
Real-Time Simultaneous Optimistic Planning
for Hybrid-Input Nonlinear Optimal Control

Elvin Pop
Department of Automation

Technical University of Cluj-Napoca
Romania

elvin.pop@aut.utcluj.ro

Ioana Lal
Department of Automation

Technical University of Cluj-Napoca
Romania

ioanalal04@gmail.com

Lucian Buşoniu
Department of Automation

Technical University of Cluj-Napoca
Romania

lucian.busoniu@aut.utcluj.ro

Abstract—Simultaneous Optimistic Planning for Hybrid-Input
Systems (SOPHIS) is a powerful method for the near-optimal
control of nonlinear systems with hybrid – continuous and
discrete – inputs, which works by iteratively splitting sets of
input sequences. The generality of SOPHIS however comes at
high computational costs that are often untenable in real-time
control, especially for fast unstable systems. We introduce two
modifications that make SOPHIS more suitable for real-time
control: running it on a separate machine, over multiple sampling
periods, while applying several inputs to the system during this
time; and parallelizing the algorithm by splitting several sets
simultaneously across multiple threads. Experiments investigate
two parallelization schemes, the impact of thread count on the
execution time, and the influence of the prediction horizon
and budget; the latter on a real-life fast unstable system, a
rotary inverted pendulum. In the experiments, the discrete input
controls the quantization accuracy of the control action sent to
the system.

Index Terms—nonlinear optimal control, optimistic planning,
real-time control, parallelization, predictive control

I. INTRODUCTION

This paper focuses on real-time near-optimal control of
nonlinear hybrid-input systems, which have both a continuous
and a discrete input. Such problems are often encountered in
robotics [3], the automotive industry [20], industrial multi-tank
systems [19] or hydraulic systems [17].

In prior work [13], we proposed a method for hybrid-
input optimal control called Simultaneous Optimistic Plan-
ning for Hybrid-Input Systems (SOPHIS). Optimistic planning
[16] is a general flavor of nonlinear model-predictive control
(MPC) [10] that works for a large class of non-linear, non-
differentiable dynamics and non-quadratic, non-differentiable
objectives. SOPHIS partitions the set of input sequences into
subsets organized in a tree structure. It splits at each iteration
several such sets at a range of tree depths, chosen so that the
optimal solution(s) are likely to be in these sets. At the end, a
near-optimal sequence of inputs is returned, of which the first
input is applied, and then the procedure repeats in receding
horizon. The suboptimality of the sequence decreases at well-
characterized rates as a function of the number n of calls to
the system dynamics; and SOPHIS exhibits good performance
in simulations [13].

This work was been financially supported by DECIDE, project no.
57/14.11.2022 funded under the PNRR I8 scheme by the Romanian Ministry
of Research, Innovation, and Digitisation.

The main issue in applying SOPHIS is its high computa-
tional cost, since its generality means that at each discrete
time step it must examine many subsets using a large budget
n (in general exponential in the horizon, and often in the tens
of thousands in practice). Conventionally, all this computation
must finish in a negligible portion of the sampling period,
which is often unfeasible, especially for fast unstable nonlinear
systems. On the one hand, the fast and unstable nature of such
systems means that sampling periods must be small (e.g. on
the order of ms for a drone [12]), so little time is available to
compute; and on the other hand, the nonlinearity sometimes
means that longer-horizon sequences must be found, leading
to larger cost n (consider e.g. an inverted pendulum [15] that
must be swung several times before being stabilized, or other
pendulum-like systems like ballbots [7]).

Our objective in this paper is to mitigate these issues by
designing a version of SOPHIS more suitable for real-time
control. To this end, we make two main changes in the method.
First, (i) we allow computation to run for several sampling
periods, applying in the meantime a subsequence consisting
of several inputs from the sequence previously returned by the
algorithm. Each next SOPHIS call is done with the predicted
state at the end of the current subsequence. SOPHIS is run on
a different machine than the one that interacts in closed loop
with the system, thereby separating computation from control,
and the two machines communicate over a network. Second,
(ii) we parallelize SOPHIS so that several sets are split at once,
on different threads.

Procedure (i) is natural in MPC, and as early as 1999, [18]
intermittently applied sequences of actions and shifted the
MPC horizon by the lengths of the applied sequences. Since
then, many other variations of this idea have been proposed
[1], [5], [6], [9], [11], [21], sometimes including computational
delay in the design [4], [8], but rarely separating control from
computation like we do. One possible exception is [21], which
uses a distributed embedded computation scheme. The closest
approach to ours is [22], where (i) was applied to discrete-
input OP. A key difference between the present approach and
all these previous methods is that the parallelization approach
is unique to SOPHIS, since this algorithm provides a natural
way in which to distribute computation: over the collection of
sets that are split at each iteration.

For a rotary pendulum example in which the discrete input

is the quantization accuracy with which the continuous input
is sent to the system, we experimentally investigate several
questions: the difference between two parallelization schemes,
the execution time as a function of the number of threads, the
influence of the prediction horizon, and of the budget. The
latter two experiments are run on the real-life system.

Next, Section II outlines SOPHIS, while Section III intro-
duces the adjustments made in order to use it in real-time.
Experimental results are given in Section IV, and Section V
concludes.

II. BACKGROUND

This section summarizes Simultaneous Optimistic Planning
for Hybrid-Input Systems (SOPHIS) [13]. The algorithm
works for discrete-time, nonlinear systems with hybrid inputs:

xk+1 = f(xk, uk) (1)

where the input uk = [ck, dk]
T has both a continuous

scalar component ck and a discrete part dk ∈ {0, 1, ..., p}.
A reward rk+1 = ρ(xk, uk) is assigned to every state-
action pair, or equivalently to any transition from xk to xk+1

using input uk. Given an infinitely-long sequence of actions
u∞ = (u0, u1, ...), discount factor γ ∈ (0, 1) and reward
function ρ(x, u), define the infinite-horizon discounted value:

v(u∞) =

∞∑
k=0

γkρ(xk, uk) (2)

The purpose is to find an optimal value v∗ = supu∞
v(u∞)

and any sequence u∗
∞ that would achieve it. The system must

satisfy [13]:

Assumptions. (i) ck, rk ∈ [0, 1].
(ii) The dynamics and the rewards are Lipschitz with respect to
the state and the continuous action, i.e., ∃Lf , Lp s.t. ∀x, x′ ∈
X and c, c′ ∈ [0, 1]:

∥f(x, [c, d]T)− f(x′, [c′, d]T)∥ ≤ Lf (∥x− x′∥+ |c− c′|)
|ρ(x, [c, d]T)− ρ(x′, [c′, d]T)| ≤ Lρ(∥x− x′∥+ |c− c′|)

(iii) γLf < 1

In Assumption (i) the unit interval is taken for convenience,
and other intervals can simply be rescaled. Assumption (iii)
means that together with discount factor γ, the dynamics
become contractive.

SOPHIS iteratively splits sets, each set an infinitely-long
product of pairs (µk, σk):

Si =
∞∏
k=0

(µi,k, σi,k) (3)

where µk represents the interval in which continuous action
ck lies and σk is either the full set of possible discrete actions
or just one definite value from the set. We refer to index k
as the dimension (or step). The sets are organized in a tree
structure, from a root node, which has all intervals µ equal
to [0, 1] and all σ = {0, 1, ..., p}. Iteratively, well-chosen leaf
nodes on the tree are expanded and their children are added to

the tree. There are two types of splits: continuous or discrete.
A set i also has two attributes, Ci and Di, denoting the number
of continuously and discretely split dimensions, respectively.
For all k ≥ Ci, µi,k = [0, 1]. For all k < Di, σi,k = di,k, a
single, definite value, and for all k ≥ Di, σi,k = {0, 1, ..., p}.
Note that from the design of the algorithm, Di ≥ Ci at all
times, for any node; and at the root C0 = D0 = 0.

A continuous split is done along any dimension k ≤ Ci, by
adding M children to the tree. The children inherit all (µ, σ)
pairs from their parent, except µk. This interval will be split
into M subintervals, one for each child. A discrete split, on
the other hand, is always done along dimension k = Di. It
entails adding p + 1 children to the tree, which inherit all
existing (µ, σ) pairs and in addition will now have σDi as a
definite action, one value for each child, instead of the full set
of possible actions (which was associated to the parent).

We have explained how the splits work. Now, we move
on to the selection of the nodes to split. First, define the
depth H of a node (set) i in the tree as the number of
expansions done starting from the root to get to that node.
Note that the number of continuous expansions up to node i
is not Ci, but hi =

∑Ci−1
k=0 s(k), where s(k) is the number

of splits done on dimension k. Hi is now hi + Di. The
SOPHIS algorithm splits several nodes per iteration: at each
depth, it splits an un-expanded node with the highest value
v among the nodes at that depth. The value of a node is
v(i) =

∑Di

k=0 ρ(xk, [ck, dk]
T), where ck is the center of

interval µi,k. Iterations continue for as long as budget n is
still available, where n is the number of calls to the dynamics
and reward functions, f and ρ. In order to prevent an iteration
from running indefinitely, a maximum value Hmax(n) is given
to the algorithm as an input; it represents the maximum depth
up until which to expand nodes.

Now, for each node selected to be split, we must choose the
dimension and type of expansion. For this, define the diameter
of a node:

δ(i) = Lρ

Di−1∑
k=0

ai,kγ
k 1− (γLf)

Di−k

1− γLf
+

γDi

1− γ
(4)

where ai,k is the length of the interval µi,k. We aim to reduce
the diameter of the node, so we look at the dimension which
has the greatest contribution to δ, denoted k†.Therefore, if

Lρai†,k†γk† 1−(γLf)
D

i†−k†

1−γLf
≤ γ

D
i†

1−γ , we split discretely, along
k = Di† . Otherwise, we have a continuous split, along
dimension min(k†, Ci†).

At the end, the algorithm outputs finite sequence û, corre-
sponding to the node with the largest value v among all nodes.
SOPHIS runs in open loop, and it is meant to be applied in
receding horizon. This means that in principle at each step in
time t, the algorithm is applied starting from state xt. It then
applies the first input from the returned sequence to the real
system. SOPHIS is then run again in open-loop, starting from
resulting state xt+1 and so on. A closed-loop control scheme
is thus achieved.

Regarding tuning parameters, the first is the split factor
M , and in practice, it is suggested to take M = 3. The
Lipschitz constants Lf , Lρ are usually not known in practice,
so we treat them as tuning parameters, keeping in mind that
Assumption (iii) requires γLf < 1. Lastly, for the maximum
depth Hmax(n), a good starting point is n1/3. Overall, [13]
proves that the near-optimality of SOPHIS converges to 0 with
increasing budget n, at well-characterized rates. We discussed
SOPHIS briefly; for more insight and detail, see [13].

Next, we move to the main contribution of this paper: the
real-time version of SOPHIS.

III. REAL-TIME SOPHIS

This section discusses the adaptations made to SOPHIS in
order to use it in real time for fast systems. Two adjustments
are necessary, and they are discussed in turn next.

A. Separating Control From Computation

Conventional receding-horizon control dictates that at each
step t, SOPHIS is run from xt, only the first action ut

of the returned sequence is applied, and then SOPHIS runs
again from xt+1. For this to be feasible, the algorithm must
run in significantly less time than Ts, the sampling time
of the system. This is however often impossible, especially
with fast, unstable nonlinear systems, for which Ts must be
small; examples include drones [12], pendulums [15], or ball-
balancing robots similar to them [7] etc. The required budget
n also grows large for complex nonlinear dynamics, making
the problem worse.

To delve into the first adaptation, note first that we run
control loop on one machine, and SOPHIS on another. The
two machines communicate over a network, with the control
machine acting as a server and the SOPHIS machine as a
client. Moreover, similarly to [22], we propose to apply a
subsequence of the sequence returned by SOPHIS to the
system. Denote the sequence returned as um

Tm
, meaning that

it has length Tm and was computed by the mth run of the
algorithm. While the control machine applies to the system
the subsequence containing the T inputs at the start of uTm

,
a different machine runs SOPHIS again, starting however
from a predicted state x̂t+T . This predicted state is found
by simulating the system dynamics from the current state xt,
using the first T inputs from the sequence. Then, by the time
the control machine finishes with applying the inputs, the
computation machine has already finished a new open-loop
SOPHIS run and returns a new output sequence um+1

Tm+1
. Keep

in mind that Tm and Tm+1 might not be equal. This procedure
is repeated as long as the experiment runs; a pseudocode of it
is given in Algorithm 1.

In the pseudocode, SOPHIS(x, n) represents one run of the
SOPHIS algorithm, starting from state x with budget n. In
order to choose T , we must keep in mind that the time needed
for the algorithm to run with budget n must be smaller than
TTs, where Ts is the sampling time. Thus, if we choose a
small value for T , we might end up with too little time to
compute an output sequence. On the other hand, ∀m ≥ 0, we

Algorithm 1: Real-time SOPHIS
Input: state x0, budget n, sub-sequence length T

1 SOPHIS Machine: u0
T0

=SOPHIS(x0, n);
2 Control Machine thread1()
3 initialize time step t = 0, m = 0;
4 while experiment still running do
5 thread2(um

T);
6 read current state xt;
7 find predicted state x̂t+T from xt using um

T ;
8 um+1

Tm+1
=sophis(x̂t+T);

9 update t = t+ T , m = m+ 1

1 Control Machine thread2(uT)
2 apply actions from uT once every Ts

1 SOPHIS Machine sophis(x̂t+T)
2 return u =SOPHIS(x̂t+T , n);

SOPHIS
machine
(Client)

Physical systemNetwork Control machine
(Server)

Network

Fig. 1: Overall control scheme

must have Tm ≥ T , so T has to be small enough for SOPHIS
to be able to output a sequence of at least this length. An
important remark is that we do not take into consideration the
mismatches between the model and the real system (which
might occur due to model uncertainties, perturbations etc),
so a too large sub-sequence length T could result in large
discrepancies between the real state and the predicted one, and
therefore poor performance. Taking these into consideration, a
balance between small and large T must be found. Later on,
we provide experiments that show its effect.

Of course, the control scheme also has a third component
beside the two machines: the physical system, see Figure 1.
The physical system is connected to the control machine,
which reads the values of the states and sends control inputs,
possibly also over a network (shown for u in the figure). On the
other side, the control machine (server) communicates with the
SOPHIS machine (client), which runs the adapted algorithm.
SOPHIS receives the predicted state x̂t+T from the control
machine and sends back the input sequence um+1

Tm+1
.

An example of the timings for a few steps in Algorithm 1
is shown in Figure 2. We only show a time interval starting
at step t and the mth call to SOPHIS. We notice how every
T steps, the SOPHIS algorithm is called, and once every step
t, an action from the returned sequence is sent to the system,
denoted by ul

T,j to represent the jth action of sequence ul
T

returned by the lth call to SOPHIS.

B. Parallelization

A second adaptation performed to apply SOPHIS in real-
time is to parallelize each of the algorithm’s iterations. More

SOPHIS SOPHIS

send

read

SOPHIS

send sendsendsend send

read

SOPHIS

send send

C
on

tro
l

M
ac
hi
ne

SO
PH

IS
M
ac
hi
ne

Fig. 2: Example of timings for T = 3

explicitly, instead of going sequentially through each depth
on the tree with unexpanded nodes and splitting them one by
one, we now split several nodes at a time, using one thread
for each, where each chosen node still has the largest v at
that depth. Note that each thread will expand a node from a
different depth. The number of threads is given as an input
parameter to the algorithm, and is denoted by τ . Therefore,
given that at some point in an iteration we are at depth H , we
will expand nodes at depths H,H + 1, H + 2, ...,H + τ − 1,
wrapping around to the smallest depth with unexpanded nodes
as soon as we exceed Hmax(n).

Once all the entire collection of τ notes have been expanded,
two options arise for the depth at which to start expanding in
the next round: H +1 or H + τ . The choice between the two
needs to be made for each different system. Rule H + 1 is
expected to work better in systems where there is generally
one trajectory that dominates all others in terms of rewards. In
this case, we expect that the highest-value node at depth H+1
will be a child of the highest-value node at depth H . The H+1
strategy handles this case well, while the H + τ strategy does
not, because the next iteration begins at depth H + τ , which
means the children that would have been expanded by the
original algorithm will be skipped. The other variant, H+τ , is
expected to work better for systems where it is better to search
many sequences in a breadth-first manner. The two versions
will be compared empirically later on.

The new parallelized SOPHIS procedure is presented in
Algorithm 2, where only the relevant details are included. The
dimension selection, discrete/continuous split type selection
and splitting procedure remain the same as in SOPHIS.
Notation A refers to the full collection of sets (leaves of the
tree), whereas Aj are the leaves at depth j. At line 8, the
selection between H+1 and H+ τ is based on which variant
of the algorithm one wants to use.

With the adaptations presented above, SOPHIS can now be
used in real-time experiments. Next, results are presented for
the control of an rotary inverted pendulum.

IV. RESULTS

This section presents and discusses the results of real-time
SOPHIS with the adaptations of Section III.

The algorithm is used to control a rotary inverted pendulum
system which has 4 states: x = [θ, θ̇, α, α̇], where θ is the

Algorithm 2: Parallelized SOPHIS
Input: τ

1 while budget still available do
2 H = smallest depth with unexpanded nodes;
3 if H ≥ Hmax(n) then
4 stop and exit the loop;
5 else
6 while H < Hmax(n) do
7 expand τ sets i†j = arg maxi∈Aj

v(i), one
on each thread; with
j ∈ {H,H + 1, ...,H + τ − 1};

8 H = H + τ or H = H + 1

Output: sequence û of set i∗ = argmaxi∈A v(i)

angle of the rotary arm of the system, and α is the angle of
the pendulum itself (both are measured in rad), see [2] for
the dynamics. The continuous input c is the usual voltage to
be applied to the pendulum, while the discrete input d is the
quantization level of c. We apply a ternary hierarchical quan-
tization scheme that matches the iterative interval refinement
in SOPHIS, where a larger discrete value corresponds to more
hierarchical levels and thus a more precise quantization, see
[14] for details. This is motivated by reducing network usage
on the input channel between the control machine and the
system.

Next, Section IV-A covers the effect of the two paralleliza-
tion variants and of the thread count on the performance of
the algorithm; and Section IV-B examines the execution time
as a function of the thread count. For these two experiments,
simulations are sufficient since these algorithm behaviors are
less influenced by mismatches between the simulation and the
real system. For the next experiments, we move to the real
rotary pendulum. Namely, Sections IV-C and IV-D respectively
cover the effect of the prediction horizon and of the budget
on the performance. Section IV-D also includes an example
trajectory of the pendulum controlled with real-time SOPHIS.

A. Parallelization Variants

As previously stated, two parallelization variants were con-
sidered, H+1 and H+τ . We ran simulations of these variants
with the number of threads τ ranging from 1 to 16. The
comparison between the two variants can be seen in Figure
3, where the vertical axis R gives the mean of the rewards at
each sampling period. The H + 1 variant resulted in a much
better mean reward than the H+τ variant.1 This leads us to the
conclusion that the system is of the type where the optimal
sequences are clearly distinguishable on the tree, which the
H + 1 variant handles better, as discussed in Section III-B.

Note that in the H + 1 variant the performance is good
irrespective of the number of threads τ . In contrast, the H+τ

1Even though the differences between the rewards are numerically small,
they correspond to large differences in practical system performance.

Fig. 3: Mean reward for the two parallelization variants and
a varying thread count τ (simulation)

variant skips τ nodes each iteration, and so for larger τ the
search is taken further away from good sequences.

B. Execution Time

The algorithm was simulated with a varying number of
threads. We measured the time required for the algorithm
to return one sequence of inputs using a large budget of
n = 20000. This measurement was done on a laptop with
an AMD Ryzen 7 5700U processor, which has 8 cores and 16
threads. Running this algorithm on different processors may
give different results, but we expect the overall dependence
of the execution time on τ to stay the same. This depen-
dence can be seen in Figure 4. As τ grew, the execution
time dropped until reaching a lower limit of approximately
17ms. This saturation could be the result of either operating
system limitations on processor usage, or limitations of the
parallelization scheme.

Fig. 4: Evolution of execution with the thread count τ
(simulation)

Another important consideration related to time constraints
is the sampling period of the control loop. The algorithm must
complete within T sampling periods while also leaving room
for the latency in communication between the client and the
server. Recall that T is the length of the applied subsequence,
and therefore also the prediction horizon for the next call to
SOPHIS. For example, in the case of the rotary pendulum
system, a sampling period of 50ms is small enough for the
algorithm to stabilize the system. With a budget of n = 20000

and 1 thread, the algorithm runs in 45ms, which, given that
the communication latency is smaller than 5ms satisfies the
time constraint.

C. Prediction Horizon

In case the required budget to control a given system results
in an execution time greater than the sampling period of the
system, or the communication latency causes the control loop
to violate the time constraint, we must increase the horizon T .
We therefore analyzed the effect of T on the performance of
the algorithm. From here on, we report real-life experiments
with the rotary pendulum.

We ran the experiment with two different strategies. In the
first, we used a fixed budget of n = 30000 regardless of T , and
in the second, we used the maximum budget possible while
still satisfying the time constraint: thus, the maximum budget
grows with T . The result can be seen in Figure 5. Overall,
the performance of the algorithm decreases with the horizon
T . This is expected because as we increase T , modeling
errors start to have a larger effect. In the case of the rotary
pendulum, both the fixed-budget and max-budget strategies
showed similar results, implying that modeling errors are more
important than the choice of strategy. This is most likely due to
the unstable nature of the system, making its behavior difficult
to predict accurately over large periods of time. We expect
the max-budget strategy to perform better when a sufficiently
accurate model of the system is available.

Fig. 5: Evolution of performance with the length T of the
prediction horizon (real-life experiment)

D. Budget

In order to analyze the effect of the budget n on the
algorithm performance, we ran experiments on the real system
with n taking several values in the range [1000, 30000]. The
result can be seen in Figure 6. We observed that n = 10000
is sufficient for good performance, and increasing n above
this value did not result in better performance. It is important
to note that (up to noise) larger budgets do not decrease
performance.

An example of an experiment run on a real rotary pendulum
using real-time SOPHIS can be seen in Figure 7. Here, the
algorithm was used with a sampling time of Ts = 40ms,

Fig. 6: Evolution of performance with the budget n (real-life
experiment)

budget n = 20000, prediction horizon T = 1, a thread
count τ = 8, and (note that for τ = 8 the algorithm takes
around 20ms in Figure 4). Although the results in Fig. 7 are
those of a single run, they are repeatable and typical of the
algorithm’s performance on this system. In the trajectory, we
observe some oscillations in θ. This is most likely due to the
discretization of the input applied to the system, along with
system’s inherent instability and the effects of measurement
noise on the algorithm. A video demonstration is available at
http://rocon.utcluj.ro/files/rtsophis rotpend.mp4.

Fig. 7: Real-time SOPHIS: Evolution in time of states,
actions, and rewards

V. CONCLUSIONS

We adapted SOPHIS – an algorithm for near-optimal control
of systems with hybrid inputs – for real-time usage, and
demonstrated good performance in simulations and experi-
ments on a fast, unstable rotary pendulum. Future work may
focus on analyzing the impact of these real-time adaptations
on the near-optimality guarantees, starting from ideas in [22];
on applying the same ideas to the non-simultaneous method

OPHIS; or on real-time control in more challenging problems
such as acrobatic drone flight.

REFERENCES

[1] L. G. Bleris and M. V. Kothare, “Real-time implementation of model
predictive control,” in Proceedings of the 2005 American Control
Conference. IEEE, 2005, pp. 4166–4171.

[2] L. Buşoniu, E. Páll, and R. Munos, “Discounted near-optimal control of
general continuous-action nonlinear systems using optimistic planning,”
in Proceedings of the 2016 American Control Conference (ACC). IEEE,
2016, pp. 203–208.

[3] M. Buss, M. Glocker, M. Hardt, O. Von Stryk, R. Bulirsch, and
G. Schmidt, “Nonlinear hybrid dynamical systems: modeling, optimal
control, and applications,” in Modelling, Analysis, and Design of Hybrid
Systems. Springer, 2002, pp. 311–335.

[4] W.-H. Chen, D. Ballance, and J. O’Reilly, “Model predictive control of
nonlinear systems: Computational burden and stability,” IEEE Proceed-
ings on Control Theory and Applications, vol. 147, no. 4, pp. 387–394,
2000.

[5] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and
F. Allgöwer, “Real-time optimization and nonlinear model predictive
control of processes governed by differential-algebraic equations,” Jour-
nal of Process Control, vol. 12, no. 4, pp. 577–585, 2002.

[6] M. Diehl, R. Findeisen, and F. Allgöwer, “A stabilizing real-time
implementation of nonlinear model predictive control,” in Real-Time
PDE-Constrained Optimization. SIAM, 2007, pp. 25–52.

[7] P. Fankhauser and C. Gwerder, “Modeling and control of a ballbot,”
B.S. thesis, Eidgenössische Technische Hochschule Zürich, 2010.

[8] R. Findeisen and F. Allgöwer, “Computational delay in nonlinear
model predictive control,” in Proceedings International Symposium on
Advanced Control of Chemical Processes, Hong Kong, 2004, pp. 427–
432.

[9] P. J. Gawthrop and L. Wang, “Intermittent predictive control of an
inverted pendulum,” Control Engineering Practice, vol. 14, no. 11, pp.
1347–1356, 2006.

[10] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory
and Algorithms. Springer, 2011.

[11] L. Jin, R. Kumar, and N. Elia, “Model predictive control-based real-
time power system protection schemes,” IEEE Transactions on Power
Systems, vol. 25, no. 2, pp. 988–998, 2009.

[12] V. Kangunde, R. S. Jamisola Jr, and E. K. Theophilus, “A review on
drones controlled in real-time,” International Journal of Dynamics and
Control, vol. 9, no. 4, pp. 1832–1846, 2021.

[13] I. Lal, I.-C. Morărescu, J. Daafouz, and L. Buşoniu, “Optimistic planning
for control of hybrid-input nonlinear systems,” Automatica, vol. 154, p.
111097, 2023.

[14] I. Lal, I.-C. Morărescu, J. Daafouz, and L. Buşoniu, “Near-optimal con-
trol of nonlinear systems with hybrid inputs and dwell-time constraints,”
IEEE Control Systems Letters, vol. 7, pp. 2455–2460, 2023.

[15] G. Medrano-Cersa, “Robust computer control of an inverted pendulum,”
IEEE Control Systems Magazine, vol. 19, no. 3, pp. 58–67, 1999.

[16] R. Munos, “The optimistic principle applied to games, optimization and
planning: Towards foundations of Monte-Carlo tree search,” Foundations
and Trends in Machine Learning, vol. 7, no. 1, pp. 1–130, 2014.

[17] N. N. Nandola and S. Bhartiya, “A multiple model approach for
predictive control of nonlinear hybrid systems,” Journal of Process
Control, vol. 18, no. 2, pp. 131–148, 2008.

[18] E. Ronco, T. Arsan, and P. Gawthrop, “Open-loop intermittent feedback
control: practical continuous-time GPC,” IEE Proceedings on Control
Theory and Applications, vol. 146, no. 5, pp. 426–434, 1999.

[19] O. Slupphaug, J. Vada, and B. A. Foss, “MPC in systems with contin-
uous and discrete control inputs,” in Proceedings of the 1997 American
Control Conference, vol. 5. IEEE, 1997, pp. 3495–3499.

[20] A. J. Van Der Schaft and J. M. Schumacher, An introduction to hybrid
dynamical systems. Springer London, 2007, vol. 251.

[21] P. D. Vouzis, L. G. Bleris, M. G. Arnold, and M. V. Kothare, “A system-
on-a-chip implementation for embedded real-time model predictive
control,” IEEE Transactions on Control Systems Technology, vol. 17,
no. 5, pp. 1006–1017, 2009.

[22] T. Wensveen, L. Busoniu, and R. Babuka, “Real-time optimistic plan-
ning with action sequences,” in Proceedings of the 20th International
Conference on Control Systems and Computer Science, 2015, pp. 923–
930.

http://rocon.utcluj.ro/files/rtsophis_rotpend.mp4

	Introduction
	Background
	Real-Time Sophis
	Separating Control From Computation
	Parallelization

	Results
	Parallelization Variants
	Execution Time
	Prediction Horizon
	Budget

	Conclusions
	References

