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Overall theme

Al-based control of complex systems

Complexity: general nonlinearity, stochastic dynamics,
unknown behavior, distributed structure . ..

Applications: robotics, control, medicine, ...
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Setting: Deterministic Markov decision process

Reward function

action u

@ At step k, controller measures states x, applies actions u
@ System: dynamics xx 1 = f(Xk, Uk)

@ Performance: reward function re1 = p(x, Uk)

@ Obijective: apply actions so as to maximize return

2 :x k
~/ r
k=0 ! k+1

with discount factor v € (0, 1) up
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Example: Domestic robot

Domestic robot ensures light switches are off
Abstractization to high-level control (physical actions
implemented by low-level controllers)

@ States: grid coordinates, switch states
@ Actions: movements NSEW, toggling switch
@ Rewards: when switches toggled on—off up
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Example: Robot arm

Low-level control
@ States: link angles and angular velocities

@ Actions: motor voltages

@ Rewards: e.g. to reach a desired state,
minus the squared distance to that state

u
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Example: Power-assisted wheelchair (Autonomad,
T.M. Guerra, G. Feng)

@ Hybrid power source: human and battery
@ Objective: perform driving task, optimizing assistance to:
(i) attain desired user fatigue level
(i) minimize battery usage
@ Challenge: unknown human dynamics in the loop [ [)
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Online planning idea

At each step, use a model to solve problem locally:

1. Explore action sequences from current state,
to find a near-optimal sequence

2. Apply first action of this sequence, and repeat

@ A type of receding-horizon model-predictive control
@ Extension of classical planning/tree search (A*, B*, AO*)

u
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Advantages of OP

@ Near-optimality guarantees depending on
computation n and complexity x of the problem:

error = O(function(n, ))

@ ...for general nonlinear dynamics and rewards
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Talk structure

Online, optimistic planning (OP) in:

@ Single-agent problems
e algorithm
e analysis
e application to switched systems

@ Adversarial, two-agent problems
e algorithm
e analysis
e application to dual switched systems
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Setting

Assumptions
e Finite, discrete action space U = {u',...,uM}
@ Bounded reward function p(x, u) € [0,1],Vx, u

Denote current step by 0 (by convention). Then:
@ Infinite action sequences: U, = (Up, U1,...)
@ Solve v* = sup,_ V(Us) := > 7" 0 V11
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Setting: Values

@ Finite sequence uy = (U, ..., Ug_1) ¥y

o ((ug) = X923 v*p(xk, uk), lower bound
on returns of U, starting with uy

@ b(uy) = l(ug) + % diameter @)
optimistic upper bound on the returns r

° V(ud) = SUPy, st w. uy V(UOO)
value of applying uy and then acting optimally
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Tree structure

@ Each tree node has the meaning of state

@ One child for each action,
each transition associated with a reward
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Optimistic planning for deterministic systems (OPD)

initialize empty sequence ug
for t=1tondo
select optimistic leaf sequence u], maximizing b
expand u]: children for all actions, setting ¢ and b
end for
return uy; maximizing ¢, and maximal ¢, b*
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Relation to reinforcement learning

RL solves MDPs without using a model, by learning

A deeper relation:

At one state, RL exploration modeled as multi-armed bandit:
@ Discrete actions = arms with unknown, stochastic rewards

@ Pull arms to learn, so that after n pulls,
the optimal arm has been pulled the most
@ Good idea: optimism in the face of uncertainty
— pull arm with best upper confidence bounds W
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Relation to reinforcement learning (cont'd)

@ In OP, the model is known, but the optimal sequence is not,
because rewards only known up to depth d

@ Sample transitions, so that after n expansions,
sequence is close to optimal

@ Optimism in the face of uncertainty: assume maximal
rewards of 1 beyond depth d
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Example: Inverted pendulum

mass

@ x = [angle a, velocity &] "

@ u =voltage

@ p(x,u)=—x"Qx - u'Ru,
normalized to [0, 1]

@ Discount factor v = 0.98

@ Objective: stabilize pointing up
@ Insufficient torque = swing-up required



Example: Real-time demo

Swingup in simulation: Real-time demo:
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Near-optimality vs. depth

Theorem

@ OPD returns a sequence u3 so that v(u?)
and the optimal value v* are both in [¢*, b*]

© The near-optimality gap b* — ¢* < {Yjv
where d* is the deepest expanded
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Case 1: All paths optimal

Take a tree where all rewards are 1:

b(ug) = 115, Yuy = OPD expands uniformly, breadth-first
So to expand all nodes down to depth d, we must spend:

n_ZM’ Md+1_1

and the depth grows slowly with budget n up
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Case 2: One path optimal

Take a tree where rewards are 1 only along a single path (thick
line), and 0 everywhere else:

b(uy) = %7 only on optimal path, % elsewhere
= OPD expands only the optimal path

So to expand down to depth d, we must spend only n = d, and
the depth grows fast with n w
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General case: Branching factor

@ Algorithm only expands in near-optimal subtree:

~d
* * <
T {ud v —v(ug) < ] _7}

@ Define k € [1, M] = asymptotic branching factor of 7*:
problem complexity measure

Eg. k=2, M=3:
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Depth vs. budget n

To reach depth d in tree with branching factor «,
we must expand n = O(x%) nodes

log n
log k

= d =Q
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Final guarantee: Near-optimality vs. budget

Theorem
© The near-optimality gap is:

a* _log1/~ .
o {O(n s ) if k> 1

1—7 o(~") if k=1

@ Generality paid by exponential computation n = O(x)
@ But x can be small in interesting problems!
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Setting

@ Switched system xy ¢ = f(xk, Ux),
where now u has the meaning of mode

@ Stage cost g(xk, uk)
@ Cost function of infinite mode sequence:

ZV (Xk, Uk)

with discount factor v € (0,1)
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Motivation

Open challenge
@ Optimal control of nonlinear switched systems

Optimistic planning offers:
@ General nonlinear modes
@ Sequence design
@ Certification bounds
...but without stability guarantees
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Problem statement

@ Optimal control, PO: Find J = infy_ J(Ux)
and corresponding sequence

@ Worst-case switches, PW: Find J = sup,_ J(Ux)
and corresponding sequence

Assumption
Bounded stage costs g(x, u) € [0,1],Vx, u
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Direct application of OP

To solve PO, take rewards p =1 — g
To solve PW, take rewards p = g

Corollary
©Q In PO, cost of sequence returned and optimal cost J are in

log1/y

[11V —b*,f—ﬁ*] and the gap is O(n ee= ).

© In PW, cost of sequence returned and worst-case cost J
log1/~y

are in [¢*, b*], and the gap is O(n~ Tes= ).
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Inverted pendulum simulation

Zero action replaced by PD control mode:
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Minimum dwell time

@ Minimum dwell time § (number of steps between
switches) often required due to e.g. fundamental
properties, practical actuator limitations

= Only explore sequences ensuring dwell time §




Algorithm: OP¢

initialize ug
for i = 1 to computational budget n do
select optimistic leaf sequence uL, maximizing b
expand u':
if last mode in uL was active < ¢§ steps then
create single child, continuing same action
else
create all children
end if
end for
return uy; maximizing ¢, and maximal ¢, b*
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Near-optimality vs. depth

Notation: subscript 6 = constrained to obey the dwell time

Theorem
@ OPy returns a sequence u}; so that v;(uy) and v;
are both in [¢*, b*]

@ Near-optimality gap b* — ¢* < %
where d* is the deepest expanded
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Complexity measure

@ Algorithm only expands in constrained near-optimal
subtree:

. d
T = {Ud constrained | vi — v5(uy) < ﬂj}

@ Define K € [1, M¢] = the smallest number so that
755 = O(K);
problem complexity measure

@ Problem is simpler when K is smaller; intuitive meaning
less clear than branching factor x
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Near-optimality vs. budget

To reach depth d, we expand n = O(K9/%) nodes

= largest depth d* = Q(dl'ggg,’})

Theorem (cont’d)
© Near-optimality gap is:

b* —¢* < =
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Comparison between OP¢§ and OP

@ Take largest values of K = Mo, k = M
(most difficult problem)
_6Iog1/~/ _log1/~
= Gaps are O(n "TgM ) and O(n~ TaM )
o Since 07771 > %L OPS converges faster;
due to OP¢ exploring smaller, constrained tree

@ However, the relationship will vary with the problem
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Solving PO and PW with dwell time

Corollary
© In PO, cost of sequence returned and optimal cost J; are
in [1 — — b, 1 — — ¢*], and the gap is O(n_(;lo'gﬁ;g).
@ In PW, cost of sequence returned alngq/worst-case cost Js
i

are in [¢*, b*], and the gap is O(n ook ).
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Adversarial problems



e Algorithm: Optimistic minimax search

Q@ Analysis
e Application to dual switched systems

Q Outlook
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Adversarial problem

@ Look for “our” actions u that maximize return
assuming opponent takes actions w to minimize it

@ Two-player competitive games, robust control, etc.
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Setting

@ Maximizer & minimizer agents,
with actions u € Uand w € W; |U| = My, |W| = My

@ They alternately take an infinite sequence of actions:
(U, wo, Uy, wy,...) = (20,21,22,...) = 2o

@ Dynamics x4.1 = f(Xg4, Zg), rewards p(xy, Z4)
@ Finite sequence zy = (29,...,29_1)
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Objective

Infinite-horizon value of sequence z.:
o0
V(Zso) =Y ¥ p(Xa: Zd).
d=0
Objective: discounted minimax-optimal solution:

v :=maxmin---maxmin--- Vv(Z)
Up Wo Uy Wy
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Setting: Assumptions

Assumptions
@ Both agents have discrete actions
@ The rewards p(x,z) arein [0, 1] forallx e X,ze UU W.

= lower & upper bounds on all sequences z, starting with z,:
=1 d
Uzq) = 50 Vo5 2),  b(zg) = za) + 75

d .
where ﬂj is the diameter, as before
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Optimistic minimax search

OMS expands tree of possible minmax sequences,
using lower and upper bounds on node values

0 )L75.1.5]

[0,1] [75,1.5]

() (n
[ 1.5] [ 1.5] [ 2]

1.5]

1,00 [-51.28] 10,1y

Application of classical, best-first B* search
to infinite-horizon problems
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Optimistic minimax search (cont’d)

d systems

fort=1,...,ndo
propagate lower & upper bounds L, B at each node:
1(z) — 0(2), . if Z Iea1'c
max / Ming cenilgren(z) L(2'), otherwise
B(z) — b(z), ' if z Ieaf
max / Ming cchilgren(z) B(2'), otherwise

choose node to expand: z < root, and while not leaf:
4. Jag mfaxz/ech”dren(z) B(Z'), ?f z mlax node
arg Min, cepiigren(z) L(2'),  if Z min node

expand z
end for
output a maximum-depth expanded node z* (]
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Example: HIV treatment

@ 6 states:

T1, T> — healthy target cells per ml (types 1 & 2)
T}, T} —infected target cells per ml (types 1 & 2)
V' —free virus copies per ml
E —immune response cells per mi

@ M, = 2 actions u4, uo: application of RTIl and PI drugs
Unpredictable drug effectiveness among M,, = 2 levels

Goal: Starting from high level of infection xg,
optimally switch drugs on and off to:

@ maximize immune response
@ minimize virus load
© minimize drug use
r= CEE — C\/V*C1€1 — Coé€o



HIV: OMS results

Effectiveness conservatively treated as opponent
Budget of n = 4000 node expansions
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Infection eventually controlled without drugs
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Near-optimality vs. diameter

For finite sequence z, let v(z) be the minimax-optimal value
among sequences starting with z

@ If d* is the largest depth expanded, the solution z*
returned by OMS satisfies:

~y9"

1—7v

Vi —v(z") <
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Explored tree

@ Algorithm only expands nodes in the subtree:

d
T*:={zq4 ‘ v —v(Z)| < %,VZ' on path from root to z4}

@ Intuition: From the information available down to node z4

(interval of values of width %), cannot decide whether the
node is (not) optimal. So it must be explored.
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Example where the full tree is explored

@ All rewards equal to 1, v* = ﬁ

@ All solutions have value v*, so 7* is the full tree
® |7;| = (MyM,)9/3, branching factor k = /MM,
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General case: Branching factor

@ Letk € [1,vMyM,]| = asymptotic branching factor of 7*
@ Problem simpler when « smaller
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Depth vs. budget n

To reach depth d in tree with branching factor «,
we must expand n = O(x%) nodes

log n
log k

= d =Q
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Final guarantee: Near-optimality vs. budget

Theorem
@ Given budget n, we have:

. log 1/
7 {O(n_ ,?,gj) if v > 1

v —v(Z")| < =
| ( )|_1_’Y o(~") if k=1

@ Faster convergence when x smaller (simpler problem)
@ Exponential convergence when x = 1
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Setting

@ Actions u, w now have the meaning of switching signals,
u controlled, w uncontrolled: dual switched system

@ Signals respectively obey minimum dwell times §,, dy
@ Notation: subscript § = constrained to obey dwell times

@ If §, = oy = 1, problem reduces to standard min-max and
OMS directly applies
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OMS/ for dual switched systems

OMSé algorithm: mostly the same as OMS,
but when node does not satisfy dwell time condition,
only the child keeping the action constant is created

Example constrained tree for 6, = d,, = 2:

depth 0 2/2
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Switched control over delayed network

| Min Agent w |

Delay w _>| Plant |_

Network communication

4| Max Agent u I{—

Control u

@ Max action = controlled “mode”
e.g. constant action or low-level controller

@ Min action = network delay (multiple of sampling time)
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Quanser rotational pendulum

System:

@ x =rod angle «, base angle 6,
angular velocities

@ input w = voltage
@ Sampling time T, = 0.04

Goal: swing up & stabilize pointing up:
@ Reward —x"Qx — w'Ruw,
normalized to [0, 1]
@ Discount factor v = v/0.95
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Results

@ M, = 3: #1 constant -6V, #3 constant 6V,
#2 a stabilizing mode w = Kx computed with LQR

@ M, =2: 0 or 1-step delay

o T
= opf A e
g 10 rzl[raa]l
o'[rad's]
10§ 1 2 2 4 5 5 7
® 0| .
P W
6 [rad]
#[rad’s]
10
3 1 2 3 4 5 g 7
o
=1
1 .
19 1 2 4 5 7 8
. 0_95}_/\ / {
09
0 1 8
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Similar to OMS
@ If d* is the largest depth expanded, the solution Z returned
by OMS/ satisfies:
o~ d*
vi —vs(2)] < T
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Complexity measure

Different from OMS, generalizes OP¢

@ At depth d, algorithm only expands in the subtree:
T4 := {24 | 24 obeys dwell time conditions ,

d
lvs — vs(2)] < 1W vz’ on path from root to z4 }

p— ’y,
@ Let 0 = min{oy, dw}, M = max{M,, My }. Define
K € [1,0M] the smallest positive number so that

T3] = O(k¥)
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Theorem
@ Given budget n, we have:

_slog1/y

o(n "k ) if K > 1
0(v°") if K =1

lvs —vs(2)| < {
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Comparison between OMSé and OMS

@ Just like in the single-agent case, when exploring the full
trees, OMSo converges faster than OMS, since its
constrained tree is smaller

@ However, the relationship will vary with the problem
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Summary

@ Optimistic planning for general nonlinear systems,
with performance guarantees

@ Natural application to switched systems

Outlook
@ Combination with learning
@ Continuous and hybrid actions
@ Stochastic uncontrolled mode w
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Stochastic-case planner for partially-observable MDPs

robot initial pose

@ Domestic robot makes sure all switches are off

@ NSEW actions change position on grid,
f1ip action succeeds stochastically

@ Switch states observed incorrectly with certain probas
@ Low-level SLAM and control u
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