ ,

BFs φ1, . . . ,φn : X×U → R, samples {(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns}

1: Γ0← 0, Λ0← 0, z0← 0

2: for ls = 1, . . . ,ns do

3: Γls ← Γls−1 +φ(xls ,uls)φ
T(xls ,uls)

4: Λls ← Λls−1 +φ(xls ,uls)φ
T(x′ls ,h(x′ls))

5: zls ← zls−1 +φ(xls ,uls)rls

6: end for

7: solve 1
ns

Γns θ̂
h = γ 1

ns
Λns θ̂

h + 1
ns

zns for θ̂ h

Output: θ̂ h

ALGORITHM 3.9 Least-squares policy evaluation for Q-functions.

Input: policy h to be evaluated, discount factor γ ,

BFs φ1, . . . ,φn : X×U → R, samples {(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns},

step size α , a small constant βΓ > 0

1: Γ0← βΓI, Λ0← 0, z0← 0

2: for ls = 1, . . . ,ns do

3: Γls ← Γls−1 +φ(xls ,uls)φ
T(xls ,uls)

4: Λls ← Λls−1 +φ(xls ,uls)φ
T(x′ls ,h(x′ls))

5: zls ← zls−1 +φ(xls ,uls)rls

6: θls ← θls−1 +α(θ ‡
ls
−θls−1), where 1

ls
Γlsθ

‡
ls

= γ 1
ls

Λlsθls−1 + 1
ls

zls

7: end for

Output: θ̂ h = θns

is an incremental algorithm, so the current parameter vector θls depends on the pre-

vious values θ0, . . . ,θls−1, and therefore the order in which samples are processed is

important.

In the context of V-function approximation, such least-squares algorithms have

been shown to converge to the fixed point of the projected Bellman equation, namely

by Nedić and Bertsekas (2003) for the V-function analogue of LSTD-Q, and by Nedić

and Bertsekas (2003); Bertsekas et al. (2004) for the analogue of LSPE-Q. These

results also extend to Q-function approximation. To ensure convergence, the weight

(probability of being sampled) w(x,u) of each state-action pair (x,u) should be equal

to the steady-state probability of this pair along an infinitely-long trajectory generated

with the policy h.10

Note that collecting samples by using only a deterministic policy h is insuffi-

10From a practical point of view, note that LSTD-Q is a one-shot algorithm and will produce a solution

whenever Γls is invertible. This means the experimenter need not worry excessively about divergence per

se. Rather, the theoretical results concern the uniqueness and meaning of the solution obtained. LSTD-Q

can, in fact, produce meaningful results for many weight functions w, as we illustrate later in Section 3.5.7

and in Chapter 5.
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cient for the following reason. If only state-action pairs of the form (x,h(x)) were

collected, no information about pairs (x,u) with u 6= h(x) would be available (equiv-

alently, the corresponding weights w(x,u) would all be zero). As a result, the ap-

proximate Q-values of such pairs would be poorly estimated and could not be relied

upon for policy improvement. To alleviate this problem, exploration is necessary:

sometimes, actions different from h(x) have to be selected, e.g., in a random fashion.

Given a stationary (time-invariant) exploration procedure, LSTD-Q and LSPE-Q are

simply evaluating the new, exploratory policy, and so they remain convergent.

The following intuitive (albeit informal) line of reasoning is useful to understand

the convergence of LSTD-Q and LSPE-Q. Asymptotically, as ns→ ∞, it is true that
1
ns

Γns → Γ, 1
ns

Λns → Λ, and 1
ns

zns → z, for the following two reasons. First, as the

number ns of state-action samples generated grows, their empirical distribution con-

verges to w. Second, as the number of transition samples involving a given state-

action pair (x,u) grows, the empirical distribution of the next states x′ converges to

the distribution f̄ (x,u, ·), and the empirical average of the rewards converges to its

expected value, given x and u.

Since the estimates of Γ, Λ, and z asymptotically converge to their true values,

the equation solved by LSTD-Q asymptotically converges to the projected Bellman

equation (3.38). Under the assumptions for convergence, this equation has a unique

solution θ h, so the parameter vector of LSTD-Q asymptotically reaches this solu-

tion. For similar reasons, whenever it converges, LSPE-Q asymptotically becomes

equivalent to LSTD-Q and the projected Bellman equation. Therefore, if LSPE-Q

converges, it must in fact converge to θ h. In fact, it can additionally be shown that,

as ns grows, the solutions of LSTD-Q and LSPE-Q converge to each other faster

than they converge to their limit θ h. This was proven in the context of V-function

approximation by Yu and Bertsekas (2006, 2009).

One possible advantage of LSTD-Q over LSPE-Q may arise when their assump-

tions are violated, e.g., when the policy to be evaluated changes as samples are being

collected. This situation can arise in the important context of optimistic policy itera-

tion, which will be discussed in Section 3.5.5. Violating the assumptions may intro-

duce instability and possibly divergence in the iterative LSPE-Q updates (3.42). In

contrast, because it only computes one-shot solutions, LSTD-Q (3.41) may be more

resilient to such instabilities. On the other hand, the incremental nature of LSPE-

Q offers some advantages over LSTD-Q. For instance, LSPE-Q can benefit from a

good initial value of the parameter vector. Additionally, by lowering the step size α ,

it may be possible to mitigate the destabilizing effects of violating the assumptions.

Note that an incremental version of LSTD-Q can also be given, but the benefits of

this version are unclear.

While for the derivation above it was assumed that X and U are finite, the updates

(3.40), together with LSTD-Q and LSPE-Q, can also be applied without any change

in infinite and uncountable (e.g., continuous) state-action spaces.

From a computational point of view, the linear systems in (3.41) and (3.42) can

be solved in several ways, e.g., by matrix inversion, by Gaussian elimination, or by

incrementally computing the inverse with the Sherman-Morrison formula. The com-

putational cost is O(n3) for “naive” matrix inversion. More efficient algorithms than
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matrix inversion can be obtained, e.g., by incrementally computing the inverse, but

the cost of solving the linear system will still be larger than O(n2). In an effort to

further reduce the computational costs, variants of the least-squares temporal differ-

ence have been proposed in which only a few of the parameters are updated at a

given iteration (Geramifard et al., 2006, 2007). Note also that, when the BF vector

φ(x,u) is sparse, the computational efficiency of the updates (3.40) can be improved

by exploiting this sparsity.11

As already outlined, analogous least-squares algorithms can be given to com-

pute approximate V-functions (Bertsekas and Ioffe, 1996; Bradtke and Barto, 1996;

Boyan, 2002; Bertsekas, 2007, Chapter 6). However, as explained in Section 2.2,

policy improvement is more difficult to perform using V-functions. Namely, a model

of the MDP is required, and in the stochastic case, expectations over the transitions

must be estimated.

Gradient-based policy evaluation

Gradient-based algorithms for policy evaluation historically precede the least-

squares methods discussed above (Sutton, 1988). However, under appropriate condi-

tions, they find, in fact, a solution of the projected Bellman equation (3.34). These

algorithms are called temporal-difference learning in the literature, and are more pop-

ular in the context of V-function approximation (Sutton, 1988; Jaakkola et al., 1994;

Tsitsiklis and Van Roy, 1997). Nevertheless, given the focus of this chapter, we will

present gradient-based policy evaluation for the case of Q-function approximation.

We use SARSA as a starting point in developing such an algorithm. Recall that

SARSA (Algorithm 2.7) uses tuples (xk,uk,rk+1,xk+1,uk+1) to update a Q-function

online (2.40):

Qk+1(xk,uk) = Qk(xk,uk)+αk[rk+1 + γQk(xk+1,uk+1)−Qk(xk,uk)] (3.43)

where αk is the learning rate. When uk is chosen according to a fixed policy h,

SARSA actually performs policy evaluation (see also Section 2.4.2). We exploit this

property and combine (3.43) with gradient-based updates to obtain the desired policy

evaluation algorithm. As before, linearly parameterized approximation is considered.

By a derivation similar to that given for gradient-based Q-learning in Section 3.4.2,

the following update rule is obtained:

θk+1 = θk +αk

[
rk+1 + γφ T(xk+1,uk+1)θk−φ T(xk,uk)θk

]
φ(xk,uk) (3.44)

where the quantity in square brackets is an approximation of the temporal difference.

The resulting algorithm for policy evaluation is called temporal difference for Q-

functions (TD-Q) . Note that TD-Q can be seen as an extension of a corresponding

algorithm for V-functions, which is called temporal difference (TD) (Sutton, 1988).

Like the least-squares algorithms presented earlier, TD-Q requires exploration to

11The BF vector is sparse, e.g., for the discrete-action approximator described in Example 3.1. This is

because the BF vector contains zeros for all the discrete actions that are different from the current discrete

action.
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obtain samples (x,u) with u 6= h(x). Algorithm 3.10 presents TD-Q with ε-greedy

exploration. In this algorithm, because the update at step k involves the action uk+1

at the next step, this action is chosen prior to updating the parameter vector.

ALGORITHM 3.10 Temporal difference for Q-functions, with ε-greedy exploration.

Input: discount factor γ , policy h to be evaluated,

BFs φ1, . . . ,φn : X×U → R,

exploration schedule {εk}
∞
k=0, learning rate schedule {αk}

∞
k=0

1: initialize parameter vector, e.g., θ0← 0

2: measure initial state x0

3: u0←

{
h(x0) with probability 1− ε0

a uniform random action in U with probability ε0 (explore)

4: for every time step k = 0,1,2, . . . do

5: apply uk, measure next state xk+1 and reward rk+1

6: uk+1←

{
h(xk+1) with probability 1− εk+1

a uniform random action in U with probability εk+1

7: θk+1← θk +αk

[
rk+1 + γφ T(xk+1,uk+1)θk−φ T(xk,uk)θk

]
φ(xk,uk)

8: end for

A comprehensive convergence analysis of gradient-based policy evaluation

was provided by Tsitsiklis and Van Roy (1997) in the context of V-function ap-

proximation. This analysis extends to Q-function approximation under appropriate

conditions. An important condition is that the stochastic policy h̃ resulting from the

combination of h with exploration should be time-invariant, which can be achieved

by simply making the exploration time-invariant, e.g., in the case of ε-greedy explo-

ration, by making εk the same for all steps k. The main result is that TD-Q asymptoti-

cally converges to the solution of the projected Bellman equation for the exploratory

policy h̃, for a weight function given by the steady-state distribution of the state-

action pairs under h̃.

Gradient-based algorithms such as TD-Q are less computationally demanding

than least-squares algorithms such as LSTD-Q and LSPE-Q. The time and memory

complexity of TD-Q are both O(n), since they store and update vectors of length n.

The memory complexity of LSTD-Q and LSPE-Q is at least O(n2) (since they store

matrices of size n) and their time complexity is O(n3) (when “naive” matrix inversion

is used to solve the linear system). On the other hand, gradient-based algorithms

typically require more samples than least-squares algorithms to achieve a similar

accuracy (Konda, 2002; Yu and Bertsekas, 2006, 2009), and are more sensitive to

the learning rate (step size) schedule. LSTD-Q has no step size at all, and LSPE-Q

works for a wide range of constant step sizes, as shown in the context of V-functions

by Bertsekas et al. (2004) (this range includes α = 1, leading to a nonincremental

variant of LSPE-Q).

Efforts have been made to extend gradient-based policy evaluation algorithms to

off-policy learning, i.e., evaluating one policy while using another policy to gener-
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ate the samples (Sutton et al., 2009b,a). These extensions perform gradient descent

on error measures that are different from the measure used in the basic temporal-

difference algorithms such as TD-Q (i.e., different from the squared value function

error for the current sample).

3.5.3 Policy evaluation with nonparametric approximation

Nonparametric approximators have been combined with a number of algorithms for

approximate policy evaluation. For instance, kernel-based approximators were com-

bined with LSTD by Xu et al. (2005), with LSTD-Q by Xu et al. (2007); Jung and

Polani (2007b); Farahmand et al. (2009b), and with LSPE-Q by Jung and Polani

(2007a,b). Rasmussen and Kuss (2004) and Engel et al. (2003, 2005) used the re-

lated framework of Gaussian processes to approximate V-functions in policy eval-

uation. Taylor and Parr (2009) showed that, in fact, the algorithms in (Rasmussen

and Kuss, 2004; Engel et al., 2005; Xu et al., 2005) produce the same solution when

they use the same samples and the same kernel function. Fitted policy evaluation

(Algorithm 3.7) can be extended to the nonparametric case along the same lines as

fitted Q-iteration in Section 3.4.3. Such an algorithm was proposed by Jodogne et al.

(2006), who employed ensembles of extremely randomized trees to approximate the

Q-function.

As explained in Section 3.3.2, a kernel-based approximator can be seen as lin-

early parameterized if all the samples are known in advance. In certain cases, this

property can be exploited to extend the theoretical guarantees about approximate pol-

icy evaluation from the parametric case to the nonparametric case (Xu et al., 2007).

Farahmand et al. (2009b) provided performance guarantees for their kernel-based

LSTD-Q variant for the case when only a finite number of samples is available.

An important concern in the nonparametric case is controlling the complexity

of the approximator. Originally, the computational demands of many nonparametric

approximators, including kernel-based methods and Gaussian processes, grow with

the number of samples considered. Many of the approaches mentioned above employ

kernel sparsification techniques to limit the number of samples that contribute to the

solution (Xu et al., 2007; Engel et al., 2003, 2005; Jung and Polani, 2007a,b).

3.5.4 Model-based approximate policy evaluation with rollouts

All the policy evaluation algorithms discussed above obtain a value function by solv-

ing the Bellman equation (3.31) approximately. While this is a powerful approach, it

also has its drawbacks. A core problem is that a good value function approximator is

required, which is often difficult to find. Nonparametric approximation alleviates this

problem to some extent. Another problem is that the convergence requirements of the

algorithms, such as the linearity of the approximate Q-function in the parameters, can

sometimes be too restrictive.

Another class of policy evaluation approaches sidesteps these difficulties by

avoiding an explicit representation of the value function. Instead, the value function

is evaluated on demand, by Monte Carlo simulations. A model is required to perform
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the simulations, so these approaches are model-based. For instance, to estimate the

Q-value Q̂h(x,u) of a given state-action pair (x,u), a number NMC of trajectories are

simulated, where each trajectory is generated using the policy h, has length K, and

starts from the pair (x,u). The estimated Q-value is then the average of the sample

returns obtained along these trajectories:

Q̂h(x,u) =
1

NMC

NMC

∑
i0=1

[
ρ̃(x,u,xi0,1)+

K

∑
k=1

γkρ̃(xi0,k,h(xi0,k),xi0,k+1)

]
(3.45)

where NMC is the number of trajectories to simulate. For each trajectory i0, the first

state-action pair is fixed to (x,u) and leads to a next state xi0,1 ∼ f̃ (x,u, ·). Thereafter,

actions are chosen using the policy h, which means that for k ≥ 1:

xi0,k+1 ∼ f (xi0,k,h(xi0,k), ·)

Such a simulation-based estimation procedure is called a rollout (Lagoudakis and

Parr, 2003b; Bertsekas, 2005b; Dimitrakakis and Lagoudakis, 2008). The length K

of the trajectories can be chosen using (2.41) to ensure εMC-accurate returns, where

εMC > 0. Note that if the MDP is deterministic, a single trajectory suffices. In the

stochastic case, an appropriate value for the number NMC of trajectories will depend

on the problem.

Rollouts can be computationally expensive, especially in the stochastic case.

Their computational cost is proportional to the number of points at which the value

function must be evaluated. Therefore, rollouts are most beneficial when this num-

ber is small. If the value function must be evaluated at many (or all) points of the

state(-action) space, then methods that solve the Bellman equation approximately

(Sections 3.5.1 – 3.5.3) may be computationally less costly than rollouts.

3.5.5 Policy improvement and approximate policy iteration

Up to this point, approximate policy evaluation has been considered. To obtain a

complete algorithm for approximate policy iteration, a method to perform policy

improvement is also required.

Exact and approximate policy improvement

Consider first policy improvement in the case where the policy is not represented

explicitly. Instead, greedy actions are computed on demand from the value function,

for every state where a control action is required. For instance, when Q-functions are

employed, an improved action for the state x can be found with:

hℓ+1(x) = u, where u ∈ argmax
ū

Q̂hℓ(x, ū) (3.46)

The policy is thus implicitly defined by the value function. In (3.46), it was assumed

that a greedy action can be computed exactly. This is true, e.g., when the action space

only contains a small, discrete set of actions, and the maximization in the policy
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improvement step is solved by enumeration. In this situation, policy improvement

is exact, but if greedy actions cannot be computed exactly, then the result of the

maximization is approximate, and the (implicitly defined) policy thus becomes an

approximation.

Alternatively, the policy can also be represented explicitly, in which case it gen-

erally must be approximated. The policy can be approximated, e.g., by a linear

parametrization (3.12):

ĥ(x) =
N

∑
i=1

ϕi(x)ϑi = ϕT(x)ϑ

where ϕi(x), i = 1, . . . ,N are the state-dependent BFs and ϑ is the policy parameter

vector (see Section 3.3.4 for a discussion of the notation used for policy approxima-

tion). A scalar action was assumed, but the parametrization can easily be extended to

multiple action variables. For this parametrization, approximate policy improvement

can be performed by solving the linear least-squares problem:

ϑℓ+1 = ϑ ‡, where ϑ ‡ ∈ argmin
ϑ

Ns

∑
is=1

(
ϕT(xis)ϑ −uis

)2
(3.47)

to find a parameter vector ϑℓ+1, where {x1, . . . ,xNs
} is a set of state samples to be

used for policy improvement, and u1, . . . ,uNs
are corresponding greedy actions:

uis ∈ argmax
u

Q̂ĥℓ(xis ,u) (3.48)

Note that the previous policy ĥℓ is now also an approximation. In (3.48), it was im-

plicitly assumed that greedy actions can be computed exactly; if this is not the case,

then uis will only be approximations of the true greedy actions.

Such a policy improvement is therefore a two-step procedure: first, greedy actions

uis are chosen using (3.48), and then these actions are used to solve the least-squares

problem (3.47). The solution depends on the greedy actions chosen, but remains

meaningful for any combination of choices, since for any such combination, it ap-

proximates one of the possible greedy policies in the Q-function.

Alternatively, policy improvement could be performed with:

ϑℓ+1 = ϑ ‡, where ϑ ‡ ∈ argmax
ϑ

Ns

∑
is=1

Q̂ĥℓ(xis ,ϕ
T(xis)ϑ) (3.49)

which maximizes the approximate Q-values of the actions chosen by the policy in the

state samples. However, (3.49) is generally a difficult nonlinear optimization prob-

lem, whereas (3.47) is (once greedy actions have been chosen) a convex optimization

problem, which is easier to solve.

More generally, for any policy representation (e.g., for a nonlinear parametriza-

tion), a regression problem generalizing either (3.47) or (3.49) must be solved to

perform policy improvement.
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Offline approximate policy iteration

Approximate policy iteration algorithms can be obtained by combining a policy eval-

uation algorithm (e.g., one of those described in Sections 3.5.1 – 3.5.3) with a policy

improvement technique (e.g., one of those described above); see again Algorithm 3.5

for a generic template of approximate policy iteration. In the offline case, the approx-

imate policy evaluation is run until (near) convergence, to ensure the accuracy of the

value function and therefore an accurate policy improvement.

For example, the algorithm resulting from combining LSTD-Q (Algorithm 3.8)

with exact policy improvement is called least-squares policy iteration (LSPI). LSPI

was proposed by Lagoudakis et al. (2002) and by Lagoudakis and Parr (2003a), and

has been studied often since then (e.g., Mahadevan and Maggioni, 2007; Xu et al.,

2007; Farahmand et al., 2009b). Algorithm 3.11 shows LSPI, in a simple variant that

uses the same set of transition samples at every policy evaluation. In general, different

sets of samples can be used at different iterations. The explicit policy improvement at

line 4 is included for clarity. In practice, the policy hℓ+1 does not have to be computed

and stored for every state. Instead, it is computed on demand from the current Q-

function, only for those states where an improved action is necessary. In particular,

LSTD-Q only evaluates the policy at the state samples x′ls .

ALGORITHM 3.11 Least-squares policy iteration.

Input: discount factor γ ,

BFs φ1, . . . ,φn : X×U → R, samples {(xls ,uls ,x
′
ls
,rls) | ls = 1, . . . ,ns}

1: initialize policy h0

2: repeat at every iteration ℓ = 0,1,2, . . .
3: evaluate hℓ using LSTD-Q (Algorithm 3.8), yielding θℓ ⊲ policy evaluation

4: hℓ+1(x)← u, u ∈ argmaxū φ T(x, ū)θℓ for each x ∈ X ⊲ policy improvement

5: until hℓ+1 is satisfactory

Output: ĥ∗ = hℓ+1

Policy iteration with rollout policy evaluation (Section 3.5.4) was studied, e.g.,

by Lagoudakis and Parr (2003b) and by Dimitrakakis and Lagoudakis (2008), who

employed nonparametric approximation to represent the policy. Note that rollout pol-

icy evaluation (which represents value functions implicitly) should not be combined

with implicit policy improvement. Such an algorithm would be impractical, because

neither the value function nor the policy would be represented explicitly.

Online, optimistic approximate policy iteration

In online learning, the performance should improve once every few transition sam-

ples. This is in contrast to the offline case, in which only the performance at the end

of the learning process is important. One way in which policy iteration can take this

requirement into account is by performing policy improvements once every few tran-

sition samples, before an accurate evaluation of the current policy can be completed.

Such a variant is sometimes called optimistic policy iteration (Bertsekas and Tsitsik-
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lis, 1996, Section 6.4; Sutton 1988; Tsitsiklis 2002). In the extreme case, the policy

is improved after every transition, and then applied to obtain a new transition sample

that is fed into the policy evaluation algorithm. Then, another policy improvement

takes place, and the cycle repeats. This variant is called fully optimistic. In general,

the policy is improved once every several (but not too many) transitions; this variant

is partially optimistic. As in any online RL algorithm, exploration is also necessary

in optimistic policy iteration.

Optimistic policy iteration was already outlined in Section 2.4.2, where it was

also explained that SARSA (Algorithm 2.7) belongs to this class. So, an approximate

version of SARSA will naturally be optimistic, as well. A gradient-based version of

SARSA can be easily obtained from TD-Q (Algorithm 3.10), by choosing actions

with a policy that is greedy in the current Q-function, instead of with a fixed policy

as in TD-Q. Of course, exploration is required in addition to greedy action selection.

Algorithm 3.12 presents approximate SARSA with an ε-greedy exploration proce-

dure. Approximate SARSA has been studied, e.g., by Sutton (1996); Santamaria et al.

(1998); Gordon (2001); Melo et al. (2008).

ALGORITHM 3.12 SARSA with a linear parametrization and ε-greedy exploration.

Input: discount factor γ ,

BFs φ1, . . . ,φn : X×U → R,

exploration schedule {εk}
∞
k=0, learning rate schedule {αk}

∞
k=0

1: initialize parameter vector, e.g., θ0← 0

2: measure initial state x0

3: u0←

{
u ∈ argmaxū

(
φ T(x0, ū)θ0

)
with probability 1− ε0 (exploit)

a uniform random action in U with probability ε0 (explore)

4: for every time step k = 0,1,2, . . . do

5: apply uk, measure next state xk+1 and reward rk+1

6: uk+1←

{
u ∈ argmaxū

(
φ T(xk+1, ū)θk

)
with probability 1− εk+1

a uniform random action in U with probability εk+1

7: θk+1← θk +αk

[
rk+1 + γφ T(xk+1,uk+1)θk−φ T(xk,uk)θk

]
φ(xk,uk)

8: end for

Other policy evaluation algorithms can also be used in optimistic policy itera-

tion. For instance, optimistic policy iteration with LSPE-Q was applied by Jung and

Polani (2007a,b), while a V-function based algorithm similar to approximate SARSA

was proposed by Jung and Uthmann (2004). In Chapter 5 of this book, an online, op-

timistic variant of LSPI will be introduced in detail and evaluated experimentally.

3.5.6 Theoretical guarantees

Under appropriate assumptions, offline policy iteration eventually produces policies

with a bounded suboptimality. However, in general it cannot be guaranteed to con-

verge to a fixed policy. The theoretical understanding of optimistic policy iteration
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is currently limited, and guarantees can only be provided in some special cases. We

first discuss the properties of policy iteration in the offline setting, and then continue

to the online, optimistic setting.

Theoretical guarantees for offline approximate policy iteration

As long as the policy evaluation and improvement errors are bounded, offline ap-

proximate policy iteration eventually produces policies with a bounded suboptimal-

ity. This result applies to any type of value function or policy approximator, and can

be formalized as follows.

Consider the general case where both the value functions and the policies are

approximated. Consider also the case where Q-functions are used, and assume that

the error at every policy evaluation step is bounded by ςQ:

‖Q̂ĥℓ −Qĥℓ‖∞ ≤ ςQ, for any ℓ≥ 0

and that the error at every policy improvement step is bounded by ςh, in the following

sense:

‖T ĥℓ+1(Q̂ĥℓ)−T (Q̂ĥℓ)‖∞ ≤ ςh, for any ℓ≥ 0

where T ĥℓ+1 is the policy evaluation mapping for the improved (approximate) policy,

and T is the Q-iteration mapping (2.22). Then, approximate policy iteration eventu-

ally produces policies with performances that lie within a bounded distance from the

optimal performance (e.g., Lagoudakis and Parr, 2003a):

limsup
ℓ→∞

∥∥∥Q̂ĥℓ −Q∗
∥∥∥

∞
≤

ςh +2γςQ

(1− γ)2
(3.50)

For an algorithm that performs exact policy improvements, such as LSPI, ςh = 0 and

the bound is tightened to:

limsup
ℓ→∞

‖Q̂hℓ −Q∗‖∞ ≤
2γςQ

(1− γ)2
(3.51)

where ‖Q̂hℓ−Qhℓ‖∞≤ ςQ, for any ℓ≥ 0. Note that finding ςQ and (when approximate

policies are used) ςh may be difficult in practice, and the existence of these bounds

may require additional assumptions.

These guarantees do not necessarily imply the convergence to a fixed policy. For

instance, both the value function and policy parameters might converge to limit cy-

cles, so that every point on the cycle yields a policy that satisfies the bound. Conver-

gence to limit cycles can indeed happen, as will be seen in the upcoming example of

Section 3.5.7. Similarly, when exact policy improvements are used, the value func-

tion parameter may oscillate, implicitly leading to an oscillating policy. This is a

disadvantage with respect to offline approximate value iteration, which under appro-

priate assumptions converges monotonically to a unique fixed point (Section 3.4.4).

Similar results hold when V-functions are used instead of Q-functions (Bertsekas

and Tsitsiklis, 1996, Section 6.2).
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Theoretical guarantees for online, optimistic policy iteration

The performance guarantees given above for offline policy iteration rely on bounded

policy evaluation errors. Because optimistic policy iteration improves the policy be-

fore an accurate value function is available, the policy evaluation error can be very

large, and the performance guarantees for offline policy iteration are not useful in the

online case.

The behavior of optimistic policy iteration has not been properly understood yet,

and can be very complicated. Optimistic policy iteration can, e.g., exhibit a phe-

nomenon called chattering, whereby the value function converges to a stationary

function, while the policy sequence oscillates, because the limit of the value function

parameter corresponds to multiple policies (Bertsekas and Tsitsiklis, 1996, Section

6.4).

Theoretical guarantees can, however, be provided in certain special cases. Gor-

don (2001) showed that the parameter vector of approximate SARSA cannot diverge

when the MDP has terminal states and the policy is only improved in-between trials

(see Section 2.2.1 for the meaning of terminal states and trials). Melo et al. (2008)

improved on this result, by showing that approximate SARSA converges with prob-

ability 1 to a fixed point, if the dependence of the policy on the parameter vector

satisfies a certain Lipschitz continuity condition. This condition prohibits using fully

greedy policies, because those generally depend on the parameters in a discontinuous

fashion.

These theoretical results concern the gradient-based SARSA algorithm. How-

ever, in practice, least-squares algorithms may be preferable due to their improved

sample efficiency. While no theoretical guarantees are available when using least-

squares algorithms in the optimistic setting, some promising empirical results have

been reported (Jung and Polani, 2007a,b); see also Chapter 5 for an empirical evalu-

ation of optimistic LSPI.

3.5.7 Example: Least-squares policy iteration for a DC motor

In this example, approximate policy iteration is applied to the DC motor problem

introduced in Section 3.4.5. In a first experiment, the original LSPI (Algorithm 3.11)

is applied. This algorithm represents policies implicitly and performs exact pol-

icy improvements. The results of this experiment are compared with the results of

approximate Q-iteration from Section 3.4.5. In a second experiment, LSPI is modi-

fied to use approximate policies and sample-based, approximate policy improve-

ments. The resulting solution is compared with the solution found with exact policy

improvements.

In both experiments, the policies are evaluated using their Q-functions, which are

approximated with a discrete-action parametrization of the type described in Exam-

ple 3.1. Recall that such an approximator replicates state-dependent BFs for every

discrete action, and in order to obtain the state-action BFs, it sets to 0 all the BFs

that do not correspond to the current discrete action. Like in Section 3.4.5, the action

space is discretized into the set Ud = {−10,0,10}, so the number of discrete actions
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is M = 3. The state-dependent BFs are axis-aligned, normalized Gaussian RBFs (see

Example 3.1). The centers of the RBFs are arranged on a 9×9 equidistant grid over

the state space, so there are N = 81 RBFs in total. All the RBFs are identical in shape,

and their width bd along each dimension d is equal to b′d
2/2, where b′d is the distance

between adjacent RBFs along that dimension (the grid step). These RBFs yield a

smooth interpolation of the Q-function over the state space. Recalling that the do-

mains of the state variables are [−π,π] for the angle and [−16π,16π] for the angular

velocity, we obtain b′1 = 2π
9−1
≈ 0.79 and b′2 = 32π

9−1
≈ 12.57, which lead to b1 ≈ 0.31

and b2 ≈ 78.96. The parameter vector θ contains n = NM = 243 parameters.

Least-squares policy iteration with exact policy improvement

In the first part of the example, the original LSPI algorithm is applied to the DC

motor problem. Recall that LSPI combines LSTD-Q policy evaluation with exact

policy improvement.

The same set of ns = 7500 samples is used at every LSTD-Q policy evaluation.

The samples are random, uniformly distributed over the state-discrete action space

X×Ud. The initial policy h0 is identically equal to−10 throughout the state space. To

illustrate the results of LSTD-Q, Figure 3.10 presents the first improved policy found

by the algorithm, h1, and its approximate Q-function, computed with LSTD-Q. Note

that this Q-function is the second found by LSPI; the first Q-function evaluates the

initial policy h0.
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FIGURE 3.10

An early policy and its approximate Q-function, for LSPI with exact policy improvements.

In this problem, LSPI fully converged in 11 iterations. Figure 3.11 shows the

resulting policy and Q-function, together with a representative controlled trajectory.

The policy and the Q-function in Figure 3.11 are good approximations of the near-

optimal solution in Figure 3.5.

Compared to the results of grid Q-iteration in Figure 3.6, LSPI needs fewer BFs

(81 rather than 400 or 160000) while still being able to find a similarly accurate

approximation of the policy. This is mainly because the Q-function is largely smooth

(see Figure 3.5(a)), and thus can be represented more easily by the wide RBFs of
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(c) Controlled trajectory from x0 = [−π,0]T.

FIGURE 3.11 Results of LSPI with exact policy improvements for the DC motor.

the approximator employed in LSPI. In contrast, the grid BFs give a discontinuous

approximate Q-function, which is less appropriate for this problem. Although certain

types of continuous BFs can be used with Q-iteration, using wide RBFs such as these

in combination with the least-squares projection (3.14) is unfortunately not possible,

because they do not satisfy the assumptions for convergence, and indeed lead to

divergence when they are too wide. The controlled trajectory in Figure 3.11(c) is

comparable in quality with the trajectory controlled by the fine-grid policy, shown in

Figure 3.6(f); however, it does produce more chattering.

Another observation is that LSPI converged in significantly fewer iterations than

grid Q-iteration did in Section 3.4.5 (12 iterations for LSPI, instead of 160 for grid

Q-iteration with the coarse grid, and 123 with the fine grid). Such a convergence rate

advantage of policy iteration over value iteration is often observed in practice. How-

ever, while LSPI did converge faster, it was actually more computationally intensive

than grid Q-iteration: it required approximately 23 s to run, whereas grid Q-iteration

required only 0.06 s for the coarse grid and 7.80 s for the fine grid. Some insight into

this difference can be obtained by examining the asymptotic complexity of the two
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algorithms. The complexity of policy evaluation with LSTD-Q is larger than O(n2)
due to solving a linear system of size n. For grid Q-iteration, when binary search

is used to locate the position of a state on the grid, the cost is O(n log(N)), where

n = NM, N is the number of elements on the grid, and M the number of discrete

actions. On the other hand, while the convergence of grid Q-iteration to a fixed point

was guaranteed by the theory, this is not the case for LSPI (although for this problem

LSPI did, in fact, fully converge).

Compared to the results of fitted Q-iteration in Figure 3.7, the LSPI solution is

of a similar quality. LSPI introduces some curved artifacts in the policy, due to the

limitations of the wide RBFs employed. On the other hand, the execution time of

2151 s for fitted Q-iteration is much larger than the 23 s for LSPI.

Least-squares policy iteration with policy approximation

The aim of the second part of the example is to illustrate the effects of approximating

policies. To this end, LSPI is modified to work with approximate policies and sample-

based, approximate policy improvement.

The policy approximator is linearly parameterized (3.12) and uses the same RBFs

as the Q-function approximator. Such an approximate policy produces continuous

actions, which must be quantized (into discrete actions belonging to Ud) before per-

forming policy evaluation, because the Q-function approximator only works for dis-

crete actions. Policy improvement is performed with the linear least-squares pro-

cedure (3.47), using a number Ns = 2500 of random, uniformly distributed state

samples. The same samples are used at every iteration. As before, policy evaluation

employs Ns = 7500 samples.

In this experiment, both the Q-functions and the policies oscillate in the steady

state of the algorithm, with a period of 2 iterations. The execution time until the os-

cillation was detected was 58 s. The differences between the two distinct policies and

Q-functions on the limit cycle are too small to be noticed in a figure. Instead, Fig-

ure 3.12 shows the evolution of the policy parameter that changes the most in steady

state, for which the oscillation is clearly visible. The appearance of oscillations may

be related to the fact that the weaker suboptimality bound (3.50) applies when ap-

proximate policies are used, rather than the stronger bound (3.51), which applies for

exact policy improvements.

Figure 3.13 presents one of the two policies from the limit cycle, one of the

Q-functions, and a representative controlled trajectory. The policy and Q-function

have a similar accuracy to those computed with exact, discrete-action policy im-

provements. One advantage of the approximate policy is that it produces continuous

actions. The beneficial effects of continuous actions on the control performance are

apparent in the trajectory shown in Figure 3.13(c), which is very close to the near-

optimal trajectory of Figure 3.5(c).
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The variation of one of the policy parameters for LSPI with policy approximation on the DC

motor.
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(c) Controlled trajectory from x0 = [−π,0]T.

FIGURE 3.13 Results of LSPI with policy approximation for the DC motor.
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3.6 Finding value function approximators automatically

Parametric approximators of the value function play an important role in approximate

value iteration and approximate policy iteration, as seen in Sections 3.4 and 3.5.

Given the functional form of such an approximator, the DP/RL algorithm computes

its parameters. However, there still remains the problem of finding a good functional

form, well suited to the problem at hand. For concreteness, we will consider linearly

parameterized approximators (3.3), in which case a good set of BFs has to be found.

This focus is motivated by the fact that many methods to find good approximators

work in such a linear setting.

The most straightforward solution is to design the BFs in advance, in which case

two approaches are possible. The first is to design the BFs so that a uniform resolution

is obtained over the entire state space (for V-functions) or over the entire state-action

space (for Q-functions). Unfortunately, such an approach suffers from the curse of

dimensionality: the complexity of a uniform approximator grows exponentially with

the number of state variables, and in the case of Q-functions, also with the number

of action variables. The second approach is to focus the resolution on certain parts of

the state (or state-action) space, where the value function has a more complex shape,

or where it is more important to approximate it accurately. Prior knowledge about

the shape of the value function or about the importance of certain regions of the state

(or state-action) space is necessary in this case. Unfortunately, such prior knowledge

is often nonintuitive and very difficult to obtain without actually computing the value

function.

A more general alternative is to devise a method to automatically find BFs suited

to the problem at hand, rather than designing them manually. Two major categories

of methods to find BFs automatically are BF optimization and BF construction. BF

optimization methods search for the best placement and shape of a (usually fixed)

number of BFs. BF construction methods are not constrained by a fixed number of

BFs, but add new or remove old BFs to improve the approximation accuracy. The

newly added BFs may have different shapes, or they may all have the same shape.

Several subcategories of BF construction can be distinguished, some of the most

important of which are defined next.

• BF refinement methods work in a top-down fashion. They start with a few BFs

(a coarse resolution) and refine them as needed.

• BF selection methods work oppositely, in a bottom-up fashion. Starting from a

large number of BFs (a fine resolution), they select a small subset of BFs that

still ensure a good accuracy.

• Bellman error methods for BF construction define new BFs using the Bell-

man error of the value function represented with the current BFs. The Bellman

error (or Bellman residual) is the difference between the two sides of the Bell-

man equation, where the current value function has been filled in (see also the

upcoming Section 3.6.1 and, e.g., (3.52)).
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Figure 3.14 summarizes this taxonomy.

methods for automatic
BF discovery

BF construction

BF refinement

BF selection

Bellman error
BF construction

methods
for

BF optimization

FIGURE 3.14 A taxonomy of methods for the automatic discovery of BFs.

In the remainder of this section, we first describe BF optimization, in Sec-

tion 3.6.1, followed by BF construction in Section 3.6.2, and by some additional

remarks in Section 3.6.3.

3.6.1 Basis function optimization

BF optimization methods search for the best placement and shape of a (typi-

cally fixed) number of BFs. Consider, e.g., the linear parametrization (3.3) of the

Q-function. To optimize the n BFs, they are parameterized by a vector of BF param-

eters ξ that encodes their locations and shapes. The approximate Q-function is:

Q̂(x,u) = φ T(x,u;ξ )θ

where the parameterized BFs have been denoted by:

φ T(x,u;ξ ) : X ×U → R, l = 1, . . . ,n

to highlight their dependence on ξ . For instance, an RBF is characterized by its center

and width, so for an RBF approximator, the vector ξ contains the centers and widths

of all the RBFs.

The BF optimization algorithm searches for an optimal parameter vector ξ ∗ that

optimizes a criterion related to the accuracy of the value function approximator.

Many optimization algorithms can be applied to this problem. For instance, gradient-

based optimization has been used for policy evaluation with temporal difference

(Singh et al., 1995), with LSTD (Menache et al., 2005; Bertsekas and Yu, 2009),

and with LSPE (Bertsekas and Yu, 2009). Among these works, Bertsekas and Yu

(2009) gave a general framework for gradient-based BF optimization in approximate

policy evaluation, and provided an efficient recursive procedure to estimate the gra-

dient. The cross-entropy method has been applied to LSTD (Menache et al., 2005).

In Chapter 4 of this book, we will employ the cross-entropy method to optimize

approximators for Q-iteration.

The most widely used optimization criterion (score function) is the Bellman er-

ror, also called Bellman residual (Singh et al., 1995; Menache et al., 2005; Bertsekas

and Yu, 2009). This error measures how much the estimated value function violates
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the Bellman equation, which would be precisely satisfied by the exact value function.

For instance, in the context of policy evaluation for a policy h, the Bellman error for

an estimate Q̂h of the Q-function Qh can be derived from the Bellman equation (3.31)

as:

[T h(Q̂h)](x,u)− Q̂h(x,u) (3.52)

at the state-action pair (x,u), where T h is the policy evaluation mapping. This error

was derived from the Bellman equation (3.31). A quadratic Bellman error over the

entire state-action space can therefore be defined as:

∫

X×U

(
[T h(Q̂h)](x,u)− Q̂h(x,u)

)2

d(x,u) (3.53)

In the context of value iteration, the quadratic Bellman error for an estimate Q̂ of the

optimal Q-function Q∗ can be defined similarly:

∫

X×U

(
[T (Q̂)](x,u)− Q̂(x,u)

)2

d(x,u) (3.54)

where T is the Q-iteration mapping. In practice, approximations of the Bellman er-

rors are computed using a finite set of samples. A weight function can additionally

be used to adjust the contribution of the errors according to the importance of each

region of the state-action space.

In the context of policy evaluation, the distance between an approximate Q-

function Q̂h and Qh is related to the infinity norm of the Bellman error as follows

(Williams and Baird, 1994):

‖Q̂h−Qh‖∞ ≤
1

1− γ
‖T h(Q̂h)− Q̂h‖∞

A similar result holds in the context of value iteration, where the suboptimality of

an approximate Q-function Q̂ satisfies (Williams and Baird, 1994; Bertsekas and

Tsitsiklis, 1996, Section 6.10):

‖Q̂−Q∗‖∞ ≤
1

1− γ
‖T (Q̂)− Q̂‖∞

Furthermore, the suboptimality of Q̂ is related to the suboptimality of the resulting

policy by (3.25), hence, in principle, minimizing the Bellman error is useful. How-

ever, in practice, quadratic Bellman errors (3.53), (3.54) are often employed. Because

minimizing such quadratic errors may still lead to large infinity-norm Bellman errors,

it is unfortunately unclear whether this procedure leads to accurate Q-functions.

Other optimization criteria can, of course, be used. For instance, in approximate

value iteration, the return of the policy obtained by the DP/RL algorithm can be

directly maximized:

∑
x0∈X0

w(x0)R
h(x0) (3.55)

where h is obtained by running approximate value iteration to (near-)convergence
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using the current approximator, X0 is a finite set of representative initial states, and w :

X0→ (0,∞) is a weight function. The set X0 and the weight function w determine the

performance of the resulting policy, and an appropriate choice of X0 and w depends

on the problem at hand. The returns Rh(x0) can be estimated by simulation, as in

approximate policy search, see Section 3.7.2.

In approximate policy evaluation, if accurate Q-values Qh(xls ,uls) can be ob-

tained for a set of ns samples (xls ,uls), then the following error measure can be min-

imized instead of the Bellman error (Menache et al., 2005; Bertsekas and Yu, 2009):

ns

∑
ls=1

(
Qh(xls ,uls)− Q̂h(xls ,uls)

)2

The Q-values Qh(xls ,uls) can be obtained by simulation, as explained in Sec-

tion 3.5.4.

3.6.2 Basis function construction

From the class of BF construction methods, we discuss in turn BF refinement, BF

selection, and Bellman error methods for BF construction (see again Figure 3.14).

Additionally, we explain how some nonparametric approximators can be seen as

techniques to construct BFs automatically.

Basis function refinement

BF refinement is a widely used subclass of BF construction methods. Refinement

methods work in a top-down fashion, by starting with a few BFs (a coarse resolution)

and refining them as needed. They can be further classified into two categories:

• Local refinement (splitting) methods evaluate whether the value function is

represented with a sufficient accuracy in a particular region of the state space

(corresponding to one or several neighboring BFs), and add new BFs when the

accuracy is deemed insufficient. Such methods have been proposed, e.g., for

Q-learning (Reynolds, 2000; Ratitch and Precup, 2004; Waldock and Carse,

2008), V-iteration (Munos and Moore, 2002), and Q-iteration (Munos, 1997;

Uther and Veloso, 1998).

• Global refinement methods evaluate the global accuracy of the representation

and, if the accuracy is deemed insufficient, they refine the BFs using various

techniques. All the BFs may be refined uniformly (Chow and Tsitsiklis, 1991),

or the algorithm may decide that certain regions of the state space require

more resolution (Munos and Moore, 2002; Grüne, 2004). For instance, Chow

and Tsitsiklis (1991); Munos and Moore (2002); and Grüne (2004) applied

global refinement to V-iteration, while Szepesvári and Smart (2004) used it for

Q-learning.

A variety of criteria are used to decide when the BFs should be refined. An

overview of typical criteria, and a comparison between them in the context of
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V-iteration, was given by Munos and Moore (2002). For instance, local refinement

in a certain region can be performed:

• when the value function is not (approximately) constant in that region (Munos

and Moore, 2002; Waldock and Carse, 2008);

• when the value function is not (approximately) linear in that region (Munos

and Moore, 2002; Munos, 1997);

• when the Bellman error (see Section 3.6.1) is large in that region (Grüne,

2004);

• using various other heuristics (Uther and Veloso, 1998; Ratitch and Precup,

2004).

Global refinement can be performed, e.g., until a desired level of solution accu-

racy is met (Chow and Tsitsiklis, 1991). The approach of Munos and Moore (2002)

works for discrete-action problems, and globally identifies the regions of the state

space that must be more accurately approximated to find a better policy. To this end,

it refines regions that satisfy two conditions: (i) the V-function is poorly approxi-

mated in these regions, and (ii) this poor approximation affects, in a certain sense,

(other) regions where the actions that are dictated by the policy change.

BF refinement methods increase the memory and computational demands of the

DP/RL algorithm when they increase the resolution. Thus, care must be taken to

prevent the memory and computation costs from becoming prohibitive, especially in

the online case. This is an important concern in both approximate DP and approxi-

mate RL. Equally important in approximate RL are the restrictions imposed on BF

refinement by the limited amount of data available. Increasing the power of the ap-

proximator means that more data will be required to compute an accurate solution,

so the resolution cannot be refined to arbitrary levels for a given amount of data.

Basis function selection

BF selection methods work in a bottom-up fashion, by starting from a large number

of BFs (a fine resolution), and then selecting a smaller subset of BFs that still provide

a good accuracy. When using this type of methods, care should be taken to ensure

that selecting the BFs and running the DP/RL algorithm with the selected BFs is less

expensive than running the DP/RL algorithm with the original BFs. The cost may be

expressed in terms of computational complexity or in terms of the number of samples

required.

Kolter and Ng (2009) employed regularization to select BFs for policy evaluation

with LSTD. Regularization is a technique that penalizes functional complexity in the

approximate value function. In practice, the effect of regularization in the linear case

is to drive some of the value function parameters (close) to 0, which means that the

corresponding BFs can be ignored. By incrementally selecting the BFs, Kolter and

Ng (2009) obtained a computational complexity that is linear in the total number of

BFs, in contrast to the original complexity of LSTD which is at least quadratic (see

Section 3.5.2).
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Bellman error basis functions

Another class of BF construction approaches define new BFs by employing the Bell-

man error of the value function represented with the currently available BFs (3.53),

(3.54). For instance, Bertsekas and Castañon (1989) proposed a method to interleave

automatic state aggregation steps with iterations of a model-based policy evaluation

algorithm. The aggregation steps group together states with similar Bellman errors.

In this work, convergence speed was the main concern, rather than limited represen-

tation power, so the value function and the Bellman error function were assumed to

be exactly representable.

More recently, Keller et al. (2006) proposed a method that follows similar

lines, but that explicitly addresses the approximate case, by combining LSTD with

Bellman-error based BF construction. At every BF construction step, this method

computes a linear projection of the state space onto a space in which points with

similar Bellman errors are close to each other. Several new BFs are defined in this

projected space. Then, the augmented set of BFs is used to generate a new LSTD so-

lution, and the cycle repeats. Parr et al. (2008) showed that in policy evaluation with

linear parametrization, the Bellman error can be decomposed into two components: a

transition error component and a reward error component, and proposed adding new

BFs defined in terms of these error components.

Nonparametric approximators as methods for basis function construction

As previously explained in Section 3.3, some nonparametric approximators can be

seen as methods to automatically generate BFs from the data. A typical example is

kernel-based approximation, which, in its original form, generates a BF for every

sample considered. An interesting effect of nonparametric approximators is that they

adapt the complexity of the approximator to the amount of available data, which is

beneficial in situations where obtaining data is costly.

When techniques to control the complexity of the nonparametric approximator

are applied, they can sometimes be viewed as BF selection. For instance, regular-

ization techniques were used in LSTD-Q by Farahmand et al. (2009a) and in fitted

Q-iteration by Farahmand et al. (2009b). (In both of these cases, however, the advan-

tage of regularization is a reduced functional complexity of the solution, while the

computational complexity is not reduced.) Kernel sparsification techniques also fall

in this category (Xu et al., 2007; Engel et al., 2003, 2005), as well as sample selection

methods for regression tree approximators (Ernst, 2005).

3.6.3 Remarks

Some of the methods for automatic BF discovery work offline (e.g., Menache et al.,

2005; Mahadevan and Maggioni, 2007), while others adapt the BFs while the DP/RL

algorithm is running (e.g., Munos and Moore, 2002; Ratitch and Precup, 2004). Since

convergence guarantees for approximate value iteration and approximate policy eval-

uation typically rely on a fixed set of BFs, adapting the BFs online invalidates these

guarantees. Convergence guarantees can be recovered by ensuring that BF adaptation
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is stopped after a finite number of updates; fixed-BF proofs can then be applied to

guarantee asymptotic convergence (Ernst et al., 2005).

The presentation above has not been exhaustive, and BFs can also be found using

various other methods. For instance, in (Mahadevan, 2005; Mahadevan and Mag-

gioni, 2007), a spectral analysis of the MDP transition dynamics is performed to

find BFs for use with LSPI. Because the BFs represent the underlying topology of

the state transitions, they provide a good accuracy in representing the value func-

tion. Moreover, while we have focused above on the popular approach of finding

linearly parameterized approximators, nonlinearly parameterized approximators can

also be found automatically. For example, Whiteson and Stone (2006) introduced an

approach to optimize the parameters and the structure of neural network approxima-

tors for a tailored variant of Q-learning. This approach works in episodic tasks, and

optimizes the total reward accumulated along episodes.

Finally, note that a fully worked-out example of finding an approximator auto-

matically is beyond the scope of this chapter. Instead, we direct the interested reader

to Section 4.4, where an approach to optimize the approximator for a value itera-

tion algorithm is developed in detail, and to Section 4.5.4, where this approach is

empirically evaluated.

3.7 Approximate policy search

Algorithms for approximate policy search represent the policy approximately, most

often using a parametric approximator. An optimal parameter vector is then sought

using optimization techniques. In some special cases, the policy parametrization may

represent an optimal policy exactly. For instance, when the transition dynamics are

linear in the state and action variables and the reward function is quadratic, the op-

timal policy is linear in the state variables. So, a linear parametrization in the state

variables can exactly represent this optimal policy. However, in general, optimal poli-

cies can only be represented approximately.

Figure 3.15 (repeated from the relevant part of Figure 3.2) shows in a graphical

form how our upcoming presentation of approximate policy search is organized. In

Section 3.7.1, gradient-based methods for policy search are described, including the

important category of actor-critic techniques. Then, in Section 3.7.2, gradient-free

policy optimization methods are discussed.

approximate
policy search

gradient-based policy search,
actor-critic methods

gradient-free policy search

FIGURE 3.15

The organization of the algorithms for approximate policy search presented next.
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Having completed our review, we then provide a numerical example involving

policy search for a DC motor in Section 3.7.3.

3.7.1 Policy gradient and actor-critic algorithms

An important class of methods for approximate policy search relies on gradient-

based optimization. In such policy gradient methods, the policy is represented using

a differentiable parametrization, and gradient updates are performed to find param-

eters that lead to (locally) maximal returns. Some policy gradient methods estimate

the gradient without using a value function (Marbach and Tsitsiklis, 2003; Munos,

2006; Riedmiller et al., 2007). Other methods compute an approximate value func-

tion of the current policy and use it to form the gradient estimate. These are called

actor-critic methods, where the actor is the approximate policy and the critic is the

approximate value function. By extension, policy gradient methods that do not use

value functions are sometimes called actor-only methods (Bertsekas, 2007, Section

6.7).

Actor-critic algorithms were introduced by Barto et al. (1983) and have been in-

vestigated often since then (Berenji and Khedkar, 1992; Sutton et al., 2000; Konda

and Tsitsiklis, 2003; Berenji and Vengerov, 2003; Borkar, 2005; Nakamura et al.,

2007). Many actor-critic algorithms approximate the policy and the value function

using neural networks (Prokhorov and Wunsch, 1997; Pérez-Uribe, 2001; Liu et al.,

2008). Actor-critic methods are similar to policy iteration, which also improves the

policy on the basis of its value function. The main difference is that in policy iter-

ation, the improved policy is greedy in the value function, i.e., it fully maximizes

this value function over the action variables (3.46). In contrast, actor-critic methods

employ gradient rules to update the policy in a direction that increases the received

returns. The gradient estimate is constructed using the value function.

Some important results for policy gradient methods have been developed under

the expected average return criterion for optimality. We therefore discuss this set-

ting first, in a temporary departure from the main focus of the book, which is the

discounted return. We then return to the discounted setting, and present an online

actor-critic algorithm for this setting.

Policy gradient and actor-critic methods for average returns

Policy gradient and actor-critic methods have often been given in the average return

setting (see also Section 2.2.1). We therefore introduce these methods in the average-

return case, mainly following the derivation of Bertsekas (2007, Section 6.7). We

assume that the MDP has a finite state-action space, but under appropriate condi-

tions these methods can also be extended to continuous state-action spaces (see, e.g.,

Konda and Tsitsiklis, 2003).

Consider a stochastic MDP with a finite state space X = {x1, . . . ,xN̄}, a finite

action space U = {u1, . . . ,uM̄}, a transition function f̄ of the form (2.14), and a re-

ward function ρ̃ . A stochastic policy of the form h̃ : X ×U → [0,1] is employed,

parameterized by the vector ϑ ∈R
N . This policy takes an action u in state x with the
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probability:

P(u |x) = h̃(x,u;ϑ)

The functional dependence of the policy on the parameter vector must be designed

in advance, and must be differentiable.

The expected average return of state x0 under the policy parameterized by ϑ is:

Rϑ (x0) = lim
K→∞

1

K
E uk∼h̃(xk,·;ϑ)

xk+1∼ f̄ (xk,uk,·)

{
K

∑
k=0

ρ̃(xk,uk,xk+1)

}

Note that we have directly highlighted the dependence of the return on the parameter

vector ϑ , rather than on the policy h̃. A similar notation will be used for other policy-

dependent quantities in this section.

Under certain conditions (see, e.g., Bertsekas, 2007, Chapter 4), the average re-

turn is the same for every initial state, i.e., Rϑ (x0) = Rϑ for all x0 ∈ X , and together

with the so-called differential V-function, V ϑ : X → R, satisfies the Bellman equa-

tion:

R
ϑ +V ϑ (xi) = ρ̃ϑ (xi)+

N̄

∑
i′=1

f̄ ϑ (xi,xi′)V
ϑ (xi′) (3.56)

The differential value of a state x can be interpreted as the expected excess return,

on top of the average return, obtained from x (Konda and Tsitsiklis, 2003). The other

quantities appearing in (3.56) are defined as follows:

• f̄ ϑ : X × X → [0,1] gives the state transition probabilities under the policy

considered, from which the influence of the actions has been integrated out.12

These probabilities can be computed with:

f̄ ϑ (xi,xi′) =
M̄

∑
j=1

[
h̃(xi,u j;ϑ) f̄ (xi,u j,xi′)

]

• ρ̃ϑ : X→R gives the expected rewards obtained from every state by the policy

considered, and can be computed with:

ρ̃ϑ (xi) =
M̄

∑
j=1

[
h̃(xi,u j;ϑ)

N̄

∑
i′=1

(
f̄ (xi,u j,xi′)ρ̃(xi,u j,xi′)

)
]

Policy gradient methods aim to find a (locally) optimal policy within the class

of parameterized policies considered. An optimal policy maximizes the average re-

turn, which is the same for every initial state. So, a parameter vector that (locally)

12For simplicity, a slight abuse of notation is made by using f̄ to denote both the original transition

function and the transition probabilities from which the actions have been factored out. Similarly, the

expected rewards are denoted by ρ̃ , like the original reward function.
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maximizes the average return must be found. To this end, policy gradient methods

perform gradient ascent on the average return:

ϑ ← ϑ +α
∂ Rϑ

∂ϑ
(3.57)

where α is the step size. When a local optimum has been reached, the gradient is

zero, i.e., ∂ Rϑ

∂ϑ = 0.

The core problem is to estimate the gradient ∂ Rϑ

∂ϑ . By differentiating the Bellman

equation (3.56) with respect to ϑ and after some calculations (see Bertsekas, 2007,

Section 6.7), the following formula for the gradient is obtained:

∂ Rϑ

∂ϑ
=

N̄

∑
i=1

ζ ϑ (xi)

[
∂ ρ̃ϑ (xi)

∂ϑ
+

N̄

∑
i′=1

(
∂ f̄ ϑ (xi,xi′)

∂ϑ
V ϑ (xi′)

)]
(3.58)

where ζ ϑ (xi) is the steady-state probability of encountering the state xi when us-

ing the policy given by ϑ . Note that all the gradients in (3.58) are N -dimensional

vectors.

The right-hand side of (3.58) can be estimated using simulation, as proposed,

e.g., by Marbach and Tsitsiklis (2003), and the convergence of the resulting pol-

icy gradient algorithms to a locally optimal parameter vector can be ensured under

mild conditions. An important concern is controlling the variance of the gradient es-

timate, and Marbach and Tsitsiklis (2003) focused on this problem. Munos (2006)

considered policy gradient methods in the continuous-time setting. Because the usual

methods to estimate the gradient lead to a variance that grows very large as the sam-

pling time decreases, other methods are necessary to keep the variance small in the

continuous-time case (Munos, 2006).

Actor-critic methods explicitly approximate the V-function in (3.58). This ap-

proximate V-function can be found, e.g., by using variants of the TD, LSTD, and

LSPE techniques adapted to the average return setting (Bertsekas, 2007, Section 6.6).

The gradient can also be expressed in terms of a Q-function, which can be defined

in the average return setting by using the differential V-function, as follows:

Qϑ (xi,u j) =
N̄

∑
i′=1

[
f̄ (xi,u j,xi′)

(
ρ̃(xi,u j,xi′)−R

ϑ +V ϑ (xi′)
)]

Using the Q-function, the gradient of the average return can be written as (Sutton

et al., 2000; Konda and Tsitsiklis, 2000, 2003):

∂ Rϑ

∂ϑ
=

N̄

∑
i=1

M̄

∑
j=1

[
wϑ (xi,u j)Q

ϑ (xi,u j)φ
ϑ (xi,u j)

]
(3.59)

where wϑ (xi,u j) = ζ ϑ (xi)h̃(xi,u j;ϑ) is the steady-state probability of encountering

the state-action pair (xi,u j) when using the policy considered, and:

φ ϑ : X×U → R
N , φ ϑ (xi,u j) =

1

h̃(xi,u j;ϑ)

∂ h̃(xi,u j;ϑ)

∂ϑ
(3.60)
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The function φ ϑ is regarded as a vector of state-action BFs, for reasons that will

become clear shortly. It can be shown that (3.59) is equal to (Sutton et al., 2000;

Konda and Tsitsiklis, 2003):

∂ Rϑ

∂ϑ
=

N̄

∑
i=1

M̄

∑
j=1

[
w(xi,u j)[P

wϑ
(Qϑ )](xi,u j)φ

ϑ (xi,u j)
]

where the exact Q-function has been substituted by its weighted least-squares pro-

jection (3.35) onto the space spanned by the BFs φ ϑ . So, in order to find the exact

gradient, it is sufficient to compute an approximate Q-function – provided that the

BFs φ ϑ , computed with (3.60) from the policy parametrization, are used. In the liter-

ature, such BFs are sometimes called “compatible” with the policy parametrization

(Sutton et al., 2000) or “essential features” (Bertsekas, 2007, Section 6.7). Note that

other BFs can be used in addition to these.

Using this property, actor-critic algorithms that linearly approximate the Q-

function using the BFs (3.60) can be given. These algorithms converge to a locally

optimal policy, as shown by Sutton et al. (2000); Konda and Tsitsiklis (2000, 2003).

Konda and Tsitsiklis (2003) additionally extended their analysis to the case of con-

tinuous state-action spaces. This theoretical framework was used by Berenji and

Vengerov (2003) to prove the convergence of an actor-critic algorithm relying on

fuzzy approximation.

Kakade (2001) proposed an improvement to the gradient update formula (3.57),

by scaling it with the inverse of the (expected) Fisher information matrix of the

stochastic policy (Schervish, 1995, Section 2.3.1), and thereby obtaining the so-

called natural policy gradient. Peters and Schaal (2008) and Bhatnagar et al. (2009)

employed this idea to develop some natural actor-critic algorithms. Riedmiller et al.

(2007) provided an experimental comparison of several policy gradient methods, in-

cluding the natural policy gradient.

An online actor-critic algorithm for discounted returns

We now come back to the discounted return criterion for optimality, and describe

an actor-critic algorithm for this discounted setting (rather than in the average-return

setting, as above). This algorithm works online, in problems with continuous states

and actions. Denote by ĥ(x;ϑ) the (deterministic) approximate policy, parameterized

by ϑ ∈ R
N , and by V̂ (x;θ) the approximate V-function, parameterized by θ ∈ R

N .

The algorithm does not distinguish between the value functions of different policies,

so the value function notation is not superscripted by the policy. Although a deter-

ministic approximate policy is considered, a stochastic policy could also be used.

At each time step, an action uk is chosen by adding a random, exploratory term to

the action recommended by the policy ĥ(x;ϑ). This term could be drawn, e.g., from a

zero-mean Gaussian distribution. After the transition from xk to xk+1, an approximate

temporal difference is computed with:

δTD,k = rk+1 + γV̂ (xk+1;θk)−V̂ (xk;θk)

This temporal difference can be obtained from the Bellman equation for the policy
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V-function (2.20). It is analogous to the temporal difference for Q-functions, used,

e.g., in approximate SARSA (Algorithm 3.12). Once the temporal difference is com-

puted, the policy and V-function parameters are updated with the following gradient

formulas:

ϑk+1 = ϑk +αA,k
∂ ĥ(xk;ϑk)

∂ϑ
[uk− ĥ(xk;ϑk)]δTD,k (3.61)

θk+1 = θk +αC,k
∂ V̂ (xk;θk)

∂θ
δTD,k (3.62)

where αA,k and αC,k are the (possibly time-varying) step sizes for the actor and the

critic, respectively. Note that the action signal is assumed to be scalar, but the method

can be extended to multiple action variables.

In the actor update (3.61), due to exploration, the actual action uk applied at step

k can be different from the action recommended by the policy. When the exploratory

action uk leads to a positive temporal difference, the policy is adjusted towards this

action. Conversely, when δTD,k is negative, the policy is adjusted away from uk. This

is because the temporal difference is interpreted as a correction of the predicted per-

formance, so that, e.g., if the temporal difference is positive, the obtained perfor-

mance is considered to be better than the predicted one. In the critic update (3.62), the

temporal difference takes the place of the prediction error V (xk)− V̂ (xk;θk), where

V (xk) is the exact value of xk, given the current policy. Since this exact value is not

available, it is replaced by the estimate rk+1 +γV̂ (xk+1;θk) suggested by the Bellman

equation (2.20), thus leading to the temporal difference.

This actor-critic method is summarized in Algorithm 3.13, which generates ex-

ploratory actions using a Gaussian density with a standard deviation that can vary

over time.

ALGORITHM 3.13 Actor-critic with Gaussian exploration.

Input: discount factor γ ,

policy parametrization ĥ, V-function parametrization V̂ ,

exploration schedule {σk}
∞
k=0, step size schedules

{
αA,k

}∞

k=0
,
{

αC,k

}∞

k=0
1: initialize parameter vectors, e.g., ϑ0← 0, θ0← 0

2: measure initial state x0

3: for every time step k = 0,1,2, . . . do

4: uk← ĥ(xk;ϑk)+ ū, where ū∼N (0,σk)
5: apply uk, measure next state xk+1 and reward rk+1

6: δTD,k = rk+1 + γV̂ (xk+1;θk)−V̂ (xk;θk)

7: ϑk+1 = ϑk +αA,k
∂ ĥ(xk;ϑk)

∂ϑ [uk− ĥ(xk;ϑk)]δTD,k

8: θk+1 = θk +αC,k
∂ V̂ (xk;θk)

∂θ δTD,k

9: end for
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3.7.2 Gradient-free policy search

Gradient-based policy optimization is based on the assumption that the locally op-

timal parameters found by the gradient method are good enough. This may be

true when the policy parametrization is simple and well suited to the problem at

hand. However, in order to design such a parametrization, prior knowledge about a

(near-)optimal policy is required.

When prior knowledge about the policy is not available, a richer policy

parametrization must be used. In this case, the optimization criterion is likely to have

many local optima, and may also be nondifferentiable. This means that gradient-

based algorithms are unsuitable, and global, gradient-free optimization algorithms

are required. Even when a simple policy parametrization can be designed, global

optimization can help by avoiding local optima.

Consider the DP/RL problem under the expected discounted return criterion. De-

note by ĥ(x;ϑ) the approximate policy, parameterized by ϑ ∈ R
N . Policy search

algorithms look for an optimal parameter vector that maximizes the return Rĥ(·;ϑ)(x)
for all x ∈ X . When X is large or continuous, computing the return for every ini-

tial state is not possible. A practical procedure to circumvent this difficulty requires

choosing a finite set X0 of representative initial states. Returns are estimated only

for the states in X0, and the score function (optimization criterion) is the weighted

average return over these states:

s(ϑ) = ∑
x0∈X0

w(x0)R
ĥ(·;ϑ)(x0) (3.63)

where w : X0 → (0,1] is the weight function.13 The return from each representative

state is estimated by simulation. A number of NMC ≥ 1 independent trajectories are

simulated from every representative state, and an estimate of the expected return is

obtained by averaging the returns obtained along these sample trajectories:

Rĥ(·;ϑ)(x0) =
1

NMC

NMC

∑
i0=1

K

∑
k=0

γkρ̃(xi0,k,h(xi0,k;ϑ),xi0,k+1) (3.64)

For each trajectory i0, the initial state xi0,0 is equal to x0, and actions are chosen with

the policy h, which means that for k ≥ 0:

xi0,k+1 ∼ f (xi0,k,h(xi0,k;ϑ), ·)

If the system is deterministic, a single trajectory suffices, i.e., NMC = 1. In the stochas-

tic case, a good value for NMC will depend on the problem at hand. Note that this

Monte Carlo estimation procedure is similar to a rollout (3.45).

The infinite-horizon return is approximated by truncating each simulated trajec-

tory after K steps. A value of K that guarantees that this truncation introduces an

13More generally, a density w̃ over the initial states can be considered, and the score function is then

Ex0∼w̃(·)

{
Rh(·;ξ ,ϑ)(x0)

}
, i.e., the expected value of the return when x0 ∼ w̃(·).
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error of at most εMC > 0 can be chosen using (2.41), repeated here:

K =

⌈
logγ

εMC(1− γ)

‖ρ̃‖∞

⌉
(3.65)

In the stochastic context, Ng and Jordan (2000) assumed the availability of a

simulation model that offers access to the random variables driving the stochastic

transitions. They proposed to pregenerate sequences of values for these random vari-

ables, and to use the same sequences when evaluating every policy. This leads to a

deterministic optimization problem.

Representative set of initial states and weight function. The set X0 of represen-

tative states, together with the weight function w, determines the performance of the

resulting policy. Of course, this performance is in general only approximately op-

timal, since maximizing the returns from states in X0 cannot guarantee that returns

from other states in X are maximal. A good choice of X0 and w will depend on the

problem at hand. For instance, if the process only needs to be controlled starting

from a known set Xinit of initial states, then X0 should be equal to Xinit, or included

in it when Xinit is too large. Initial states that are deemed more important can be as-

signed larger weights. When all initial states are equally important, the elements of

X0 should be uniformly spread over the state space and identical weights equal to 1
|X0|

should be assigned to every element of X0.

A wide range of gradient-free, global optimization techniques can be employed

in policy search, including evolutionary optimization (e.g., genetic algorithms, see

Goldberg, 1989), tabu search (Glover and Laguna, 1997), pattern search (Torczon,

1997; Lewis and Torczon, 2000), the cross-entropy method (Rubinstein and Kroese,

2004), etc. For instance, evolutionary computation was applied to policy search by

Barash (1999); Chin and Jafari (1998); Gomez et al. (2006); Chang et al. (2007,

Chapter 3), and cross-entropy optimization was applied by Mannor et al. (2003).

Chang et al. (2007, Chapter 4) described an approach to find a policy by using the

so-called “model-reference adaptive search,” which is closely related to the cross-

entropy method. In Chapter 6 of this book, we will employ the cross-entropy method

to develop a policy search algorithm. A dedicated algorithm that optimizes the pa-

rameters and structure of neural network policy approximators was given by White-

son and Stone (2006). General policy modification heuristics were proposed by

Schmidhuber (2000).

In another class of model-based policy search approaches, near-optimal actions

are sought online, by executing at every time step a search over open-loop sequences

of actions (Hren and Munos, 2008). The controller selects a sequence leading to

a maximal estimated return and applies the first action in this sequence. Then, the

entire cycle repeats.14 The total number of open-loop action sequences grows expo-

nentially with the time horizon considered, but by limiting the search to promising

sequences only, such an approach can avoid incurring excessive computational costs.

14This is very similar to how model-predictive control works (Maciejowski, 2002; Camacho and Bor-

dons, 2004).
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Hren and Munos (2008) studied this method of limiting the computational cost in

a deterministic setting. In a stochastic setting, open-loop sequences are suboptimal.

However, some approaches exist to extend this open-loop philosophy to the stochas-

tic case. These approaches model the sequences of random transitions by scenario

trees (Birge and Louveaux, 1997; Dupacová et al., 2000) and optimize the actions

attached to the tree nodes (Defourny et al., 2008, 2009).

3.7.3 Example: Gradient-free policy search for a DC motor

In this example, approximate, gradient-free policy search is applied to the DC mo-

tor problem introduced in Section 3.4.5. In a first experiment, a general policy

parametrization is used that does not rely on prior knowledge, whereas in a second

experiment, a tailored policy parametrization is derived from prior knowledge. The

results obtained with these two parametrizations are compared.

To compute the score function (3.63), a set X0 of representative states and a

weight function w have to be selected. We aim to obtain a uniform performance

across the state space, so a regular grid of representative states is chosen:

X0 = {−π,−2π/3,−π/3, . . . ,π}×{−16π,−12π,−8π, . . . ,16π}

and these initial states are weighted uniformly by w(x0) = 1
|X0|

, where the number

of states is |X0| = 63. A maximum error εMC = 0.01 is imposed in the estimation of

the return. A bound on the reward function (3.28) for the DC motor problem can be

computed with:

‖ρ‖∞ = sup
x,u

∣∣−xT
k Qrewxk−Rrewu2

k

∣∣

=

∣∣∣∣−[π 16π]

[
5 0

0 0.01

][
π

16π

]
−0.01 ·102

∣∣∣∣

≈ 75.61

To find the trajectory length K required to achieve the precision εMC, the values of

εMC, ‖ρ‖∞, and γ = 0.95 are substituted into (3.65); this yields K = 233. Because the

problem is deterministic, simulating multiple trajectories from every initial state is

not necessary; instead, a single trajectory from every initial state will suffice.

We use the global, gradient-free pattern search algorithm to optimize the policy

(Torczon, 1997; Lewis and Torczon, 2000). The algorithm is considered convergent

when the score variation decreases below the threshold εPS = 0.01 (equal to εMC).15

Policy search with a general parametrization

Consider first the case in which no prior knowledge about the optimal policy is avail-

able, which means that a general policy parametrization must be used. The linear

15We use the pattern search algorithm from the Genetic Algorithm and Direct Search Toolbox of

MATLAB 7.4.0. The algorithm is configured to use the threshold εPS and to cache the score values for

the parameter vectors it already evaluated, in order to avoid recomputing them. Besides these changes, the

default settings of the algorithm are employed.
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policy parametrization (3.12) is chosen:

ĥ(x) =
N

∑
i=1

ϕi(x)ϑi = ϕT(x)ϑ

Axis-aligned, normalized RBFs (see Example 3.1) are defined, with their centers

arranged on an equidistant 7× 7 grid in the state space. All the RBFs are identical

in shape, and their width bd along each dimension d is equal to b′d
2/2, where b′d is

the distance between adjacent RBFs along that dimension (the grid step). Namely,

b′1 = 2π
7−1
≈ 1.05 and b′2 = 32π

7−1
≈ 16.76, which lead to b1 ≈ 0.55 and b2 ≈ 140.37.

In total, 49 parameters (for 7×7 RBFs) must be optimized.

Pattern search optimization is applied to find an optimal parameter vector ϑ ∗,
starting from an identically zero parameter vector. Figure 3.16 shows the policy ob-

tained and a representative trajectory that is controlled by this policy. The policy is

largely linear in the state variables (within the saturation limits), and leads to a good

convergence to the zero state.
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FIGURE 3.16

Results of policy search with the general policy parametrization for the DC motor.

In this experiment, the pattern search algorithm required 18173 s to converge.

This execution time is larger than for all other algorithms applied earlier to the

DC motor (grid Q-iteration and fitted Q-iteration in Section 3.4.5, and LSPI in Sec-

tion 3.5.7), illustrating the large computational demands of policy search with general

parametrizations.

Policy search spends the majority of its execution time estimating the score func-

tion (3.63), which is a computationally expensive operation. For this experiment, the

score of 11440 different parameter vectors had to be computed until convergence.

The computational cost of evaluating each parameter vector can be decreased by tak-

ing a smaller X0 or larger εMC and εPS, at the expense of a possible decrease in control

performance.
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Policy search with a tailored parametrization

In this second part of the example, we employ a simple policy parametrization that

is well suited to the DC motor problem. This parametrization is derived by using

prior knowledge. Because the system is linear and the reward function is quadratic,

the optimal policy would be a linear state feedback if the constraints on the state and

action variables were disregarded (Bertsekas, 2007, Section 3.2).16 Now taking into

account the constraints on the action, we assume that a good approximation of an

optimal policy is linear in the state variables, within the constraints on the action:

ĥ(x;ϑ) = sat{ϑ1x1 +ϑ2x2,−10,10} (3.66)

where “sat” denotes saturation. In fact, an examination of the near-optimal policy in

Figure 3.5(b) on page 67 reveals that this assumption is largely correct: the only non-

linearities appear in the top-left and bottom-right corners of the figure; they are prob-

ably due to the constraints on the state variables, which were not taken into account

when deriving the parametrization (3.66). We employ this tailored parametrization to

perform policy search. Note that only 2 parameters must be optimized, significantly

fewer than the 49 parameters required by the general parametrization used earlier.

Figure 3.17 shows the policy obtained by pattern search optimization, together

with a representative controlled trajectory. As expected, the policy closely resembles

the near-optimal policy of Figure 3.5(b), with the exception of the nonlinearities

in the corners of the state space. The trajectory obtained is also close to the near-

optimal one in Figure 3.5(c). Compared to the general-parametrization solution of

Figure 3.16, the policy varies more quickly in the linear portion, which results in a

more aggressive control signal. This is because the tailored parametrization can lead

to a large slope of the policy, whereas the wide RBFs used in Figure 3.16 lead to a

smoother interpolation. The score obtained by the policy of Figure 3.17 is −229.25,

slightly better than the score of−230.69 obtained by the RBF policy of Figure 3.16.

The execution time of pattern search with the tailored parametrization was ap-

proximately 75 s. As expected, the computational cost is much smaller than for the

general parametrization, because only 2 parameters must be optimized, instead of 49.

This illustrates the benefits of using a compact policy parametrization that is appro-

priate for the problem at hand. Unfortunately, deriving an appropriate parametriza-

tion requires prior knowledge, which is not always available. The execution time is

larger than that of grid Q-iteration in Section 3.4.5, which was 7.80 s for the fine grid

and 0.06 s for the coarse grid. It has the same order of magnitude as the execution

time of LSPI in Section 3.5.7, which was 23 s when using exact policy improvements,

and 58 s with approximate policy improvements; but it is smaller than the execution

16 This optimal linear state feedback is given by:

h(x) = Kx =−γ(γBTY B+Rrew)−1BTYAx

where Y is the stabilizing solution of the Riccati equation:

Y = AT[γY − γ2Y B(γBTY B+Rrew)−1BT]A+Qrew

Substituting A, B, Qrew, Rrew, and γ in these equations leads to a state feedback gain of K ≈
[−11.16,−0.67]T for the DC motor.
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time 2151 s of fitted Q-iteration. To enable an easy comparison of all these execution

times, they are collected in Table 3.1.17
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FIGURE 3.17

Results of policy search with the tailored policy parametrization (3.66) on the DC motor. The

policy parameter is ϑ̂∗ = [−16.69,−1]T.

TABLE 3.1

Execution time of approximate DP and RL algorithms for the DC motor problem.

Algorithm Execution time [s]

grid Q-iteration with a coarse grid 0.06
grid Q-iteration with a fine grid 7.80
fitted Q-iteration 2151
LSPI with exact policy improvement 23
LSPI with exact policy approximation 58
policy search with a general parametrization 18173
policy search with a tailored parametrization 75

17Recall that all these execution times were recorded on a PC with an Intel Core 2 Duo T9550 2.66 GHz

CPU and with 3 GB RAM.
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3.8 Comparison of approximate value iteration, policy iteration,

and policy search

This section provides a general, qualitative comparison of approximate value itera-

tion, approximate policy iteration, and approximate policy search. A more specific

comparison would of course depend on the particular algorithms considered and on

the problem at hand.

Approximate value iteration versus approximate policy iteration

Offline approximate policy iteration often converges in a small number of iterations,

possibly smaller than the number of iterations taken by offline approximate value it-

eration. This was illustrated for the DC motor example, in which LSPI (Section 3.5.7)

converged faster than grid Q-iteration (Section 3.4.5). However, this does not mean

that approximate policy iteration is computationally less demanding than approxi-

mate value iteration, since approximate policy evaluation is a difficult problem by

itself, which must be solved at every single policy iteration. One advantage of ap-

proximate value iteration is that it usually guarantees convergence to a unique solu-

tion, whereas approximate policy iteration is generally only guaranteed to converge

to a sequence of policies that all provide a guaranteed level of performance. This was

illustrated in Section 3.5.7, where LSPI with policy approximation converged to a

limit cycle.

Consider now the approximate policy evaluation step of policy iteration, in

comparison to approximate value iteration. Some approximate policy evaluation

algorithms closely parallel approximate value iteration and converge under similar

conditions (Section 3.5.1). However, approximate policy evaluation can addition-

ally benefit from the linearity of the Bellman equation for a policy’s value function,

e.g., (2.7), whereas the Bellman optimality equation, which characterizes the optimal

value function, e.g., (2.8), is highly nonlinear due to the maximization in the right-

hand side. A class of algorithms for approximate policy evaluation exploit this linear-

ity property by solving a projected form of the Bellman equation (Section 3.5.2). One

advantage of such algorithms is that they only require the approximator to be linearly

parameterized, whereas in approximate value iteration the approximator must lead to

contracting updates (Section 3.4.4). Moreover, some of these algorithms, such as

LSTD-Q and LSPE-Q, are highly sample-efficient. However, a disadvantage of these

algorithms is that their convergence guarantees typically require a sample distribu-

tion identical with the steady-state distribution under the policy being evaluated.

Approximate policy search versus approximate value iteration and policy

iteration

For some problems, deriving a good policy parametrization using prior knowledge

may be easier and more natural than deriving a good value function parametrization.

If a good policy parametrization is available and this parametrization is differentiable,
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policy gradient algorithms can be used (Section 3.7.1). Such algorithms are backed

by useful convergence guarantees and have moderate computational demands. Pol-

icy gradient algorithms have the disadvantage that they can only find local optima

in the class of parameterized policies considered, and may also suffer from slow

convergence.

Note that the difficulty of designing a good value function parametrization can be

alleviated either by automatically finding the parametric approximator (Section 3.6)

or by using nonparametric approximators. Both of these options require less tun-

ing than a predefined parametric approximator, but may increase the computational

demands of the algorithm.

Even when prior knowledge is not available and a good policy parametrization

cannot be obtained, approximate policy search can still be useful in its gradient-

free forms, which do not employ value functions (Section 3.7.2). One situation in

which value functions are undesirable is when value-function based algorithms fail

to obtain a good solution, or require too restrictive assumptions. In such situations, a

general policy parametrization can be defined, and a global, gradient-free optimiza-

tion technique can be used to search for optimal parameters. These techniques are

usually free from numerical problems – such as divergence to infinity – even when

used with general nonlinear parametrizations, which is not the case for value and pol-

icy iteration. However, because of its generality, this approach typically incurs large

computational costs.

3.9 Summary and discussion

In this chapter, we have introduced approximate dynamic programming (DP) and ap-

proximate reinforcement learning (RL) for large or continuous-space problems. After

explaining the need for approximation in such problems, parametric and nonparamet-

ric approximation architectures have been presented. Then, approximate versions for

the three main categories of algorithms have been described: value iteration, policy

iteration, and policy search. Theoretical results have been provided and the behavior

of representative algorithms has been illustrated using numerical examples. Addi-

tionally, techniques to automatically determine value function approximators have

been reviewed, and the three categories of algorithms have been compared. Exten-

sive accounts of approximate DP and RL, presented from different perspectives, can

also be found in the books of Bertsekas and Tsitsiklis (1996); Powell (2007); Chang

et al. (2007); Cao (2007).

Approximate DP/RL is a young, but active and rapidly expanding, field of re-

search. Important challenges still remain to be overcome in this field, some of which

are pointed out next.

When the problem considered is high-dimensional and prior knowledge is not

available, it is very difficult to design a good parametrization that does not lead to

excessive computational costs. An additional, related difficulty arises in the model-
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free (RL) setting, when only a limited amount of data is available. In this case,

if the approximator is too complex, the data may be insufficient to compute its

parameters. One alternative to designing the approximator in advance is to find a

good parametrization automatically, while another option is to exploit the powerful

framework of nonparametric approximators, which can also be viewed as deriving a

parametrization from the data. Adaptive and nonparametric approximators are often

studied in the context of value iteration and policy iteration (Sections 3.4.3, 3.5.3, and

3.6). In policy search, finding good approximators automatically is a comparatively

underexplored but promising idea.

Actions that take continuous values are important in many problems of practical

interest. For instance, in the context of automatic control, stabilizing a system around

an unstable equilibrium requires continuous actions to avoid chattering, which would

otherwise damage the system in the long run. However, in DP and RL, continuous-

action problems are more rarely studied than discrete-action problems. A major diffi-

culty of value iteration and policy iteration in the continuous-action case is that they

rely on solving many potentially difficult, nonconcave maximization problems over

the action variables (Section 3.2). Continuous actions are easier to handle in actor-

critic and policy search algorithms, in the sense that explicit maximization over the

action variables is not necessary.

Theoretical results about approximate value iteration traditionally rely on the

requirement of nonexpansive approximation. To satisfy this requirement, the ap-

proximators are often confined to restricted subclasses of linear parameterizations.

Analyzing approximate value iteration without assuming nonexpansiveness can be

very beneficial, e.g., by allowing powerful nonlinearly parameterized approximators,

which may alleviate the difficulties of designing a good parametrization in advance.

The work on finite-sample performance guarantees, outlined in Section 3.4.4, pro-

vides encouraging results in this direction.

In the context of approximate policy iteration, least-squares techniques for policy

evaluation are very promising, owing to their sample efficiency and ease of tuning.

However, currently available performance guarantees for these algorithms require

that they process relatively many samples generated using a fixed policy. From a

learning perspective, it would be very useful to analyze how these techniques behave

in online, optimistic policy iteration, in which the policy is not kept fixed for a long

time, but is improved once every few samples. Promising empirical results have been

reported using such algorithms, but their theoretical understanding is still limited (see

Section 3.5.6).

The material in this chapter provides a broad understanding of approximate value

iteration, policy iteration, and policy search. In order to deepen and strengthen this

understanding, in each of the upcoming three chapters we treat in detail a particular

algorithm from one of these three classes. Namely, in Chapter 4, a model-based value

iteration algorithm with fuzzy approximation is introduced, theoretically analyzed,

and experimentally evaluated. The theoretical analysis illustrates how convergence

and consistency guarantees can be developed for approximate DP. In Chapter 5,

least-squares policy iteration is revisited, and several extensions to this algorithm

are introduced and empirically studied. In particular, an online variant is devel-
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oped, and some important issues that appear in online RL are emphasized along

the way. In Chapter 6, a policy search approach relying on the gradient-free cross-

entropy method for optimization is described and experimentally evaluated. This

approach highlights one possibility for developing techniques that scale better to

high-dimensional state spaces, by focusing the computation only on important initial

states.
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Bertsekas, D. P. and Castañon, D. A. (1989). Adaptive aggregation methods for

infinite horizon dynamic programming. IEEE Transactions on Automatic Control,

34(6):589–598.

Bertsekas, D. P. and Ioffe, S. (1996). Temporal differences-based policy itera-

tion and applications in neuro-dynamic programming. Technical Report LIDS-

P-2349, Massachusetts Institute of Technology, Cambridge, US. Available at

http://web.mit.edu/dimitrib/www/Tempdif.pdf.

Bertsekas, D. P. and Shreve, S. E. (1978). Stochastic Optimal Control: The Discrete

Time Case. Academic Press.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena

Scientific.



Bibliography 237

Bertsekas, D. P. and Yu, H. (2009). Basis function adaptation methods for cost ap-

proximation in MDP. In Proceedings 2009 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL-09), pages 74–81,

Nashville, US.

Bethke, B., How, J., and Ozdaglar, A. (2008). Approximate dynamic programming

using support vector regression. In Proceedings 47th IEEE Conference on Deci-

sion and Control (CDC-08), pages 3811–3816, Cancun, Mexico.

Bhatnagar, S., Sutton, R., Ghavamzadeh, M., and Lee, M. (2009). Natural actor-critic

algorithms. Automatica, 45(11):2471–2482.

Birge, J. R. and Louveaux, F. (1997). Introduction to Stochastic Programming.

Springer.

Borkar, V. (2005). An actor-critic algorithm for constrained Markov decision pro-

cesses. Systems & Control Letters, 54(3):207–213.

Boubezoul, A., Paris, S., and Ouladsine, M. (2008). Application of the cross entropy

method to the GLVQ algorithm. Pattern Recognition, 41(10):3173–3178.

Boyan, J. (2002). Technical update: Least-squares temporal difference learning. Ma-

chine Learning, 49:233–246.

Bradtke, S. J. and Barto, A. G. (1996). Linear least-squares algorithms for temporal

difference learning. Machine Learning, 22(1–3):33–57.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. (1984). Classification and

Regression Trees. Wadsworth International.

Brown, M. and Harris, C. (1994). Neurofuzzy Adaptive Modeling and Control. Pren-

tice Hall.

Bubeck, S., Munos, R., Stoltz, G., and Szepesvári, C. (2009). Online optimization
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Matarić, M. J. (1997). Reinforcement learning in the multi-robot domain. Au-

tonomous Robots, 4(1):73–83.



Bibliography 245

Mathenya, M. E., Resnic, F. S., Arora, N., and Ohno-Machado, L. (2007). Ef-

fects of SVM parameter optimization on discrimination and calibration for post-

procedural PCI mortality. Journal of Biomedical Informatics, 40(6):688–697.

Melo, F. S., Meyn, S. P., and Ribeiro, M. I. (2008). An analysis of reinforcement

learning with function approximation. In Proceedings 25th International Confer-

ence on Machine Learning (ICML-08), pages 664–671, Helsinki, Finland.

Menache, I., Mannor, S., and Shimkin, N. (2005). Basis function adaptation in

temporal difference reinforcement learning. Annals of Operations Research,

134(1):215–238.

Millán, J. d. R., Posenato, D., and Dedieu, E. (2002). Continuous-action Q-learning.

Machine Learning, 49(2–3):247–265.

Moore, A. W. and Atkeson, C. R. (1995). The parti-game algorithm for variable res-

olution reinforcement learning in multidimensional state-spaces. Machine Learn-

ing, 21(3):199–233.

Morris, C. (1982). Natural exponential families with quadratic variance functions.

Annals of Statistics, 10(1):65–80.

Munos, R. (1997). Finite-element methods with local triangulation refinement for

continuous reinforcement learning problems. In Proceedings 9th European Con-

ference on Machine Learning (ECML-97), volume 1224 of Lecture Notes in Arti-

ficial Intelligence, pages 170–182, Prague, Czech Republic.

Munos, R. (2006). Policy gradient in continuous time. Journal of Machine Learning

Research, 7:771–791.

Munos, R. and Moore, A. (2002). Variable-resolution discretization in optimal con-

trol. Machine Learning, 49(2–3):291–323.
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