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Abstract — Power-assisted wheelchairs (PWA) is an important 

growing market. The goal is to provide electrical assistive kits that 
are able to cope with a large family of disabled people and to equip 
a large variety of wheelchairs. This work is made in collaboration 
with Autonomad Mobility, a company that designs the hardware 
and sells Power-Assistance kits for wheelchairs. The main issues 
are: how to assist any Person with Reduced Mobility (PRM)? How 
to detect her/his intentions? How to cope with highly reduced 
information? Effectively, due first to the variety of wheelchairs 
and second to the different unknown PRM characteristics (mass, 
height, force…) and pathologies, it is unrealistic to think to a 
solution using a precise modelling, i.e. wheelchair + PRM + ground 
conditions. Moreover, proposing a safe and secure solution is of 
course mandatory, but to go on-the-market, the solution has also 
to be smooth and natural (friendly) for the end-user. Estimation of 
the human torques is a first key point of the problem that has been 
already worked out in [15]-[16]. This work proposes to use this 
result combined with a robust control law under saturation 
constraints. The constraints are mandatory due to regulations on 
maximum authorized speed. From a control point of view, it 
resumes to an output feedback control with partially unknown 
references (desired speed, direction), unknown parameters 
(wheelchair and PRM masses, available force, ground 
characteristics) and input constraints; a class of problem from 
which there is no direct solutions. The design of the solution uses a 
quasi Linear Parameter Varying (q-LPV) formulation and follows 
a 2-steps procedure: design of the observer and proposition of a 
robust control under parameter variations and input saturations. 
The proposal uses several LMI (Linear Matrix Inequality) 
constraints problems that can be efficiently solved. Simulations 
and real-time experiments are proposed to show the effectiveness 
of the solution. 
 

Index Terms—Power-assisted wheelchairs, assistive control, 
robust torque control, Lyapunov method. 

I. INTRODUCTION 

According to the 2011 world report of the World Health 
Organization (WHO) [1], “About 15% of the world's population 
lives with some form of disability, of whom 2-4% experience 
significant difficulties in functioning”. Therefore, there is a high 
potential in research and development in this area. One of them 
is the general mobility of Person with Reduced Mobility (PRM) 
from which wheelchairs are important devices. In between, full 
electrical solutions [4] and purely manual wheelchairs [5], there 
is an important sector concerned with Power-Assisted 
Wheelchairs (PAW) [2]-[3]. They have a crucial role, in the 
sense that: electrical solutions imply a full loss of physical 
exercise of the PRM (detrimental for heart disease), whereas 
manual wheelchairs cause upper joint problems, and are not 
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recommended for aging people or degenerative diseases. 
Several PAWs are available on-the-market, amongst which the 
motorization kits Duo [6] designed by AutoNomad Mobility, 
Wheeldrive [7] from Sunrise Medical and Smartdrive [8] 
proposed by MAX Mobility.  

The manual and electrical wheelchairs are adapted to one 
particular PRM (generally the settings are made with the help 
of a physiotherapist) and her/his pathology. Moreover, for 
electrical wheelchair, there is no real difficulty to design the 
control. In the case of assistance kits, the problem is much more 
challenging. Effectively, the assistance strategy has to detect 
the intentions of the PRM (desired speed, level of assistance 
required) and to provide a real-time assistance safe, secure and 
friendly. To resume the challenge, a good assistance kit should 
be “wheelchair-independent and PRM-independent”. None of 
the actual available PAW kits on-the-market are able to answer 
this challenge. Generally, the strategies are simplistic, i.e. 
current power-assisted wheelchairs on the market just assist 
with a power through the hand rims more or less proportional 
to the human measured torque, leaving much to be improved 
[10]-[12]. Let us review the existing strategies. Most of the 
proposals need to measure the human torque, generally via a 
push-rim sensor. It is the case for [9] where a push rim-activated 
power-assisted wheelchair (PAPAW) measures the human 
torques and interacts with the PRM via a device. As a result, the 
PAPAW considerably reduces the strain on the upper arm 
compared with manual wheelchairs. Instead of measuring 
human torques, an electromyogram sensor has been used in [10] 
associated with a disturbance observer to estimate the drivers’ 
intention. 

The assistance kits designed by the Autonomad Mobility 
company do not require sensors to measure the human torque, 
that reduces the cost of the kit in a significant way. They have 
been replaced with an Unknown-Input-Observer in the form of 
a PI-observer. It can be designed in the time domain [16] or in 
the angular domain corresponding to a Time-Varying Sampling 
[15]. These previous results show the potential of the approach 
for a particular user and a fixed ground condition. The challenge 
faced in this work is how to go from these initial results “one-
user, fixed conditions” to a solution that would be the most 
possible “wheelchair-independent and PRM-independent”. 
Moreover, the solution has also to face two other important 
issues: varying ground conditions and input saturations. 
Remember also that the strategy has to “understand” and 
include the user’s intention. Figure 1 summarizes the general 
framework. The user acts as a controller that perceives the 
environment to generate control signals (human torques 𝑢ℎ). 
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The user gets information about the surrounding environment 
and her/his own state of fatigue to take a decision. The future 
trajectory of the PAW is derived from this information. 

 

 
 

Figure 1. Human-in-the-loop power-assistance framework 

To achieve these objectives, they have to be transformed into 
a control framework. Three main steps are necessary, presented 
Figure 2: 
1. Robust human torque estimation 𝑢ො௛ whatever the pushing 

features are; this step is achieved via a PI-Observer [15]-
[16], it delivers the estimated speed and rotation of the 

wheelchair [𝜔ෝ௞ 𝜑ො௞]்; 
2. A reference trajectory generation, in order to transform the 

perceived intentions of the user into signals workable by 
the control [𝜔௥௘௙ 𝜑௥௘௙]்; 

3. A robust observer-based tracking controller design. The 
design has to integrate the uncertainties coming from: the 
human torque estimation, the measurements (environment 
conditions), the unknown model parameters (PRM and 
wheelchair masses, friction…) and the non-modelled 
dynamics (casters wheels). Moreover, due to regulations, 
the maximum speed of the wheelchair is constrained, 
therefore the robust control has also to take into account the 
actuator saturation. Finally, the overall strategy, not only 
must be safe and secure, but also friendly to convince the 
potential end-users. 

 
Figure 2. Assistive control loop. 

Parts of the observer design and the reference generation 
have been respectively addressed in our previous works [15]-
[16]. Mainly, the idea is not to use the amplitude of the signals 
estimated, due to the uncertainties they cannot be enough 
accurate, but to use the estimation of their frequency. This 
estimation is perfectly accurate to detect the user’s intentions, 
as shown in [15]. The present work focuses on the third point 
mainly, which represents for robust control a class of problem 

without a direct solution. In order to derive a solution, the quasi 
Linear Parameter Varying (q-LPV) framework [17] has been 
used via descriptor models and a 2-step procedure. LMI 
constraints (Linear Matrix Inequality) problems have been 
derived for each step and a general proof of the global closed-
loop stability is provided. 

This paper is organized as follows. Section II presents the 
mechanical modelling of the wheelchair. Section III recalls 
briefly our previous works for the PI-observer and the reference 
generation designs. Section IV introduces the conditions to 
design a robust observer-based tracking controller under 
actuator saturations. Sections V and VI respectively provide 
validations of the proposed control in simulation and in real-
time. Section VII gives the conclusions. 

 

 

II. MODELLING 

As explained in the introduction, a precise modelling is 
unrealistic, therefore; the wheelchair is just considered as a two-
wheeled transporter. The physical parameters of the wheelchair 
used for the experiments are given Table I.  

 
Figure 3. Simplified top view of the wheelchair 

The two-wheeled PAW in Figure 3 is described by the 
dynamics [19]: 

 𝛂𝛉̇ோ + 𝛃𝛉̇௅ = 𝑇௠௥ + 𝑇ℎ௥ − 𝒦𝛉ோ 
𝛂𝛉̇௅ + 𝛃𝛉̇ோ = 𝑇௠௟ + 𝑇ℎ௟ − 𝒦𝛉௅   (1) 
where 

TABLE I 
SYSTEM PARAMETERS 

Symbol Description Value 

  Wheel radius [m] 0.33 

b   Distance between two wheels [m]  

d   Distance between the point a and the point c [m] 0.6 

c   Centre of gravity of the wheelchair with the 
human 

- 
 

a   Middle point between two wheels - 

om   Nominal mass of wheelchair including the human 
[kg] 

100 

oK   Nominal viscous friction coefficient [ N m s  ] 5 

aI   Inertia of the wheelchair with respect to the 

vertical axis through the point a [ 2kg m ] 

16 

0I   Inertia of each driving wheel around the wheel axis  

[ 2kg m ] 

0.25 

eT  Sampling time [s] 0.05 
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The propulsion consists in the human torques 𝑇ℎ௥ , 𝑇ℎ௟  and the 
motors torques 𝑇௠௥ , 𝑇௠௟ . The left angular velocity and the right 
angular velocity are respectively 𝛉௅  and 𝛉ோ. 𝜔 is the center of 
gravity velocity and 𝜑 the yaw velocity. They are the variables 
naturally and implicitly controlled by the user for her/his 
displacements; and directly: 

 ቂ
𝜔
𝜑ቃ = ൥

చ

ଶ

చ

ଶ
చ

௕
−

చ

௕

൩ ൤
𝛉ோ

𝛉௅
൨  (3) 

Considering the sampling time 𝑠 = 50𝑚𝑠, imposed by the 
company hardware, 𝑘 a sample, and 𝑥 = [𝜔 𝜑 ]் the state 
vector, using Euler’s approximation 𝑥̇(𝑡) ≈ (𝑥௞ାଵ − 𝑥௞)/𝑠, a 
discrete-time descriptor form is obtained. When there is no 
ambiguity the sample 𝑘 is omitted and 𝑥ା stands for 𝑥௞ାଵ: 

 𝐸(𝑚)𝑥ା = 𝐴(𝑚, 𝒦)𝑥 + 𝐵𝑢ℎ + 𝐵sat(𝑢௠) 
𝑦 = 𝐶𝑥  (4) 

with 𝑦 = ൤
𝛉ோ

𝛉௅
൨ and 𝑢ℎ = ൤

𝑇ℎ௥

𝑇ℎ௟
൨, 𝑢௠ = ൤

𝑇௠௥

𝑇௠௟
൨ respectively the 

human and motor torques. Due to regulations 𝑢௠ has to be 
bounded with a saturation function sat(⋅) corresponding to:  

 sat൫𝑢௠(⋅)൯ = sign൫𝑢௠(⋅)൯ 𝑚𝑖𝑛൫ห𝑢௠(⋅)ห, 𝑢௠௔௫(⋅)൯ , (⋅) =

{𝑙, 𝑟}  (5) 
With 𝑢௠௔௫(⋅) the maximum motor torque. Considering that the 
motors deliver the same maximum torque for both the positive 
and the negative directions, (5) uses a symmetric saturation 
function. Both the mass 𝑚 and the viscous friction coefficient 
𝒦 are uncertain, possibly time varying. They are supposed 
bounded in a fixed interval: 

  𝑚̱ ≤ 𝑚 ≤ 𝑚̄; 𝒦̱ ≤ 𝒦 ≤ 𝒦ሜ   (6) 
The corresponding matrices of (4) are:  

𝐴(𝑚, 𝒦) = ൤
𝛂 − 𝑇௘𝒦 𝛃

𝛃 𝛂 − 𝑇௘𝒦
൨ ൤

𝜍/2 𝜍/2
𝜍/𝑏 −𝜍/𝑏

൨, 𝐵 = 𝑇௘𝐼ଶ, 

𝐸(𝑚) = ൤
𝛂 𝛃
𝛃 𝛂

൨ ൤
𝜍/2 𝜍/2
𝜍/𝑏 −𝜍/𝑏

൨, 𝐶 = ൤
1/𝜍 𝑏/(2𝜍)

1/𝜍 −𝑏/(2𝜍)
൨. 

 
The mechanical model (4) is voluntarily simple. Extra 

information or modelling would require either specific 
knowledge, or extra sensors, or identification procedures that 
are not compatible with a mass production of PAW kits. The 
non-modelled dynamics such the casters wheels or the 
variations of road friction conditions do change the behavior of 
the wheelchair; therefore, the expectation is that (4) is enough 
to capture the main behavior for robust motion control design. 

III. PRELIMINARY RESULTS 

This section recalls quickly our previous results on the 
observer and the reference generation [15]-[16] and their 
extensions to the present work. 

A. Observer design 

Obviously, the uncertain parameters 𝑚 and 𝒦 are not 
measured; therefore, the state estimation is based solely on the 
nominal parameters 𝑚௢ and 𝒦௢ with their corresponding 
matrices 𝐸௢ = 𝐸(𝑚଴) and 𝐴௢ = 𝐴(𝑚଴, 𝒦଴). A PI-observer 
(acting as an Unknown Input Observer) design has been 

proposed and validated in [16] only for the nominal case, i.e. 
without uncertainties. In this study, a similar observer design 
procedure is applied to estimate the state vector and the 
unknown input for the uncertain case (4). Of course, taking into 
account the uncertainties of (4) is of major importance to be 
able to deal with an observer-based control that guarantees 
stability and performances whatever is the mass and the ground 
friction according to the prescribed bounds (6). The proposed 
Luenberger-type PI-observer is as follows: 

 ቐ

𝐸௢𝑥ොା = 𝐴௢𝑥ො + 𝐵sat(𝑢௠) + 𝐵𝑢ොℎ + 𝐾௫(𝑦 − 𝑦ො)

𝑢ොℎ
ା = Γ𝑢ොℎ + 𝐾௨ℎ

(𝑦 − 𝑦ො)

𝑦ො = 𝐶𝑥ො

  (7) 

𝑥ො is the estimation of the state vector 𝑥; as there is no torque 
sensor, the second row represents the PI part of the observer 
with 𝑢ොℎ the estimation of the non-measured human input 𝑢ℎ. To 
capture the dynamics of the human input torques 𝑢ℎ, 
considering the motion of the input signals, Γ has been chosen 
as a double integrator for each torque. The observer gains 𝐾௫ 
and 𝐾௨ℎ

 design follows a LMI constraints problem [16]. With 
the uncertain system dynamic (4) and the state observer (7), the 
state estimation error writes: 

(𝐸(𝑚) − 𝐸௢)𝑥ା + 𝐸଴𝑒௫
ା = (𝐴(𝑚, 𝒦) − 𝐴௢)𝑥 

          +(𝐴௢ − 𝐾௫𝐶)𝑒௫ + 𝐵[𝑢ℎ − 𝑢ොℎ]  (8) 
where the estimation error is: 

 𝑒௫ = 𝑥 − 𝑥ො  (9) 
Extra terms (𝐸(𝑚) − 𝐸௢)𝑥ା and (𝐴(𝑚, 𝒦) − 𝐴௢)𝑥 appear into 
the estimation error dynamics (8) due to the uncertainties on 𝑚 
and 𝒦. Considering that (8) will introduce biases in the 
estimation, the main question is can we still ensure a sure, safe 
and friendly control? 

B. Reference generation 

Especially, the strategy of reference generation, based on 
angular speed measurements and state estimation [15], has to 
demonstrate its capability to cope with the biases introduced by 
(8). This capability is mainly due to the fact that the strategy is 
based on the frequency of user’s propulsion, thus it is not the 
amplitude of the torque signals estimated 𝑢ො௛ that is important 
but, its frequency. The outputs of the reference trajectory are 
𝑥௥௘௙ = [𝜔௥௘௙ 𝜑௥௘௙]். Higher (resp. lower) frequency 
detected implies an increase (resp. a decrease) of the speed 
reference 𝜔௥௘௙ . To turn the wheelchair, the user just brakes the 
wheel corresponding to the desired direction. When detected, 
the strategy reduces the reference center velocity 𝜔௥௘௙  and 
generates the rotation speed reference 𝜑௥௘௙ assisting the user to 
achieve her/his goal. To brake or stop the wheelchair (excepted 
an emergency stop, device available via a red stop button), the 
user brakes both wheels. The complete reference generation 
algorithm can be found in [16]. 

First simulation results [16] illustrate that this algorithm 
actively corrects the reference signal 𝑥௥௘௙  taking into account 
the changes in frequencies and direction made by the users. 
Moreover, and it is an important feature, it behaves friendly, i.e. 
there are no contra-intuitive references generated and the 
assistance is smooth. These performances have to be confirmed 
for real-time experiments. 
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IV. ROBUST CONTROL DESIGN 

The last step is to design a robust controller, according to the 
mass, the unknown ground conditions and the observer biases, 
and also a performant controller that follows smoothly the 
references 𝜔௥௘௙  and 𝜑௥௘௙ generated under saturation constraints 
on the motor torques 𝑢௠, red dotted line Figure 2. The design 
of such a robust observer-based tracking controller under 
actuator saturations has no direct solution, i.e. in the sense of 
LMI constraints problem available.  

A. Preliminaries 

With the reference signal 𝑥௥௘௙ , the observer-based tracking 
error 𝑒௖ is:  

 𝑒௖ = 𝑥௥௘௙ − 𝑥ො  (10) 
Knowing the estimated state 𝑥ො = 𝑥 − 𝑒௫, the tracking error (10) 
and the integral part 𝑒௜௡௧  are expressed as follows: 

 𝑒௖ = 𝑥௥௘௙ − 𝑥 + 𝑒௫ 

𝑒௖
ା = 𝑥௥௘௙

ା − 𝑥ା + 𝑒௫
ା 

𝑒+𝑐௜௡௧ ௜௡௧
  (11) 

We define the exogenous signal 𝑤 and an extended state vector 
𝑒̄ as follows: 

 𝑤 = ൦

𝑢௛

𝑢ො௛

𝑥௥௘௙

𝑥௥௘௙
ା

൪, 𝑒̄ = ൥

𝑒௖

𝑒௜௡௧

𝑒௫

[]൩ (12) 

Therefore, the uncertain system (4) and the estimation error 
dynamics (8) are equivalent to: 
 

 𝐸ሜ (𝑚)𝑒̄ା = 𝐴ሜ(𝑚, 𝒦)𝑒̄ + 𝐵ሜ sat(𝑢௠) + 𝐷(𝑚, 𝒦)𝑤  (13) 
with the matrices: 

 
   

   

0

0 0 , 0 ,

0 0o

E m E m B

E m I B

E m E E m

   
       
       

 

𝐴ሜ(𝑚, 𝒦) = ൥
−𝐴(𝑚, 𝒦) 0 𝐴(𝑚, 𝒦)

𝐼 𝐼 0
−𝐴(𝑚, 𝒦) + 𝐴௢ 0 𝐴(𝑚, 𝒦) − 𝐾௫𝐶

൩, and 

𝐷(𝑚, 𝒦) = ൥
𝐵 0 𝐴(𝑚, 𝒦) −𝐸(𝑚)
0 0 0 0
𝐵 −𝐵 𝐴(𝑚, 𝒦) − 𝐴௢ −𝐸(𝑚) + 𝐸௢

൩. 

To deal with actuator saturations, we define the dead-zone 
function 𝜙(𝑢௠): 

 𝜙(𝑢௠) = 𝑢௠ − sat(𝑢௠)  (14) 
Remark 1: model (13) has a descriptor form with 𝐸ሜ (𝑚) well-defined. 
Therefore, using 𝐸ሜ ିଵ(𝑚) is possible and multiplication to the left in 
(13) gives a perfectly equivalent classical model. Nevertheless, in view 
of a LMI formulation with 𝑚 an unknown parameter, it is important 
(in the sense of attaining solutions via LMI problems) not to increase 
the number of vertices and to keep an input matrix 𝐵ሜ  constant. The 
descriptor form (13) corresponds to these criteria. See the discussion 
and examples in section C of [24]. 

B. Robust Control Design 

In order to achieve the tracking task, the proposed controller 
writes: 

 𝑢௠ = 𝐿ሜ 𝑀ሜ ିଵ𝑒̄ + 𝐺𝑤  (15) 
where 𝐿ሜ  and 𝑀ሜ  are matrices to be determined, and 𝐺 =
[0ଶ −𝐼ଶ 𝐺௥௘௙ 𝐺௥௘௙శ]. Considering 𝑤 in (12), as 𝑢௛ is not 

directly measured, the first entry of 𝐺 is 0ଶ; whereas the second 
entry of 𝐺 corresponding to the unknown input estimation 𝑢ො௛, 
is set to −𝐼ଶ [20]. The terms 𝐺௥௘௙  and 𝐺௥௘௙శ  correspond to a 
feedforward control part. Notice that, since the uncertain 
parameters 𝑚 and 𝒦 are unknown, they cannot be part of the 
controller (15), like for a PDC scheme [13], therefore, the 
control is linear. 

The observer-based closed-loop system (13) together with 
the controller (15) writes: 

 
𝐸ሜ (𝑚)𝑒̄ା = (𝐴ሜ(𝑚, 𝒦) + 𝐵ሜ 𝐿ሜ )𝑒̄ + (𝐷(𝑚, 𝒦) + 𝐵ሜ 𝐺)𝑤 −

𝐵ሜ 𝜙(𝑢௠)   (16) 
Combined with an anti-windup strategy, the integral term of the 
tracking error is: 

 𝑒+𝑐ି்(𝑢௠)௜௡௧ ௜௡௧
 (17) 

The closed loop system (16) with the anti-windup strategy (17) 
is rewritten in a quasi-LPV form as follows: 

෍ 𝜁௜(𝑚)𝐸ሜ௜

ଶ

௜ୀଵ

𝑒̄ା = ቌ෍ ෍ 𝜁௜(𝑚)𝜗௝(𝒦)

ଶ

௝ୀଵ

ଶ

௜ୀଵ

𝐴ሜ௜௝ + 𝐵ሜ 𝐿ሜ 𝑀ሜ ିଵቍ 𝑒̄ 

+൫∑ ∑ 𝜁௜(𝑚)𝜗௝(𝒦)ଶ
௝ୀଵ

ଶ
௜ୀଵ 𝐷௜௝ + 𝐵ሜ 𝐺൯𝑤 + 𝐵ሜ௔𝜙(𝑢௠)  (18) 

where the closed-loop uncertain system can be represented by 
the convex sum of linear models whose weights will depend on 
the unknown parameters 𝑚 and 𝒦. The nonlinear functions 
𝜁௜(𝑚) and 𝜗௝(𝒦) share a convex sum property, i.e. 𝜁௜(𝑚) ∈

[0,  1], 𝜗௝(𝒦) ∈ [0,  1],  2

1
1ii

m


  and 

   2 2

1 1
1i ji j

m 
 

  K  [22]. The system matrices of (18) 

are 𝑖, 𝑗 ∈ {1,2}: 

𝐸ሜ௜ = ൥
−𝐸௜ 0 𝐸௜

0 𝐼 0
−𝐸௜ + 𝐸௢ 0 𝐸௜

൩ , 𝐴ሜ௜௝

= ቎

−𝐴௜௝ 0 𝐴௜௝

𝐼 𝐼 0
−𝐴௜௝ + 𝐴௢ 0 𝐴௜௝ − 𝐾௫𝐶

቏ , 

𝐵ሜ௔ = ൥
−𝐵

𝐻𝑆ି்

0
൩ , 𝐷௜௝ = ቎

𝐵 0 𝐴௜௝ −𝐸௜

0 0 0 0
𝐵 −𝐵 𝐴௜௝ − 𝐴௢ −𝐸௜ + 𝐸଴

቏. 

with, 𝐸௜  and 𝐴௜௝  defined as:  
𝐸ଵ = 𝐸(𝑚̄), 𝐸ଶ = 𝐸(𝑚̱), 
𝐴ଵଵ = 𝐴(𝑚̄, 𝒦ሜ ), 𝐴ଵଶ = 𝐴(𝑚̱, 𝒦ሜ ), 𝐴ଶଵ = 𝐴(𝑚̄, 𝒦̱), 𝐴ଶଶ

= 𝐴(𝑚̱, 𝒦̱). 
 

In order to add a maximum of flexibility and to enlarge the  
feasibility domain of solutions, we consider a parameter-
dependent Lyapunov function [25], [26] of 𝑚 and 𝒦 as follows: 

 𝑉(𝑒̄) = 𝑒்̄ ∑ ∑ 𝜁௜(𝑚)𝜗௝(𝒦)ଶ
௝ୀଵ

ଶ
௜ୀଵ 𝑃ሜ௜௝𝑒̄ > 0  (19) 

with 𝑖, 𝑗 ∈ {1,2} 𝑃ሜ௜௝ = 𝑃ሜ௜௝
்

∈ ℝ଺.  
 
Remark 2: The friction coefficient 𝒦 may change in time due 
to the time-varying ground profile and when building 𝑉(𝑒̄ା) 

(20), 𝒦ା will appear. However, the user’s mass 𝑚 does not 
change for a given trajectory and the parameter is therefore 
frozen, i.e. 𝑚ା = 𝑚. 

According to Remark 2, 𝑉(𝑒̄ା) writes: 
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 𝑉(𝑒̄ା) = 𝑒̄ା்
∑ ∑ 𝜁௜(𝑚)𝜗ℎ(𝒦ା)ଶ

ℎୀଵ
ଶ
௜ୀଵ 𝑃ሜ௜ℎ𝑒̄ା > 0  (20) 

Remark 3: Since the output matrix C is a square invertible 
matrix, the state vector 𝑥 is represented by 𝑥 = 𝐶ିଵ𝑦. Then, 

for the controller (15), the state estimation error 𝑒௫  of the vector 

𝑒̄ is computed as follows: 

 𝑒௫ = 𝐶ିଵ𝑦 − 𝑥ො  (21) 

C. Control objective 

For the controller design, we consider the standard 
assumptions: vector 𝑤 and initial condition 𝑒̄(0) are bounded 
[17]. To guarantee the stability of the closed-loop (16) and the 
desired tracking performance in presence of actuator saturations 
and uncertainties, we distinguish two different cases:  

O1: 𝑤்𝑤 = 0: the vector 𝑒̄ must converge asymptotically to 
the origin. 

O2: 𝑤்𝑤 ≠ 0: the ℒଶ-norm of the vector 𝑒̄ must be bounded 
for any bounded 𝑒̄(0) and 𝑤. Moreover, the following 
inequality must hold: 

 ∑ 𝑒்̄𝐶ሜ ்𝐶ሜ𝑒̄∞
௞ୀ଴ < 𝑉൫𝑒̄(0)൯ + 𝛾 ∑ 𝑤்𝑤∞

௞ୀ଴   (22) 

where the matrix 𝐶ሜ  is configured to achieve a good compromise 
between the tracking and the estimation performances.  

Theorem 1.  If there exist positive definite matrices 𝑃ሜ௜௝ ∈ ℝ଺, 

matrices 𝐿ሜ ∈ ℝଶ×଺, 𝐺௥௘௙ ,  𝐺௥௘௙శ ,  𝐻 ∈ ℝଶ×ଶ,𝑀ሜ ∈

ℝ଺×଺ a positive diagonal matrix 𝑆 ∈ ℝଶ and a positive scalar 

𝛾  such that for𝑖, 𝑗, 𝑘 ∈ {1,2}: 

 Π௜௝ℎ
ଵ

+ Π௜௝

ଶ
+ ቀΠ௜௝

ଶ
ቁ

்

< 0  (23) 

where 

Π௜௝

ଶ
=

⎣
⎢
⎢
⎢
⎡
ϵ൫𝐴ሜ௜௝𝑀ሜ + 𝐵ሜ 𝐿ሜ ൯ 0 −ϵ𝐸ሜ௝𝑀ሜ ϵ𝐵ሜ௔𝑆் ϵ൫𝐷௜௝ + 𝐵ሜ 𝐺൯

0 0 0 0 0
𝐴ሜ௜௝𝑀ሜ + 𝐵ሜ 𝐿ሜ 0 −𝐸ሜ௝𝑀ሜ 𝐵ሜ௔𝑆் 𝐷௜௝ + 𝐵ሜ 𝐺

0 0 0 0 0
0 0 0 0 0 ⎦

⎥
⎥
⎥
⎤

 

Π௜௝ℎ
ଵ

=

⎣
⎢
⎢
⎢
⎢
⎡
−𝑀ሜ ்𝑃ሜ௜௝𝑀ሜ * 0 * 0

𝐶ሜ𝑀ሜ −𝐼 0 0 0
0 0 𝑀ሜ ்𝑃ሜ௜ℎ𝑀ሜ 0 0

𝐿ሜ 0 0 −2𝑆 *
0 0 0 𝐺் −𝛾𝐼⎦

⎥
⎥
⎥
⎥
⎤

 𝐵௔𝑆்

= ൥
−𝐵𝑆்

𝐻
0

൩ 

 
then, the observer-based controller (15) achieves the control 
objective defined in O1 and O2. 
 

The inequalities (23) are parameter dependent-LMIs, i.e. 
they reduce to LMI constraints for a given scalar 𝜀. A numerical 
gridding search for 𝜀 ∈ [0: 0.05: 10] is carried out in a given 
interval, a commonly used approach for LPV systems [27]. The 
complete proof of Theorem 1 is given Appendix 1. 

V. SIMULATION RESULTS 

The robust observer-based tracking controller issued from 
Theorem 1 is tested first in simulation using the nominal 

parameters of Table I for both observer and robust control 
designs. The uncertain parameters variations considered are 
𝑚 ∈ [𝑚̱, 𝑚̄] = [70,  130]𝑘𝑔 and 𝒦 ∈ [𝒦,  𝒦] =
[3,  7]𝑁. 𝑚. 𝑠; covering most of the cases in practice. For 
simulation, when 𝑤 ≠ 0 sinusoidal signals are generated to 
represent the user’ pushing profiles. As stated Remark 2, mass 
is kept constant for each trial, whereas friction coefficient can 
be time-varying. The maximum motor torque is 𝑢௠௔௫ for both 

electrical motors. Matrix 𝐶ሜ  in (22) is set to: 𝐶ሜ = ൤
𝐼ଶ 0ଶ 0ଶ

0ଶ 0ଶ 𝐼ଶ
൨. 

 

Remark 4: as during maneuvers, ensuring the good turn is more 
important than ensuring the good speed, the yaw angle has 
priority on the center velocity tracking. Therefore, the weight 

matrix 𝐶ሜ  acts similarly as the weighting matrix in a Linear-
Quadratic Regulator design. It has been configured such that the 
observer-based control (15) ensures first the yaw velocity 
tracking when actuator saturations occur.  

Using the design procedure [16], with nominal values 𝑚଴ =
100𝑘𝑔 and 𝒦଴ = 5𝑁. 𝑚. 𝑠 the state observer gains 𝐾௫ and 𝐾௨ℎ

 
(7) are:  

𝐾௫ = ቂ
18.76 −10.56

−10.56 18.76
ቃ, 𝐾௨ℎ

= ቎

143.61 −81.53
160.06 −90.92
−81.53 143.61
−90.92 160.06

቏. 

Therefore, the robust control parameters obtained from 
Theorem 1 are given by: 
 
𝐿ሜ 𝑀ሜ ିଵ

= ቂ
170.21 661.19 128.72 176.83 −26.27 −519.93
256.33 −664.89 140.26 −144.95 −132.26 585.82

ቃ 

𝐺

= ቂ
0 0 −1 0 −10.33 −230.3 17.24 238.26
0 0 0 −1 −166.86 808.01 170.55 −818.41

ቃ, 

𝐻𝑆ି் = ቂ
−0.0063 −0.0061
−0.0014 0.0004

ቃ, 𝜀 = 0.15 and √𝛾 = 2716. 

A. Simulation results 

Numerous simulations have been conducted to validate the 
approach; one of them is presented, illustrating the behavior of 
the strategy in presence of actuator saturations and system 
uncertainties. The mass is set to 𝑚 = 130𝑘𝑔, the viscous 
friction coefficient to 𝒦 = 6.5𝑁. 𝑚. 𝑠 and the human torques 
are emulated via sinusoidal signals. In order to show the 
capabilities of the algorithm, the example presented uses 
trajectories to follow Figure 5 (right, yellow curves); and 
voluntarily asymmetric pushing, Figure 4, as well as amplitudes 
that will generate saturation effects. Figure 4 shows the 
emulated torques (in blue) and, as expected, the biases in their 
estimation (in red) due to the mass and friction uncertainties. 
Asymmetry can be seen, mainly from the difference of 
frequencies of the left and right signals. 

Despite the biases and the asymmetry, Figure 5 (right), the 
signal frequencies are well estimated and the assistance 
operates perfectly. Left side of Figure 5 shows the motor 
torques generated in order to follow the desired trajectories, 
center velocity (top, right) and yaw velocity (bottom, right). 
Moreover, when a saturation occurs (red line versus blue line, 
left side), Figure 5 shows the strategy adopted for these 
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moments, (indicated with arrows): a perfect tracking of the yaw 
velocity while smoothly downgrading the tracking of the center 
velocity.  

 
Figure 4. Emulated torques (blue) and estimated human torques (red) 

 

 
 

Figure 5. Assistive motor torques under actuator saturations (Left), 
Reference velocity and Yaw velocity of the wheelchair (Right) 

Of course, the simulation part has been intensively conducted 
in order to fix the robustness (noise, uncertainties, saturations, 
different chairs and users’ behaviors, pushing asymmetry…) of 
the whole strategy prior to real-time experiments. 

VI. EXPERIMENTAL VALIDATION 

Experimental validation is done with a wheelchair provided 
and fully equipped by the company Autonomad Mobility, and 
in collaboration with the experts of the company, Figure 6. Two 
different users perform the tests using a unique controller and 
strategy. They are designed as: User A, who weighs 63kg (the 
total mass including the wheelchair is 103kg) and user B who 
weighs 80 kg (total mass is 120kg). When necessary different 
soils are available with passages from one to another. 

 

 
Figure 6. Wheelchair prototype and its components 

The wheelchair Figure 6, is equipped with two brushless DC 
motors powered by a DC battery (∼ 15𝑘𝑚 autonomy range). 
The DC motors maximum torque is around 40 Nm. The motors 
receive the control signals (Voltage or current) via a Texas 
Instruments C2000 real time micro-controller. The sensors are 
two incremental encoders to measure the angular velocities 
with pulse signals as outputs. The number of pulses is counted 
for a given time interval (sampling time) in order to determine 
the relative position between two consecutive measurements. 
Two torque sensors with wireless transmissions supplied by 

CapInstrumentation are also installed, they are only available 
on the prototype for the observer validation purpose. 

A. Observer validation 

This validation step does need the measurements of the 
human torques. Thus, the wheelchair used is an on-the-shelf 
wheelchair equipped with two extra torque sensors.  

 

 
Figure 7. Left human torques estimation User A (Top) and User B 

(Bottom). In blue measurement, in red estimation. 

The test presented, Figure 7, corresponds to a real-time 120s 
trial carried out by both users including different ground 
profiles. The only demand was for them to go straight forward. 
Due to ground conditions and slope variations, they have to 
brake sometimes one of the wheel to maintain a straight 
trajectory (around 𝑡 = 76𝑠 for User A, around 𝑡 =
{68,  72,  84,  88}𝑠 for User B). estimation signals (in red), 
measured torques (in blue), top Figure 7 is user A, bottom user 
B. As expected, the estimated human torques do not exactly 
match the measured ones. The reasons are due to the 
uncertainties, the external conditions and moreover to the non-
modelled caster wheels’ dynamic. Nevertheless, and 
importantly, they do show that the estimated torques capture 
globally well the two key features of propelling for both users: 
pushing frequency and direction. 

B. Manual and assistance modes 

Before entering the final real-time validation, this part 
presents the modes (manual and assistance) and the way to 
switch between them. Classically, when the speed is around 
zero, due to the position encoders (number of teeth) there is no 
way to obtain a precise measurement. Naturally, this “poor” 
measurements cannot be directly used for control and 
observation as it will lead to undesired effects such as, exciting 
frequencies inside the electrical motors bandwidth, generating 
chattering effects.  

 

Manual mode
Assistance 

mode

𝜔௥௘௙ > 0.6𝑚/𝑠 and 𝜔௥௘௙ − 𝜔ෝ > 0.15𝑚/𝑠

𝜔௥௘௙ < 0.4𝑚/𝑠

Initial mode
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Figure 8. Manual and assistance modes 

Thus, in order to ensure smooth performances, the assistance 
has to be disabled, when the center velocity of the wheelchair 
is close to zero. Thus a so-called manual mode is defined as 
well as an assistance mode and the conditions for switching 
from one to the other, Figure 8. Initially starting from manual 
mode, the wheelchair passes into the assistance mode when the 
reference center velocity achieves a given threshold, fixed at 
0.6m/s. The condition 𝜔௥௘௙ − 𝜔ෝ(𝑘) > 0.15m/s ensures that 
the estimated center velocity is lower than the reference signal 
at the switching moment; therefore, from manual to assistance 
mode, the control always provides an acceleration. The switch 
from assistance to manual mode occurs when the reference 
center velocity is below a given threshold, fixed at 0.4m/s. In 
order to prevent an hysteresis effect for the state machine, 
Figure 8 the threshold values have to be different. 

C. Assistive control validation 

The modes being defined and the observer validated, this 
section evaluates the full-assistive algorithm. In order to 
experiment the maneuverability of the wheelchair, specific 
predefined tasks have to be achieved by the users. For the first 
trial, user A has been asked to perform eight-shaped and oval 
trajectories (Figure 9, dotted red line) on the parking of 
Autonomad Mobility. This trial includes obstacle avoidance, 
different ground adhesions (Figure 9, clear areas) and different 
(reasonable) slopes. Of course, the red trajectory has not to be 
perfectly followed, it gives a global path to achieve. It 
represents for the user to perform sequentially eight turning 
principal actions, numbered Figure 9, right side, corresponding 
to: five left turns, one right turn and 2 left turns.  

 
Figure 9. In red: proposed path; in green: 2 oval-shaped trajectories and 

one eight-shaped trajectory performed by user A under assistive 
control. 

The human torque measured by the sensors (blue line) and 
the estimated human torques (red line) are given Figure 10. 
Again, these experimental results show that the PI-observer 
estimation is sufficient to produce smooth references for 
pushing frequency and direction, Figure 11 (red color). At the 
beginning, the frequency of user A is high and detected, 
therefore the strategy switches from the manual to the assistive 
mode (around 𝑡 = 10𝑠). Then, the eight turning actions, 
marked on Figure 10 and Figure 11, occur: 5 left braking (from 
𝑡 = 40𝑠 to 𝑡 = 250𝑠, 5 positive right torques (Figure 10 top) 
corresponding to 5 negative torques, (Figure 10 bottom)), 1 
right braking (the opposite around 𝑡 = 270𝑠) and 2 left braking. 
Recall that the measured torque is unavailable, therefore, not 

used in the strategy. The wheelchair being equipped, for 
validation purpose, with torque sensors, we provide therein the 
comparative results. 

 
Figure 10. User A torque (blue) estimated torque (red). Mode (0 manual, 1 

assistance) in dashed 0-1 line. The 8 actions are marked. 

 
Figure 11. Center velocity (top), yaw velocity (bottom). In blue the reference 

generated via the strategy, in red the real outputs. Red rectangle 
indicates a zone where the saturation occurs. The 8 actions are marked. 

 
Figure 12.  Motor assistive torques (User A). Red rectangle indicates a zone 

where the saturation occurs. 

Based on the reference signals generated by the strategy 
Figure 11 (red color), the motor assistance torques are presented 
Figure 12. Between 225s and 275s (indicated by red rectangles), 
actuator saturations occur. Thanks to the anti-windup design 
(15), the overshoot of the non-saturated motor torque signal 𝑢௠ 
(blue line of Figure 12) is perfectly controlled. Moreover, as 
expected, Figure 11 (red rectangles) shows an accurate tracking 
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of the yaw velocity (bottom) while the tracking of the center 
velocity is smoothly downgraded (top); strategy that is one of 
the main objective to ensure maneuverability. 

User A was able to accomplish this requested task with the 
help of the proposed assistive algorithm. Importantly, the 
strategy provided no contra-intuitive behaviors (inappropriate 
detection of direction, misunderstanding the “intentions”) and 
the feedback of User A was a friendly assistance behavior. 

For the second trial, user B has been asked to perform a sharp 
round-trip between the 2 red points, Figure 13. The figure also 
shows in green the trajectory of the wheelchair and the seven 
principal turns (right side) during the driving task, numbered 
sequentially.  

 
Figure 13. Round trip between two points performed by user B under the 

assistive control 

 
Figure 14. User B torque measured (blue) and estimated human torque (red). 

The dashed 0-1 line represents the mode (0 manual, 1 assistance)  

 
Figure 15. Assistive torque (User B). Red rectangle indicates a zone where 

the saturation occurs. 

As previously mentioned user B is stronger, together with the 
fact that the roundtrip is sharp, the assistance is less activated 
Figure 13 red-dashed lines 0-1. It is interesting to notice that 
with very different conditions (user’s mass, trip) and a different 

behavior (human torques produced), the strategy still performs 
well. Figure 14 presents the human torques (blue measured, red 
estimated) as well as the numbering corresponding to the seven 
turns. Figure 15 presents one of the assistive torque, notice that 
a control action saturation occurs between 90s and 100s, (red 
rectangle) and that the assistive control acts similarly as the 
previous trial, i.e. the yaw velocity has priority on the tracking 
center velocity, Figure 16. 

 
Figure 16. User B Center velocity tracking (top) and yaw velocity tracking 

(bottom). Red rectangle indicates a zone where the saturation occurs. 

Many trials have been conducted to test the maneuverability 
of the proposed strategy and its robustness to mass and road 
conditions. Some of them have been recorded, the reader can 
go to the address http://rocon.utcluj.ro/files/pwa_demo.mp4. 
Conclusion of these trials, is that the robust tracking controller 
(15) satisfies the initial objectives and the whole strategy 
performed satisfactorily, i.e. tracking performance, reference 
generation and PI-observer. 

D. Discussion and limitations 

Due to heavy regulations on experimentations with disabled 
persons, only two users, involved in the Autonomad Mobility 
company, have done the trials; User B being an expert on 
mobility devices.  

More tests have to be conducted to demonstrate the full 
relevance of the algorithm for an extended disabled population. 
Especially, the intention will be one, if not the key point to 
address. Robustness and PI-observer have been intensively 
tested in many situations to be confident on their capabilities. 
To exhibit problems that can occur with the intention, consider 
again User B experiment, Figure 13. When the user B turns 
abruptly (action 3, around 𝑡 = 80𝑠), the algorithm detects this 
action as a braking passing from assistance to manual mode 
whereas it should had kept the assistance mode. It is not an 
important issue in case of User B, but misinterpreting the 
intention can lead to deliver inadequate references and has to be 
avoided as possible.  

 
This issue reaches the way are generated the references that 

needs to be user-adapted. Clearly, different users may perform 
different pushing frequency to achieve a same desired center 
velocity. For example, since User B is physically strong, his 
propelling would be high-amplitude and low-frequency; 
whereas medium-amplitude and medium-frequency would 
better represent User A. Future works are dedicated to design 
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this user-adaptable “intention” included into the proposed 
model-based design, Figure 17. 

 

 
Figure 17. Control-Learning framework proposal for PAW designs 

The quality of the estimated human intention depends partly 
on the parameter vector of the reference generation. With the 
help of a human feedback, a learning algorithm (based on 
Policy Gradient for example [28]) could produce and adapt a 
(near-)optimal parameter vector and generate a (near-)optimal 
reference signal based on the specific user. The learning 
approach objective would be to adapt the assistive strategies 
according to users’ behaviors, both in the long term (for 
example degenerative disease) and in the “medium” term (e.g. 
fatigue, pain occurring during the travel). 

VII. CONCLUSION 

The goal of this work was to propose a strategy available for 
the PAW kits of Autonomad Mobility company with the 
objective of having a “wheelchair-independent and PRM-
independent” kit. The strategy is decomposed in three steps: 
robust torque estimation to eliminate the torque sensors and 
reduce the price; transform the perceived intentions into signals 
workable by the control and propose a robust observer-based 
tracking controller design. Using a quasi-LPV formulation 
together with a descriptor description, a two-steps LMI 
optimization problem has been derived. The first step 
corresponds to a PI-observer design [16]. The second step 
designs the robust tracking controller and ensures both the 
stability of the closed-loop system and the tracking 
performance.  

For the experimental results, a step-by-step procedure 
allowed to validate the PI-observer (pushing frequency and 
direction), the reference generation algorithm and finally the 
complete assistive control. Based on the obtained results of this 
study and [18], we also propose an idea to combine the model-
based approach and the model-free reinforcement learning 
approach. 

Future works will focus on learning-control framework 
implementation and validation on an extended disabled 
population. A theoretical challenge will be to combine stability 
proofs and convergence issues, part of the learning, in a global 
framework. 

APPENDIX 1 

The following notations are adopted with matrices of 
appropriate dimension: 𝐴఍ = ∑ 𝜁௜(⋅)𝐴௜

ଶ
௜ୀଵ , for a single sum, 

𝐴఍ణ = ∑ ∑ 𝜁௜(⋅)𝜗௝(⋅)𝐴௜௝
ଶ
௝ୀଵ

ଶ
௜ୀଵ  for a double sum, if a different 

time occurs we use the subscript +, for example 𝐴ణణశ. The 
technical lemma 1 is useful for the proof of theorem 1. 

Lemma 1. [21] Inequality of the dead-zone nonlinearity (14) 
𝜙(𝑢௠) = 𝑢௠ − sat(𝑢௠) satisfies for any positive diagonal 
matrix 𝑆: 

𝑢௠
்𝑆ିଵ𝜙(𝑢௠) + 𝜙்(𝑢௠)𝑆ିଵ𝑢௠ − 2𝜙்(𝑢௠)𝑆ିଵ𝜙(𝑢௠) > 0  

(24) 

Proof of theorem 1: The inequality (23) can be rewritten with 
J = ൣ𝐴ሜ఍ణ𝑀ሜ + 𝐵ሜ 𝐿ሜ 0 −𝐸ሜ఍𝑀ሜ 𝐵ሜ௔𝑆் 𝐷఍ణ + 𝐵ሜ 𝐺൧ as: 

Π఍ణణశ
ଵ

+ J்[ϵ𝐼 0 𝐼 0 0] + (*) < 0  (25) 

Existence of 𝑀ሜ ିଵ: from the entry (3,3) of (25) it holds that: 

𝑀ሜ ்𝑃ሜ఍ణశ𝑀ሜ − 𝐸ሜ఍𝑀ሜ − 𝑀ሜ ்𝐸ሜ఍
் < 0  (26) 

If 𝑀ሜ ∈ ℝ଺×଺ is singular, it exists a vector 𝑣 ∈ ℝ଺, 𝑣 ≠ 0, such 
that 𝑀ሜ 𝑣 = 0, applied to (26) it contradicts the strict negativity 
of the expression for every 𝑣 ≠ 0, therefore, 𝑀ሜ  is regular. 

Using the property of congruence with the diagonal matrixD =
𝑑𝑖𝑎𝑔(𝑀ሜ ି் 𝐼 𝑀ሜ ି் 𝑆ିଵ 𝐼), (25) is equivalent to: 

⎣
⎢
⎢
⎢
⎢
⎡

−𝑃ሜ఍ణ * * * *

𝐶ሜ −𝐼 * * *
0 0 𝑃ሜ఍ణశ * *

𝑆ିଵ𝐿ሜ 𝑀ሜ ିଵ 0 0 −2𝑆ିଵ *
0 0 0 𝐺்𝑆ି் −𝛾𝐼⎦

⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡
ϵ𝑀ሜ ି்

0
𝑀ሜ ି்

0
0 ⎦

⎥
⎥
⎥
⎤

JD்  

+DJ்[ϵ𝑀ሜ ିଵ 0 𝑀ሜ ିଵ 0 0] < 0  (27) 

Using the Schur’s complement for the 2 first rows of (27), and 
defining Jሚ = ൣ𝐴ሜ఍ణ + 𝐵ሜ 𝐿ሜ 𝑀ሜ ିଵ −𝐸ሜ఍ 𝐵ሜ௔ 𝐷఍ణ + 𝐵ሜ 𝐺൧, it holds: 

⎣
⎢
⎢
⎢
⎡
−𝑃ሜ఍ణ + 𝐶ሜ்𝐶ሜ * * *

0 𝑃ሜ఍ణశ * *

𝑆ିଵ𝐿ሜ 𝑀ሜ ିଵ 0 −2𝑆ିଵ *
0 0 𝐺்𝑆ି் −𝛾𝐼⎦

⎥
⎥
⎥
⎤

+ ൦

ϵ𝑀ሜ ି்

𝑀ሜ ି்

0
0

൪ Jሚ + (*) < 0  

 (28) 

Now consider that the closed-loop dynamic corresponds to:  

𝐸ሜ఍ 𝑒̄ା = ൫𝐴ሜ఍ణ + 𝐵ሜ 𝐿ሜ 𝑀ሜ ିଵ൯𝑒̄ + ൫𝐷఍ణ + 𝐵ሜ 𝐺൯𝑤 + 𝐵ሜ௔𝜙(𝑢௠) 

And equivalently to the equality constraint: Jሚ ൦

𝑒̄
𝑒̄ା

𝜙(𝑢௠)
𝑤

൪ = 0. 

Therefore, via the Finsler’s lemma and using the slack matrix 
[ϵ𝑀ሜ ି் 𝑀ሜ ି் 0 0]், (28) corresponds to sufficient 
conditions to ensure:  

൦

𝑒̄
𝑒̄ା

𝜙(𝑢௠)
𝑤

൪

்

⎣
⎢
⎢
⎢
⎡
−𝑃ሜ఍ణ + 𝐶ሜ்𝐶ሜ * * *

0 𝑃ሜ఍ణశ * *

𝑆ିଵ𝐿ሜ 𝑀ሜ ିଵ 0 −2𝑆ିଵ *
0 0 𝐺்𝑆ି் −𝛾𝐼⎦

⎥
⎥
⎥
⎤

൦

𝑒̄
𝑒̄ା

𝜙(𝑢௠)
𝑤

൪ <

0   (29) 

Consider the control law 𝑢௠ = 𝐿ሜ 𝑀ሜ ିଵ𝑒̄ + 𝐺𝑤, and a parameter-
dependent Lyapunov function [25], [26]: 

𝑉(𝑒̄) = 𝑒்̄𝑃ሜ఍ణ𝑒̄ = 𝑒்̄ ෍ ෍ 𝜁௜(𝑚)𝜗௝(𝒦)

ଶ

௝ୀଵ

ଶ

௜ୀଵ

𝑃ሜ௜௝𝑒̄ > 0 

Human feedback 
(button)

Wheelchair

Reference 
generation Model-based control

Learning algorithm

Human
𝑢௛

𝑢௠

𝜃

𝜑௥௘௙

𝜔௥௘௙
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Thus, we deduce that (29) corresponds to: 

Δ𝑉(𝑒̄) + 𝑒்̄𝐶ሜ ்𝐶ሜ𝑒̄ − 𝛾𝑤்𝑤 
+𝑢௠

்𝑆ିଵ𝜙(𝑢௠) + 𝜙்(𝑢௠)𝑆ିଵ𝑢௠ − 2𝜙்(𝑢௠)𝑆ିଵ𝜙(𝑢௠) <
0  (30) 

The following two cases can be analyzed: 

 First case: if the external signals 𝑤 = 0, the following 
condition can be deduced: 

Δ𝑉(𝑒௖) = −𝑒்̄𝐶ሜ்𝐶ሜ𝑒̄ − 
[𝑢௠

்𝑆ିଵ𝜙(𝑢௠) + 𝜙்(𝑢௠)𝑆ିଵ𝑢௠ − 2𝜙்(𝑢௠)𝑆ିଵ𝜙(𝑢௠)] <
0  (31) 

which means that the tracking errors converge exponentially to 
the origin. 

 Second case: If 𝑤 ≠ 0, the inequalities in Lemma 1 and (30) 
imply that: 

Δ𝑉(𝑒̄) + 𝑒்̄𝐶ሜ ்𝐶ሜ𝑒̄ − 𝛾𝑤்𝑤 < 0  
 (32) 

Under null initial conditions (𝑒̄ = 0) and the integration of the 
inequality (32), we obtain: 

∑ [𝑒்̄𝐶ሜ ்𝐶ሜ𝑒̄ − 𝛾𝑤்𝑤]∞
௞ୀ଴ < 0  (33) 

Then, the inequality ∑ (𝑒்̄𝐶ሜ ்𝐶ሜ𝑒̄)∞
௞ୀ଴ < 𝑉൫𝑒̄(0)൯ +

𝛾 ∑ 𝑤்𝑤∞
௞ୀ଴  can be derived. Moreover, this implies the 

following criterion: 

‖𝐶ሜ𝑒̄‖ଶ < √𝛾‖𝑤‖ଶ   (34) 

The proof of Theorem 1 is complete. 
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