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Input signals
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Motivation

Choosing inputs is the core of experiment design

All identification methods require inputs to satisfy certain conditions,
for example:

Transient analysis requires step or impulse inputs
Correlation analysis preferably works with white-noise input
ARX requires “sufficiently informative” inputs
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Plan

In this part we:

Revisit some types of input signals that were already used
Describe a few new types of input signals
Discuss choices and properties of input signals important for
system identification
Characterize the signals discussed using the properties
introduced
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Step input

Left: Unit step:

u(k) =

{
0 k < 0
1 k ≥ 0

Right: Step of arbitrary magnitude:

u(k) =

{
0 k < 0
uss k ≥ 0

Remark: These are discrete-time reformulations of the
continuous-time variants.
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Impulse input

In discrete-time, we cannot freely approximate the ideal impulse (left),
since the signal can only change values at the sampling instants.

Right: Discrete-time impulse realization:

u(k) =

{
uimp k = 0
0 otherwise

When uimp = 1
Ts

, the integral of the signal is 1 and we get an
approximation of the continuous-time impulse.
When uimp = 1 (e.g. in correlation analysis), we get a “unit”
discrete-time impulse.
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Sum of sines

u(k) =
m∑

j=1

ajsin(ωjk + ϕj)

aj : amplitudes of the m component sines
ωj : frequencies, 0 ≤ ω1 < ω2 < . . . < ωm ≤ π
ϕj : phases
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White noise

Recall zero-mean white noise: mean 0, different steps uncorrelated.

In the figure, values were independently drawn from a zero-mean
Gaussian distribution.
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Pseudo-random binary sequence (PRBS)

A signal that switches between two discrete values, generated with a
specific algorithm.

Interesting because it approximates white noise, and so it inherits
some of the useful properties of white noise (formalized later).
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PRBS generator

PRBS can be generated with a linear shift feedback register as in the
figure. All signals and coefficients are binary (the states are bits).

At each discrete step k :

State xi transfers to state xi+1.
State x1 is set to the modulo-two addition of states on the
feedback path (if ai = 1 then xi is added, if ai = 0 then it is not).
Output u(k) is collected at state xm.

Remark: such a feedback register is easily implemented in hardware.
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Modulo-two addition

Formula/truth table of modulo-two addition:

p ⊕ q =


0 if p = 0, q = 0
1 if p = 0, q = 1
1 if p = 1, q = 0
0 if p = 1, q = 1

...also known as XOR (eXclusive OR)
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Arbitrary-valued PRBS

To obtain a signal u′(k) taking values b, c instead of 0, 1, shift & scale
the original signal u(k):

u′(k) = b + (c − b)u(k)

Example for b = 0.5, c = 0.8:
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State space representation

x1(k + 1) = a1x1(k)⊕ a2x2(k)⊕ · · · ⊕ amxm(k)

x2(k + 1) = x1(k)

...
xm(k + 1) = xm−1(k)

u(k) = xm(k)

x(k) = [x1(k), . . . , xm(k)]> compactly denotes the state vector of m
variables (bits)
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State space representation: matrix form

x(k + 1) =


a1 a2 . . . am−1 am
1 0 . . . 0 0
0 1 . . . 0 0
...
0 0 . . . 1 0

⊗ x(k) =: A⊗ x(k)

u(k) = [0 0 . . . 0 1]x(k) =: Cx(k)

where ⊗ symbolically indicates that the additions in the matrix
product are performed modulo 2.
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Period of PRBS

The PRBS algorithm is deterministic, so the current state x(k)
fully determines the future states and outputs

⇒ Period (number of steps until sequence repeats) at most 2m

The identically zero state is undesirable, as the future sequence
would always remain 0

⇒ Maximum practical period is P = 2m − 1

A PRBS with period P = 2m − 1 is called maximum-length PRBS.

Such PRBS have interesting characteristics, so they are preferred in
practice.
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Maximum-length PRBS

The period is determined by the feedback coefficients ai .

The following coefficients must be 1 to achieve maximum length (all
others 0):

m Max period 2m − 1 Coefficients equal to 1
3 7 a1, a3
4 15 a1, a4
5 31 a2, a5
6 63 a1, a6
7 127 a1, a7
8 255 a1, a2, a7, a8
9 511 a4, a9
10 1023 a3, a10

Other working combinations of coefficients exist, and coefficients for
larger m can be found in the literature.
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Matlab function

u = idinput(N, type, [], [b, c]);

Arguments:

1 N: signal length (number of discrete steps).
2 type: signal type, a string. Relevant for us: ’prbs’ for PRBS,
’rgs’ for white Gaussian noise, ’sin’ for multisine.

3 Third argument: the frequency band of the inputs (can be left at
its default, empty matrix).

4 [b, c]: the range (lower and upper limits) of the signal. For
Gaussian noise, [b, c] is instead the one-standard-deviation
interval below and above the mean.

Remark: N can be configured to generate multiple-input signals (see
the Matlab documentation for details).
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Choice of input shape

Some identification methods require specific types of inputs:

Transient analysis requires step or impulse inputs.
Correlation analysis preferably works with white-noise input.

Rule of thumb: input shapes, including characteristics like amplitude,
should be chosen to be representative for the typical operation of the
system
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Choice of input amplitude

Range of allowed inputs typically constrained by system
operator, due to safety or cost concerns
Even if allowed, overly large inputs may take the system out of its
zone of linearity and lead to poor performance of linear
identification
But too small inputs will lead to signals dominated by noise and
disturbance
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Choice of sampling interval

For nearly all methods, we work in discrete time so we must choose a
sampling interval Ts

Too large intervals will not model the relevant dynamics of the
system. Initial idea: 10% of the smallest time constant
Too small intervals will lead to overly large effects of noise and
disturbance
When in doubt, take Ts smaller

Due to Nyquist-Shannon, we know that signals cannot be recovered
above frequency 1/(2Ts), so to mitigate noise and other effects it is
useful to pass the outputs (and inputs, if measured) through a
low-pass filter that eliminates higher frequencies
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Mean and covariance

Given a random signal u(k), its mean and covariance are defined:

µ = E {u(k)}
ru(τ) = E {[u(k + τ)− µ][u(k)− µ]}

Recall:

Mean and variance of random variables
Related covariance function ru(τ) in correlation analysis (there
we assumed µ was already 0)
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Mean and covariance: deterministic signal

When the signal is deterministic (e.g. PRBS), the mean and
covariance are redefined as:

µ = lim
N→∞

1
N

N∑
k=1

u(k)

ru(τ) = lim
N→∞

1
N

N∑
k=1

[u(k + τ)− µ][u(k)− µ]

Note: limN→∞
1
N

∑N
k=1 · is the same as E {·} for a (well-behaved)

random signal.

Generalization to vector signals u(k) ∈ Rnu: interpret the sums
elementwise, replace [u(k + τ)− µ][u(k)− µ] by
[u(k + τ)− µ][u(k)− µ]>, an nu × nu covariance matrix.
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Handling nonzero means

Correlation analysis requires zero-mean signals
But even other methods (like ARX or more general prediction
error methods) may work better when the means are removed

The means can be removed from the signal, and then possibly
modeled separately

(see Söderström and Stoica, Chapter 12 for more details)
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Persistent excitation

Even methods that do not fix the input shape make requirements on
the inputs: e.g. for ARX we required that u(k) is “sufficiently
informative”, without making that property formal

This condition can be precisely stated in terms of a property called
persistence of excitation
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Persistent excitation: Motivating example

We develop an idealized version of correlation analysis. This is only
an intermediate motivating step, and the property is useful in many
identification algorithms.

Finite impulse response (FIR) model:

y(k) =
M−1∑
j=0

h(j)u(k − j) + v(k)
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Correlation analysis: Covariances

Assuming u(k), y(k) are zero-mean, so the means do not need to be
subtracted:

ru(τ) = lim
N→∞

1
N

N∑
k=1

u(k + τ)u(k)

ryu(τ) = lim
N→∞

1
N

N∑
k=1

y(k + τ)u(k)

In practice covariances must be estimated from finite datasets, but
here we work with their ideal values (since this is only a motivating
example, which we do not actually implement).
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Correlation analysis: Identifying the FIR

Taking M equations to find the FIR parameters, we have:
ryu(0)
ryu(1)

...
ryu(M − 1)

 =


ru(0) ru(1) . . . ru(M − 1)
ru(1) ru(0) . . . ru(M − 2)

...
ru(M − 1) ru(M − 2) . . . ru(0)

 ·


h(0)
h(1)

...
h(M − 1)


We are allowed to take a square system (number of equations equal
to number of parameters) because we are in the idealized, noise-free
case, so overfitting is not a concern.

Denote the matrix in the equation by Ru(M), the covariance matrix of
the input.
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Persistent excitation: formal definition

Definition

A signal u(k) is persistently exciting (PE) of order n if Ru(n) is
positive definite.

A matrix A ∈ Rn×n is positive definite if h>Ah > 0 for any nonzero
vector h ∈ Rn. Note that A must be nonsingular.

Examples:[
1 0
0 1

]
is positive definite. Denote h =

[
a
b

]
, then

h>Ah = a2 + b2.[
1 2
2 1

]
is not positive definite. Counterexample: h =

[
a
−a

]
,

h>Ah = −2a2.
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PE in correlation analysis

If the order of PE is M, then Ru(M) is positive definite, hence
invertible and the linear system from correlation analysis can be
solved to find an FIR of length M.

So an order M of PE means that an FIR model of length M is
identifiable (M parameters can be found).



Common input signals Input choices and properties Characterizing common inputs

General role of PE

Beyond FIR, PE plays a role in all parametric system identification
methods, including ARX and methods still to be discussed, like
prediction error methods and instrumental variable techniques.

A large enough order of PE is required to properly identify the
parameters.

Typically, the required order is a multiple of (usually twice) the number
of parameters n that must be estimated.
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Covariance alternatives

In the sequel we will always use the following covariance definition:

ru(τ) = lim
N→∞

1
N

N∑
k=1

u(k + τ)u(k)

disregarding that this is the true covariance only when u(k) is
zero-mean. The resulting function is still useful, and more convenient
to compute.

When applying the PE condition for nonzero-mean signals, the
simplified definition above will lead to an order of PE larger by 1 than
the order of PE obtained with the true covariance function:

ru(τ) = lim
N→∞

1
N

N∑
k=1

[u(k + τ)− µ][u(k)− µ]
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Step input

Take the more general, non-unit step:

u(k) =

{
0 k < 0
uss k ≥ 0
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Step input: Mean and covariance

Mean and covariance:

µ = lim
N→∞

1
N

N−1∑
k=0

u(k) = uss

ru(τ) = lim
N→∞

1
N

N−1∑
k=0

u(k + τ)u(k) = u2
ss

Note the signal starts from k = 0, so the summation is modified (unimportant
to the final result).
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Step input: Order of PE

Covariance matrix:

Ru(n) =


ru(0) ru(1) . . . ru(n − 1)
ru(1) ru(0) . . . ru(n − 2)

...
ru(n − 1) ru(n − 2) . . . ru(0)

 =


u2

ss u2
ss . . . u2

ss
u2

ss u2
ss . . . u2

ss
...

u2
ss u2

ss . . . u2
ss


This matrix has rank 1, so a step input is PE of order 1.
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Impulse input

Recall discrete-time realization:

u(k) =

{
1
Ts

k = 0
0 otherwise

Mean and covariance:

µ = lim
N→∞

1
N

N−1∑
k=0

u(k) = 0

ru(τ) = lim
N→∞

1
N

N−1∑
k=0

u(k + τ)u(k) = 0

⇒ Ru(n) matrix of zeros, the impulse is not PE of any order.
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Sum of sines

u(k) =
m∑

j=1

ajsin(ωjk + ϕj), 0 ≤ ω1 < ω2 < . . . < ωn ≤ π

Mean and covariance:

µ =

{
a1sin(ϕ1) if ω1 = 0
0 otherwise

ru(τ) =
m−1∑
j=1

a2
j

2
cos(ωjτ) +

{
a2

m sin2 ϕm if ωm = π
a2

m
2 cos(ωmτ) otherwise
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Sum of sines (continued)

For the multisine exemplified before, the covariance function is:

A multisine having m components is PE of order n with:

n =


2m if ω1 6= 0, ωm 6= π

2m − 1 if ω1 = 0 or ωm = π

2m − 2 if ω1 = 0 and ωm = π
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White noise: Mean and covariance

Take a zero-mean white noise signal of variance σ2, e.g. drawn from
a Gaussian:

u(k) ∼ N (0, σ2) =
1√

2πσ2
exp

(
− x2

2σ2

)

Then, by definition:

µ = 0

ru(τ) =

{
σ2 if τ = 0
0 otherwise
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White noise: Covariance example

Covariance function of white noise signal exemplified before:
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White noise: Order of PE

Covariance matrix:

Ru(n) =


ru(0) ru(1) . . . ru(n − 1)
ru(1) ru(0) . . . ru(n − 2)

...
ru(n − 1) ru(n − 2) . . . ru(0)



=


σ2 0 . . . 0
0 σ2 . . . 0
...
0 0 . . . σ2

 = σ2In

where In = the identity matrix, positive definite.

⇒ for any n, Ru(n) positive definite — white noise is PE of any order.

Question
Given the information above, why does correlation analysis prefer
white noise to other input signals, in order to identify the FIR?
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PRBS: Mean

Consider a 0, 1-valued, maximum-length PRBS with m bits:
P = 2m − 1, a large number.

Then its state x(k) will contain all possible binary values with m digits
except 0.

Signal u(k) is the last position of x(k), which takes value 1 a number
of 2m−1 times, and value 0 a number of 2m−1 − 1 times.

⇒ Mean value:

µ =
1
P

P∑
k=1

u(k) =
1
P

2m−1 =
(P + 1)/2

P
=

1
2

+
1

2P
≈ 1

2

where the approximation holds for large P.
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PRBS: Covariance

Consider a zero-mean PRBS, scaled between −b and b:

u′(k) = −b + 2bu(k)

Then:
µ = −b + 2b(

1
2

+
1

2P
) =

b
P
≈ 0

ru(τ) =

{
1− 1

P2 ≈ 1 if τ = 0
− 1

P −
1

P2 ≈ − 1
P ≈ 0 otherwise
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PRBS: Covariance example

Covariance function of the zero-mean PRBS above:

So, PRBS behaves similarly to white noise (similar covariance
function). Combined with the ease of generating it, this property
makes PRBS very useful in system identification.
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PRBS: Order of PE

A maximum-length PRBS is PE of exactly order P, the period
(and not larger).

Exercise

Using the approximate formula that ignores the terms 1
P2 :

ru(τ) ≈

{
1 if τ = 0
− 1

P otherwise

take a small value of P ≥ 2 and show that the PRBS is exactly of PE
order P.
Hint: construct Ru(n) for n = P and show that it is rank P, then for
n > P and show it is still only of rank P. This can be done by showing
that columns P + 1, P + 2, . . . are linear combinations of the first P
columns.
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Summary

Common input signals: step, impulse, multisine, zero-mean white
noise, pseudo-random binary sequence
PRBS details: generation using LSFRs, maximal period
Choosing input amplitude and sampling period
Mean and covariance of input signals
Order of persistent excitation
Characterizing mean, covariance, and PE order for all common
input signals
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