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Motivation

In general:
Sometimes a simple first or second-order model is sufficient;
transient analysis offers an easy way to obtain it.

For students:
Closest relation to prior knowledge from system theory ⇒ gentle
transition towards other techniques.
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Classification

Recall Taxonomy of mathematical models from Part I:

By number of parameters:

1 Parametric models: have a fixed form (mathematical formula),
with a known, often small number of parameters

2 Nonparametric models: cannot be described by a fixed, small
number of parameters
Often represented as graphs or tables

By amount of prior knowledge (“color”):

1 First-principles, white-box models: fully known in advance
2 Black-box models: entirely unknown
3 Gray-box models: partially known
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Classification (continued)

Step and impulse response models can be seen as nonparametric
models, for those steps in which we study the graph of the response.

However, based on information from the graph, we will in the end find
a transfer function – a parametric model.

These models are best classified as gray-box.

The study of these models is called transient analysis, since it relies
in a large part on the transient regime of the response.
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A definition of linear systems

A system is linear if it satisfies:

Superposition: If for input u1(t) the system responds with output
y1(t); and for u2(t) the system responds with y2(t); then
for input u1(t) + u2(t) the system will respond with
y1(t) + y2(t).

Homogeneity: If for input u(t) the system responds with output y(t);
then for input αu(t) the system will respond with αy(t).
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Transfer function representation

The transfer function is:

H(s) =
Y (s)

U(s)
=

bmsm + bm−1sm−1 + . . . + b1s + b0

ansn + an−1sn−1 + . . . + a1s + a0
, m ≤ n

where U(s) and Y (s) are, respectively, the Laplace transforms of the
input and output signals u(t) and y(t).
(Important: in zero initial conditions.)

The Laplace transform of a signal f (t) is:

F (s) = L[f (t)] =

∫ ∞

0
f (t)e−st dt
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Laplace transform interpretation

s is called complex argument (it is a complex number), and the
Laplace transform can be seen as taking a function from the time
domain t to the complex domain s.
The motivation is that many signal operations common in
engineering (differentiation, integration, etc.) become much
simpler in the s domain.
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First order system: Motivating example

First-order systems are common. Typical example: a thermal system.
Consider an object at temperature θ1 (output variable) placed in an
environment at temperature θ2 (input variable). Then:

Cθ̇1(t) =
θ2(t)− θ1(t)

R

where C is the thermal capacitance and R is the thermal resistance.

Applying the Laplace transform on both sides:

CsΘ1(s) =
Θ2(s)−Θ1(s)

R

leading to the transfer function:

H(s) =
Θ1(s)

Θ2(s)
=

1
CRs + 1
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First order system: General form

H(s) =
K

Ts + 1
where:

K is the gain (= 1 in the example)
T is the time constant (= CR in the example)
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Ideal step input

uS(t) =

{
0 t ≤ 0
1 t > 0
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Ideal 1st order response

Solving the differential equation for y(t) (or easier: solve for Y (s) and
then apply inverse Laplace transform L−1), we get:

y(t) = K (1− e−t/T )

from where:
lim

t→∞
y(t) = K (1− 0) = K

ẏ(t) =
K
T

e−t/T , ẏ(0) =
K
T

e0 =
K
T

y(T ) = K (1− e−1) ≈ 0.632K

and similar for t = 2T , 3T , 4T (see figure).

Note: output within 2% of steady state after 4T.
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Determining the parameters

So far, everything known from: Sys. Theory, Process Modeling.

Now, consider we are given a step response of an unknown system.
We can use it to find an approximate transfer function of the system.

Algorithm for system identification
1 Read the steady-state value. That is the gain K .
2 Determine the time value where the output reaches 0.632 of its

steady state value. That is the time constant T .
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Nonzero initial conditions

In practice, we often cannot use ideal step signals: the system must
be kept around a safe/profitable operating point. In particular, assume
the system was in steady-state at y0 with input held constant at u0.

Real-life step inputs are often rectangular signals as below. The
system response is therefore nonstandard.

But recall linearity properties. Our new input is
u(t) = u0 + (uss − u0)uS(t) with uS(t) the ideal step input. Then,
denoting the ideal step response by yS(t), we have the new output:

y(t) = y0 + (uss − u0)yS(t)

simply a shifted and scaled version.
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Nonzero initial conditions (continued)

Then we obtain:
yss = y0 + (uss − u0)K

y(T ) = y0 + 0.632(yss − y0)
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Nonzero step time

The start time of the step may also be different from 0, solved easily
by shifting the time axis. Such a situation can occur for any of the step
and impulse responses throughout the remainder of this part, and it is
always handled the same way. We will provide details for the step
responses, and the same idea can be applied for impulse responses.
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General algorithm

General algorithm
1 Read u0, y0, uss, yss the initial and steady-state values of the

input and output signals. Compute K = yss−y0
uss−u0

.

2 Read t0 the start time of the step, t1 the time where the output
raises 0.632 of the difference. Compute T = t1 − t0 .
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Example: Thermal system

Consider the thermal system in the figure (different from the example
above). The input is the voltage V applied to the lamp, the output is
the temperature θ read by a thermocouple at the back of the steel
plate.
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Thermal system: Experimental data

The data is obtained from the Daisy database. The signals are sampled in
discrete time with sampling period Ts = 2 s, but for transient analysis, we will
treat them as continuous-time.

Note: the presence of noise in the data! This is virtually always true in
identification experiments.

We use the first step for identification, and the others for validation.
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Sampling period

Definition: The sampling period Ts is the continuous time-interval
between two successive discrete-time sampling points (of the input,
output, or other signals in the system).

Don’t confuse sampling period Ts with the time constant T multiplied
by complex argument s!
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Thermal system: Model and parameters

We have yss ≈ 192◦ C, y0 ≈ 129◦ C. Also, the input uss = 9 V and
(from the experiment) we know that u0 = 6 V. Therefore:

K =
yss − y0

uss − u0
≈ 192− 129

9− 6
≈ 21

Further, y(T ) = y0 + 0.632(yss − y0) ≈ 169, and identifying this point
on the graph we get T ≈ 60.
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Thermal system: Transfer function model

K̂ = 21

T̂ = 60

Ĥ(s) =
K̂

T̂ s + 1
=

21
60s + 1

The “hat” notation makes explicit the fact that the model is an
approximation.

Matlab: H = tf(num, den), with polynomials represented as
vectors of coefficients in decreasing powers of s.

(Note: Actual calculations done in double representation with Matlab,
so using the numbers given in the slides will lead to slightly different
results. This remark applies to all the examples.)
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Thermal system: Validation of transfer function model

Note special steps needed to take into account the nonzero initial
condition of the system; we will learn about them under impulse
response analysis.

The fit is not great – the cooling dynamics are quite slower than the
heating dynamics, for example, so in reality this is not a simple
first-order system.

Nevertheless, the transfer function is sufficient for a rough initial
model: this is the typical use of transient analysis.
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Thermal system: Validation (continued)

Mean squared error (MSE) on the validation data (second and further
steps):

J =
1
N

N∑
k=1

e2(k) =
1
N

N∑
k=1

(ŷ(k)− y(k))2 ≈ 62.10

Recall that the data is actually sampled in discrete time, so a
meaningful MSE can be computed.
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Second order system: Motivating example

Second-order systems are also quite common.

Consider a mass m tied to a spring, to which we apply a force f (the
input) away from the spring. We measure the position x of the mass
relative to the resting spring position (output). From Newton’s second
law:

mẍ(t) = f (t)− kx(t)
where k is the spring constant.

Applying the Laplace transform on both sides:

ms2X (s) = F (s)− kX (s)

leading to the transfer function:

H(s) =
X (s)

F (s)
=

1
ms2 + k
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Second order system: General form

H(s) =
Kω2

n

s2 + 2ξωns + ω2
n

where:

K is the gain (= 1
k in the example)

ξ is the damping (= 0 in the example)
ωn is the natural frequency (=

√
k/m in the example)
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2nd order step response shapes

Damping factor ξ is crucial in determining step response shape.

ξ = 0, undamped

ξ ∈ (0, 1), underdamped; smaller ξ gives larger oscillations
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2nd order step response shapes (continued)

ξ = 1, critically damped

ξ > 1, overdamped
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Underdamped 2nd order step response

We are mostly interested in the underdamped case (ξ ∈ (0, 1))

Solving for y(t) we get:

y(t) = K

[
1− 1√

1− ξ2
e−ξωnt sin(ωn

√
1− ξ2t + arccos ξ)

]
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Response characteristics

Steady-state value: limt→∞ K
[
1− 1√

1−ξ2
e−ξωnt sin(. . . )

]
= K

To get the peaks and valleys, we solve for zero derivative:

ẏ(t) =
Kωn√
1− ξ2

e−ξωnt sin(ωn

√
1− ξ2t) = 0

⇒ tm =
mπ

ωn
√

1− ξ2
, m ≥ 0

y(tm) = K [1 + (−1)m+1Mm], where overshoot M = e
− ξπ√

1−ξ2
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Starting from the step response

Now, consider we are given a step response of an unknown system.
Using the insight developed above, we can find an approximate
transfer function of the system.
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Determining the parameters

Algorithm
1 Determine steady-state output value yss. That is the gain K .
2 Determine overshoot M, (a) from the first peak: M = y(t1)−yss

yss
, or

(b) from ratio of first valley and first peak: M = yss−y(t2)
y(t1)−yss

.

3 Solve M = e
− ξπ√

1−ξ2 , leading to ξ = log 1/M√
π2+log2 M

4 Read oscillation period as the time between first two peaks
T0 = t3 − t1 = 2π

ωn

√
1−ξ2

; or twice first valley - first peak,

T0 = 2(t2 − t1). Then, ωn = 2π

T0

√
1−ξ2

, or ωn = 2
T0

√
π2 + log2 M.
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Nonzero initial conditions

Similar to 1st order case: new input u(t) = u0 + (uss − u0)uS(t), so
the new output is again just a shifted and scaled version of the ideal
step response yS(t): y(t) = y0 + (uss − u0)yS(t). Modified algorithm:

1 Gain K = yss−y0
uss−u0

.

2 Overshoot (a) M = y(t1)−yss
yss−y0

(we need to subtract y0), or (b)

M = yss−y(t2)
y(t1)−yss

(no change in this formula).

ξ, T0: same as before.
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Nonzero initial time

Like in the first-order case, we simply shift everything by the starting
time t0 of the step. This has no impact in the algorithm as we use
relative times to compute the oscillation period, anyway.
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2nd order example

Simulation example, 500 samples with sampling time ≈ 0.047.

Note again the measurement noise. Also, while the experiment has
zero initial condition (u0 = y0 = 0), the steps still have nonstandard
values (different from 1).

We will use step 1 for identification, steps 3-5 for validation (using the
fact that step 2 returns the system to zero initial condition).
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Example: step response model

Since the output is noisy, we determine the steady state value by
averaging a few last samples in steady-state, namely numbers 90 to
100, between t4 and t5:

yss ≈
1
11

∑100

k=90
y(k) ≈ 1.00

We read on the graph: t1 ≈ 0.65, t2 ≈ 1.35, t3 ≈ 1.96, y(t1) ≈ 1.37,
y(t2) ≈ 0.86. Finally, uss = 4.
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Example: Determining the parameters

1 Gain K = yss−y0
uss−u0

= yss
uss
≈ 0.25.

2 Overshoot M = y(t1)−yss
yss−y0

= y(t1)−yss
yss

≈ 0.36.

3 Damping ξ = log 1/M√
π2+log2 M

≈ 0.31.

4 Period T0 = t3 − t1 ≈ 1.31, so natural frequency
ωn = 2π

T0

√
1−ξ2

≈ 5.05.
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Example: Transfer function model

K̂ = 0.25

ξ̂ = 0.31
ω̂n = 5.05

Ĥ(s) =
K̂ ω̂2

n

s2 + 2ξ̂ω̂ns + ω̂2
n

=
6.38

s2 + 3.09s + 25.51
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Example: Validation of transfer function model

Very good fit (not surprising since this is synthetic data).

Mean squared error (MSE):

J =
1
N

N∑
k=1

e2(k) =
1
N

N∑
k=1

(ŷ(k)− y(k))2 ≈ 9.66 · 10−5
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Choosing the order

Even when it is overdamped or
critically-damped, at t = 0 a 2nd
order system response will have a
derivative of 0: it will be tangent to
the time axis. In contrast, the
tangent slope is K/T for 1st order
systems.
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Time delay

The response of a 1st or 2nd order system with a time delay of τ has
the same shape as before, but after the input changes, there is a
delay of τ before the output responds.

The delay is represented in the transfer function as follows, for first
and second-order systems:

H(s) =
K

Ts + 1
e−sτ , H(s) =

Kω2
n

s2 + 2ξωns + ω2
n

e−sτ

The value of τ can be simply read on the graph.

Don’t mix it up with the nonzero step time! For the responses above,
the step input itself was applied at time 0.
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Time delay and nonzero step time

Everything is computed relative to the starting time t0 of the step. The
time delay τ is the interval after this taken by the output to start
reacting.
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Summary step response

Gain K : difference between output levels / difference between
input levels.
1st order: time constant T found on time axis when the output
axis reaches 63.2% of the difference.
2nd order: period T0 read on the graph, overshoot M computed
from the peaks and valleys. ξ, ωn follow.
Graph inspection + mean squared error used to validate models.
Averaging to reject noise in initial/steady-state values.
Nonzero initial time and time delays handled by shifting the time
values appropriately; time delay goes in transfer function.
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Ideal impulse input

The ideal impulse is the Dirac delta. An informal definition:

uI(t) =

{
∞ t = 0
0 t 6= 0

with the additional condition
∫∞
−∞ uI(t)dt = 1.

(In fact, the ideal impulse is not a function and requires the notion of
distributions to be formally defined.)
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Practical impulse realization
In practice, we cannot create signals of infinite amplitude.
So, an approximate impulse is realized with the rectangular signal:

uIR(t) =

{
1
α t ∈ [0, α)

0 otherwise

where α � (much smaller than the time constants in the system).

Note the signal still obeys
∫∞
−∞ uIR(t)dt = 1 (rectangle has area 1).

This approximate impulse will introduce differences (error) from the
true impulse response, but for small α the error is not large. We
develop the analysis in the ideal case, while the examples use the
practical realization.
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Useful property of impulse response

In the Laplace domain:

step input US(s) =
1
s
, impulse input UI(s) = 1

Recall that the time-domain response of a system can be expressed
as: y(t) = L−1 {Y (s)}, and Y (s) = H(s)U(s). So:

YS(s) =
1
s

YI(s), YI(s) = sYS(s)

yS(t) =

∫ t

0
yI(τ)dτ, yI(t) = ẏS(t)

The impulse response is the derivative of the step response.
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Recall: First order system

H(s) =
K

Ts + 1
where:

K is the gain
T is the time constant
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Ideal 1st order impulse response

Using the relation to the step response, and the derivative of the step
response we already computed, we have the impulse response:

yI(t) =
K
T

e−t/T , t ≥ 0

from where:


yI(0) =

K
T

= ymax

yI(T ) =
K
T

e−1 = ymaxe−1 ≈ 0.368ymax

Note: yI(4T ) = 0.0183ymax, so like for the step response, the output
is roughly in steady state after 4T .
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Nonzero initial conditions

When the initial conditions are nonzero, the impulse is shifted along
the vertical axis. Assume the system was in steady-state at y0 with
input held constant at u0.

From linearity, given the shifted u(t) = u0 + uI(t), we have a shifted
y(t) = y0 + yI(t). Note the input is not scaled as the result would no
longer be an approximate impulse (area different from 1).

So the behavior is:

 ymax = y0 +
K
T

y(T ) = y0 + 0.368(ymax − y0)

Note u0 = uss, y0 = yss.
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Determining the parameters
Consider now that we are given the impulse response of an unknown
system. As in the step case, we can use this response to find an
approximate transfer function (a parametric model) of the system.

We consider first nonzero initial conditions because that is actually a
favorable situation: we have a reliable way to find the gain K .

Algorithm
1 Read the steady-state (or initial) output yss = y0 and input

uss = u0. Then, K = yss/uss .
2 Read ymax and read the time constant T at the moment where

the output decreases to 0.368 of the difference ymax − y0 .
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Determining the parameters in zero initial conditions

We can estimate the gain by using ymax = K
T , but in practice this will

not be as accurate (e.g. because of noise and the non-ideal impulse
signal).

Algorithm
1 Read ymax and determine the time where the output decreases to

0.368 of ymax. That is the time constant T .
2 Find K = ymaxT .
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1st order example

Simulation example, 330 samples with sampling time Ts = 0.28 (30
samples are the initial steady-state regime, then 100 for each impulse
response). The practical impulses are realized with α = Ts = 0.28,
amplitude 1/α ≈ 3.57.

Note the measurement noise and the nonzero initial condition.

We will use impulse 1 for identification, impulses 2-3 for validation.
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Example: Model and parameters

We use the graph to estimate a transfer function. We have
u0 = uss = 0.5.

We find the steady state output (equal to the initial output) by
averaging a few steady-state samples:

yss = y0 ≈
1

11

130∑
k=120

y(k) ≈ 0.13
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Example: Model and parameters (continued)

The maximum output value is ymax ≈ 0.19, reached at t1 ≈ 8.86.
Value y0 + 0.368(ymax − y0) ≈ 0.15 is reached at t2 ≈ 12.60.
Therefore:

1 K = yss/uss ≈ 0.25.
2 T = t2 − t1 ≈ 3.92.

Note we take into account the nonzero time t1 when the impulse is
applied!
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Example: Transfer function model

K̂ = 0.25

T̂ = 3.92

Ĥ(s) =
K̂

T̂ s + 1
=

0.25
3.92s + 1
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Example: Validation of transfer function model

Comparison of system data and model response for the validation
data (second and third impulse responses):

The simulation does not take into account the nonzero initial condition
of the system, hence the first part has large differences.

We will present a method to take into account initial conditions, which
works not only for impulse signals, but for any input (step, etc.).
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State space model of an nth order system

A (continuous-time) state space model of a linear system is a
representation of the system in the following form:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

where:

x state vector, x ∈ Rn with n the order of the system
u and y are the usual input and output. They can be vectors if
the system has several inputs or outputs, but for us here, a scalar
input and output are enough.
A state matrix, B input matrix, C output matrix, and D
feedthrough matrix. They have appropriate dimensions:
A ∈ Rn×n, B ∈ Rn×1 (a vector, due to scalar input), C ∈ R1×n (a
vector, due to scalar output), D ∈ R (a scalar, usually 0).
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State space model of a general 1st order system

Starting from transfer function model:

H(s) =
K

Ts + 1
=

Y (s)

U(s)

and moving back to the time domain we get:

ẏ(t) =
−1
T

y(t) +
K
T

u(t)

By simply taking x = y (recall that the system has order 1 so a single
state suffices), we can write:

ẋ(t) = − 1
T

x(t) +
K
T

u(t)

y(t) = x(t)

so our state space model has A = − 1
T , B = K

T , C = 1, D = 0.
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Back to example: (Approximate) state space model

ẋ(t) = − 1

T̂
x(t) +

K̂

T̂
u(t) = −0.26x(t) + 0.06u(t)

y(t) = x(t)

Matlab: Hss = ss(A, B, C, D)
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Example: Validation with correct initial condition

To take the initial condition into account, we simply set x(0) = y0
when starting the simulation.

Mean squared error (MSE) on the validation data:

J =
1
N

N∑
k=1

e2(k) ≈ 3.74 · 10−6
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Recall: Second order system

H(s) =
Kω2

n

s2 + 2ξωns + ω2
n

where:

K is the gain
ξ is the damping factor
ωn is the natural frequency
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2nd order impulse response shapes

As for the step response, the damping factor ξ determines the shape.

ξ = 0, undamped

ξ ∈ (0, 1), underdamped – we are interested in this case
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2nd order impulse response shapes (continued)

ξ = 1, critically damped

ξ > 1, overdamped
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Underdamped impulse response

Using the derivative of the step response we already computed, we
have the impulse response:

yI(t) =
Kωn√
1− ξ2

e−ξωnt sin(ωn

√
1− ξ2t)

Already note that the oscillation period is unchanged, so
T0 = t3 − t1 = 2(t2 − t1).
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Underdamped impulse response (continued)

Since yS(t) =
∫ t

0 yI(τ)dτ , and remembering the sizes of the first peak
and valley in the step response as a function of the overshoot M:

A+ =

∫ t0,1

0
yI(τ)dτ = yS(t0,1) = K + KM, A− = −

∫ t0,2

t0,1

yI(τ)dτ =

= −[yS(t0,2)− yS(t0,1)] = −[K − KM2 − (K + KM)] = KM2 + KM
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Underdamped impulse response (continued)

Therefore:
A−
A+

=
KM2 + KM

K + KM
= M
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Nonzero initial conditions: estimating K

In nonzero initial conditions, the impulse is shifted, u(t) = u0 + uI(t),
leading to a shifted y(t) = y0 + yI(t). Note u0 = uss, y0 = yss.

From the steady-state values we can estimate the gain: K = yss
uss

.
There is no change in T0, but the areas must now be found relative to
the steady-state value:

A+ =

∫ t0,1

0
(y(τ)− y0)dτ = K + KM

A− = −
∫ t0,2

t0,1

(y(τ)− y0)dτ =

∫ t0,2

t0,1

(y0 − y(τ))dτ = KM2 + KM
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Determining the parameters
Given the impulse response of an unknown system, the transfer
function is found as follows:

Algorithm

1 Read steady-state output yss, and uss. The gain is K = yss
uss

.

2 Read time values where y(t) crosses yss: t0,1, t0,2,. Compute
areas A+ =

∫ t0,1

0 (y(τ)− y0)dτ , A− =
∫ t0,2

t0,1
(y0 − y(τ))dτ . Find

overshoot M = A−
A+

.

3 The damping factor is ξ = log 1/M√
π2+log2 M

.

4 Read time values at peaks, t1, t3 (or peak and valley t1, t2). Find
the oscillation period T0 = t3 − t1 , or T0 = 2(t2 − t1).

5 Natural frequency ωn = 2π

T0

√
1−ξ2

, or ωn = 2
T0

√
π2 + log2 M.

Note the relationships between M, T0, ξ, and ωn are true regardless
of the response type, so algorithm steps 3 and 5 use the same
formulas as in the step-response case.
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Determining the gain in zero initial conditions

We solve ẏ(t) = 0 to get t1 for the first peak, and replace it in y(t) to
get the value at the peak. After some calculation we obtain:

y(t1) = Kωne
− ξ arccos ξ√

1−ξ2

which can be used to estimate the gain as K = y(t1)

ωne
− ξ arccos ξ√

1−ξ2

. This

requires ξ and ωn to be computed by the methods above, which can
be done regardless of the initial condition.

For the same reasons as in the first-order case, this method is less
accurate than determining the gain from nonzero steady-state values.
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2nd order example

Simulation example, 330 samples with sampling time ≈ 0.053.

We again have a nonzero initial condition (and as usual measurement
noise).

We will use impulse 1 for identification, impulses 2-3 for validation.
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Example: Steady-state values and gain

We use the graph to estimate a transfer function. We have
u0 = uss = 2.

We determine the steady state output (equal to the initial output) by
averaging the last 11 samples:

yss = y0 ≈
1

11

130∑
k=120

y(k) ≈ 0.5

Therefore K = yss
uss
≈ 0.25.
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Example: Damping factor

We read t0,0 ≈ 1.6, t0,1 ≈ 2.3, t0,3 ≈ 2.99. Note the impulse is applied
at time t0,0 6= 0, so we need to take this into account.

The areas are estimated numerically:

A+ =

∫ t0,1

t0,0

(y(τ)− y0)dτ ≈ Ts

k0,1∑
k=k0,0

(y(k)− y0) ≈ 0.34

A− =

∫ t0,2

t0,1

(y0 − y(τ))dτ ≈ Ts

k0,2∑
k=k0,1

(y0 − y(k)) ≈ 0.12

with k0,0, k0,1, k0,2 sample indices corresponding to t0,0, t0,1, t0,2.
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Example: Damping factor (continued)

From these areas, M = A−
A+
≈ 0.36, and ξ = log 1/M√

π2+log2 M
≈ 0.31.
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Example: Oscillation period

We read t1 ≈ 1.92 and t3 ≈ 3.2, leading to T0 = 1.28. From this,
ωn = 2π

T0

√
1−ξ2

≈ 5.16.
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Example: Transfer function model

K̂ = 0.25

ξ̂ = 0.31
ω̂n = 5.16

Ĥ(s) =
K̂ ω̂2

n

s2 + 2ξ̂ω̂ns + ω̂2
n

=
6.64

s2 + 3.21s + 26.68



Linear modelsStep 1st order Step 2nd order Impulse 1st order Impulse 2nd order

General state space model of a 2nd order system

Recall that to simulate starting from nonzero initial conditions, we
need a state space model ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t).
Starting from H(s) and moving to the time domain, we get:

ÿ(t) = −2ξωnẏ(t)− ω2
ny(t) + Kω2

nu(t)

By taking x1 = y , x2 = ẏ (since system has order 2), we can write:[
ẋ1(t)
ẋ2(t)

]
=

[
x2(t)

−2ξωnx2(t)− ω2
nx1(t) + Kω2

nu(t)

]
=

[
0 1
−ω2

n −2ξωn

] [
x1(t)
x2(t)

]
+

[
0

Kω2
n

]
u(t)

y(t) = x1(t) =
[
1 0

] [
x1(t)
x2(t)

]
+ 0u(t)

from where the matrices A, B, C, D of the state-space model are
obtained.
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Back to example: (Approximate) state space model

ẋ(t) =

[
0 1

−26.68 −3.22

]
x(t) +

[
0

6.64

]
u(t)

y(t) =
[
1 0

]
x(t) + 0u(t)

where x is now the whole state vector, x(t) =

[
x1(t)
x2(t)

]
.
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Example: Validation

To take the initial condition into account, we set x1(0) = y0, x2(0) = 0
when starting the simulation (we start from steady state, so
x2(0) = ẏ(0) = 0).

Mean squared error (MSE) on the validation data:

J =
1
N

N∑
k=1

e2(k) ≈ 8 · 10−4
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Time delay

Like the step response, the impulse response of a 1st or 2nd order
system with a time delay of τ has the typical shape, but after the input
changes, there is a delay of τ before the output responds. The value
of τ can be simply read on the graph.

Transfer functions:

H(s) =
K

Ts + 1
e−sτ , H(s) =

Kω2
n

s2 + 2ξωns + ω2
n

e−sτ
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Summary impulse response

Impulse response = derivative of the step response.
Gain K : output/input in nonzero initial conditions, otherwise from
maximum value.
1st order: time constant T found on time axis when the output
axis reaches 36.8% of the difference.
2nd order: period T0 read on the graph, overshoot M computed
via numerical integration. ξ, ωn follow.
State-space model to handle nonzero initial conditions.
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