
System Identification – Practical Assignment 10:
Recursive ARX identification

Logistics

Please reread the logistics part of lab 2, the same rules will apply to this lab. The only thing that changes
is the dropbox link, which for this lab is:

https://www.dropbox.com/request/UpfR2YhadnufDx5Jp6jr

Assignment description

In this assignment we will study the recursive variant of the ARX method, see the lecture: Recursive
identification methods. Each student is assigned an index number by the lecturer. Then, the student
downloads the data file that forms the basis of the assignment from the course webpage. The file contains
the identification data in variable id, and separately the validation data in variable val.

From prior knowledge, it is known that the system has order n, given in variable n in the data file;
that it is of the output error (OE) type; and that it has no time delay. To account for the model type
mismatch we will take larger orders for all the ARX models to be found. The recommendation is to take
na = nb = 3 · n.

• Implement the general recursive ARX algorithm in a Matlab function; see the pseudocode below
with additional hints compared to the lecture. This function should take at the input the identifica-
tion dataset, the model orders na and nb, the initial parameter vector θ(0), and the initial inverse
matrix P−1(0). The function should produce at the output a matrix Θ ∈ RN×(na+nb) containing
on each row k the parameter vector θ(k): first the coefficients a1, . . . , ana of A, and then the co-
efficients b1, . . . , bnb of B (this is compatible with the output of the Matlab function, so it will be
easier to compare later).

• Run recursive ARX identification with the function you implemented, on the identification data,
using an initial matrix P−1(0) = 100Ina+nb. Compare on the validation data the quality of two
models: one with the final parameters found after processing the whole dataset; and another after
only 10% of the data. Which model is better? Think about the reasons.

• Optionally, if you still have time, repeat the initial experiment, but now with the already available
Matlab function rarx. Compare the results it gives (e.g., the 10% and 100% models) with those
given by your own function, to verify whether they are the same or similar.

Relevant functions from the System Identification toolbox: rarx, idpoly, compare. Additional
hints:

• Once you have your polynomials A and B as vectors of coefficients in increasing powers of q−1,
use idpoly(A, B, [], [], [], 0, Ts) to generate the ARX model, where Ts is the
sampling period. Do not forget that all vectors of polynomial coefficients must always contain
the leading constant coefficients (power 0 of the argument q−1), which must be 1 in A and 0 in
B. Keep in mind that the matrix of parameters returned by the algorithm does not contain these
leading coefficients.

1

https://www.dropbox.com/request/UpfR2YhadnufDx5Jp6jr�


1: initialize θ̂(0) (an na + nb column vector), P−1(0) (a (na + nb)× (na + nb) matrix)
2: loop at every step k = 1, 2, . . .
3: retrieve u(k), y(k)
4: form ARX regressor vector: ϕ(k) = [−y(k − 1), · · · ,−y(k − na), u(k − 1), · · · , u(k − nb)]>

5: find prediction error: ε(k) = y(k)− ϕ>(k)θ̂(k − 1) (a scalar)
6: update inverse: P−1(k) = P−1(k − 1)− P−1(k−1)ϕ(k)ϕ>(k)P−1(k−1)

1+ϕ>(k)P−1(k−1)ϕ(k)

7: compute weights: W (k) = P−1(k)ϕ(k) (an (na + nb) column vector)
8: update parameters: θ̂(k) = θ̂(k − 1) + W (k)ε(k)
9: end loop

• Predefined function rarx takes at the input the identification dataset, the model orders na and nb
and the delay nk as a vector, the ’ff’, 1 arguments to configure the algorithm as in the lecture,
the initial parameter vector θ(0), and the initial inverse matrix P−1(0). The quantity denoted P by
documentation of the rarxMatlab function is actually the inverse matrix P−1 from the lecture, so
be careful when setting it. The function produces at the output a matrix Θ with the same structure
as explained above.

2


