System Identification

Control Engineering EN, 3rd year B.Sc. Technical University of Cluj-Napoca Romania

Lecturer: Lucian Buşoniu

Part V

ARX identification

Table of conte			
Method development	Matlab example	Accuracy guarantee	Nonlinear ARX

Method development

- 2 Matlab example
- Accuracy guarantee

We stay in the single-output, single-input case for the entire lecture except the appendix. Nonlinear ARX is for the project, we won't need it for the labs.

Method development	Matlab example	Accuracy guarantee	Nonlinear ARX 0000
Classification			

Recall taxonomy of models from Part I:

By number of parameters:

- Parametric models: have a fixed form (mathematical formula), with a known, often small number of parameters
- Nonparametric models: cannot be described by a fixed, small number of parameters Often represented as graphs or tables

By amount of prior knowledge ("color"):

- Sirst-principles, white-box models: fully known in advance
- Black-box models: entirely unknown
- Gray-box models: partially known

The ARX method produces *parametric*, polynomial models.

Method development	Matlab example	Accuracy guarantee	Nonlinear ARX
Why ARX?			

- General-order, fully implementable method with guarantees like correlation analysis
- Unlike correlation analysis, gives a *compact* model with a number of parameters proportional to the order of the system

T 1 1 1 1			
Method development	Matlab example	Accuracy guarantee	Nonlinear ARX

Table of contents

Method development

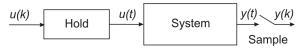
Matlab example

3 Accuracy guarantee

4 Nonlinear ARX

Method development OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	Matlab example	Accuracy guarantee	Nonlinear ARX
Recall: Discrete	time		

We remain in the discrete-time setting:



Method development	Matlab example	Accuracy guarantee	Nonlinear ARX 0000
ARX model struc	cture		

In the ARX model structure, the output y(k) at the current discrete time step is computed based on previous input and output values:

$$y(k) + a_1y(k-1) + a_2y(k-2) + \dots + a_{na}y(k-na)$$

= $b_1u(k-1) + b_2u(k-2) + \dots + b_{nb}u(k-nb) + e(k)$
equivalent to
 $y(k) = -a_1y(k-1) - a_2y(k-2) - \dots - a_{na}y(k-na)$
 $b_1u(k-1) + b_2u(k-2) + \dots + b_{nb}u(k-nb) + e(k)$

e(k) is the noise at step k.

Model parameters: $a_1, a_2, \ldots, a_{n_a}$ and b_1, b_2, \ldots, b_{nb} .

Name: AutoRegressive (y(k) a function of previous y values) with eXogenous input (dependence on u)

Method development	Matlab example	Accuracy guarantee	Nonlinear ARX 0000

Polynomial representation

Backward shift operator q^{-1} :

$$q^{-1}z(k)=z(k-1)$$

where z(k) is any discrete-time signal.

Then:

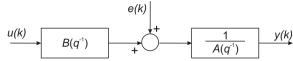
$$y(k) + a_1 y(k-1) + a_2 y(k-2) + \dots + a_{na} y(k-na)$$

= $(1 + a_1 q^{-1} + a_2 q^{-2} + \dots + a_{na} q^{-na}) y(k) =: A(q^{-1}) y(k)$
and:
 $b_1 u(k-1) + b_2 u(k-2) + \dots + b_{nb} u(k-nb)$
= $(b_1 q^{-1} + b_2 q^{-2} + \dots + b_{nb} q^{-nb}) u(k) =: B(q^{-1}) u(k)$

Therefore, the ARX model is written compactly:

$$A(q^{-1})y(k) = B(q^{-1})u(k) + e(k)$$

Or in graphical representation:



which holds because:

$$y(k) = \frac{1}{A(q^{-1})}[B(q^{-1})u(k) + e(k)]$$

Remarks: (1) The ARX model is quite general, it can describe arbitrary linear relationships between inputs and outputs. However, the noise enters the model in a restricted way, and later we introduce models that generalize this. (2) In the absence of noise, the model reduces to a standard discrete-time transfer function.

Linear regress		00	0000
00000000000000	000000	00	0000

Returning to the explicit representation:

$$y(k) = -a_1 y(k-1) - a_2 y(k-2) - \dots - a_{na} y(k-na)$$

$$b_1 u(k-1) + b_2 u(k-2) + \dots + b_{nb} u(k-nb) + e(k)$$

$$= [-y(k-1), \dots, -y(k-na), u(k-1), \dots, u(k-nb)]$$

$$\cdot [a_1, \dots, a_{na}, b_1, \dots, b_{nb}]^\top + e(k)$$

$$= :\varphi^\top(k)\theta + e(k)$$

So in fact ARX obeys the standard model structure in linear regression!

Method development	Matlab example 000000	Accuracy guarantee	Nonlinear ARX 0000
Vectors of regr	essors and p	arameters	

Regressor vector: $\varphi(k) \in \mathbb{R}^{na+nb}$, previous output and input values. Parameter vector: $\theta \in \mathbb{R}^{na+nb}$, polynomial coefficients.

$$\varphi(k) = \begin{bmatrix} -y(k-1) \\ \vdots \\ -y(k-na) \\ u(k-1) \\ \vdots \\ u(k-nb) \end{bmatrix} \qquad \theta = \begin{bmatrix} a_1 \\ \vdots \\ a_{na} \\ b_1 \\ \vdots \\ b_{nb} \end{bmatrix}$$

Method development	Matlab example	Accuracy guarantee	Nonlinear ARX

A remark on vector notation

All vector variables are column by default, following standard control notation. Often we write them as transposed rows, to save vertical space:

$$Q = egin{bmatrix} q_1 \ q_2 \ q_3 \end{bmatrix} = [q_1, q_2, q_3]^ op$$

Note also: $Q^{\top} = [q_1, q_2, q_3].$

For instance, in the ARX formula:

$$y(k) = [-y(k-1), \dots, -y(k-na), u(k-1), \dots, u(k-nb)]$$
$$\cdot [a_1, \dots, a_{na}, b_1, \dots, b_{nb}]^\top + e(k) = \varphi^\top(k)\theta + e(k)$$

 $\varphi(k)$ is originally column, but must be transformed into a row to make the inner product work. So we transpose it: $\varphi^{\top}(k)$, obtaining the row [-y(k-1),...] (note here there is no transpose). On the other hand, θ must be a column in the inner product, hence it is not transposed; however, for convenience we write it as a transposed row, i.e. $[a_1,...]^{\top}$ (note the transpose!).

Identification pro	blem		
Method development	Matlab example	Accuracy guarantee	Nonlinear ARX

Consider now that we are given a dataset u(k), y(k), k = 1, ..., N, and we have to find the model parameters θ .

Then for any k:

$$\mathbf{y}(\mathbf{k}) = \varphi^{\top}(\mathbf{k})\theta + \varepsilon(\mathbf{k})$$

where $\varepsilon(k)$ is now interpreted as an equation error (hence the changed notation).

Objective: minimize the mean squared error:

$$V(\theta) = \frac{1}{N} \sum_{k=1}^{N} \varepsilon(k)^2$$

Remark: When $k \le na$, nb, zero- and negative-time values for u and y are needed to construct φ . They can be taken equal to 0 (assuming the system is in zero initial conditions).

Method development	Matlab example	Accuracy guarantee	Nonlinear ARX
Linear system of	equations		

$$y(1) = \begin{bmatrix} -y(0) & \cdots & -y(1 - na) & u(0) & \cdots & u(1 - nb) \end{bmatrix} \theta$$

$$y(2) = \begin{bmatrix} -y(1) & \cdots & -y(2 - na) & u(1) & \cdots & u(2 - nb) \end{bmatrix} \theta$$

$$\cdots$$

$$y(N) = \begin{bmatrix} -y(N-1) & \cdots & -y(N - na) & u(N-1) & \cdots & u(N - nb) \end{bmatrix} \theta$$

$\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(N) \end{bmatrix} = \begin{bmatrix} -y(0) & \cdots & -y(1 - na) & u(0) & \cdots & u(1 - nb) \\ -y(1) & \cdots & -y(2 - na) & u(1) & \cdots & u(2 - nb) \\ \vdots & \vdots & \vdots & \vdots & \\ -y(N - 1) & \cdots & -y(N - na) & u(N - 1) & \cdots & u(N - nb) \end{bmatrix} \cdot \theta$

 $Y = \Phi \theta$

with notations $Y \in \mathbb{R}^N$ and $\Phi \in \mathbb{R}^{N \times (na+nb)}$.

Method development ○○○○○○○○●○○○○○	Matlab example	Accuracy guarantee	Nonlinear ARX 0000
ABX solution			

From linear regression, to minimize $\frac{1}{2} \sum_{k=1}^{N} \varepsilon(k)^2$ the parameters are:

$$\widehat{\theta} = (\Phi^{\top} \Phi)^{-1} \Phi^{\top} Y$$

Since the new $V(\theta) = \frac{1}{N} \sum_{k=1}^{N} \varepsilon(k)^2$ is proportional to the criterion above, the same solution also minimizes $V(\theta)$.

Method development	Matlab example	Accuracy guarantee	Nonlinear ARX 0000
Solution for large	e datasets		

When the number of data points N is very large, the form above is impractical. In that case, a better form is the alternative one we introduced in the linear regression lecture:

$$\Phi^{\top} \Phi = \sum_{k=1}^{N} \varphi(k) \varphi^{\top}(k), \quad \Phi^{\top} Y = \sum_{k=1}^{N} \varphi(k) y(k)$$
$$\Rightarrow \widehat{\theta} = \left[\sum_{k=1}^{N} \varphi(k) \varphi^{\top}(k) \right]^{-1} \left[\sum_{k=1}^{N} \varphi(k) y(k) \right]$$

Method development	Matlab example	Accuracy guarantee	Nonlinear ARX 0000
Solution for large	e datasets (co	ontinued)	

Remaining issue: the sum of *N* terms can grow very large, leading to numerical problems: (matrix of very large numbers)⁻¹ · vector of very large numbers.

Solution: Normalize element values by diving them by N. In equations, N simplifies so it has no effect on the analytical development, but in practice it keeps the numbers reasonable.

$$\widehat{\theta} = \left[\frac{1}{N}\sum_{k=1}^{N}\varphi(k)\varphi^{\top}(k)\right]^{-1}\left[\frac{1}{N}\sum_{k=1}^{N}\varphi(k)y(k)\right]$$

What about the division by *N*? It can be implemented recursively, without ever computing large numbers – details later in the course.

Using the ARX model

One-step ahead prediction: The true output sequence is known, so all the delayed signals are available and we can simply plug them in the formula, together with the coefficients taken from θ :

$$\hat{y}(k) = -a_1y(k-1) - a_2y(k-2) - \dots - a_{na}y(k-na)$$

 $b_1u(k-1) + b_2u(k-2) + \dots + b_{nb}u(k-nb)$

Signals at negative and zero time can be taken equal to 0.

Example: On day k - 1, predict weather for day k.

Simulation: True outputs unknown, so we must use previously simulated outputs. Each y(k - i) is replaced by $\hat{y}(k - i)$:

$$\hat{y}(k) = -a_1\hat{y}(k-1) - a_2\hat{y}(k-2) - \dots - a_{na}\hat{y}(k-na)$$

$$b_1u(k-1) + b_2u(k-2) + \dots + b_{nb}u(k-nb)$$

(predicted outputs at negative and zero time can also be taken 0.)

Example: Simulation of an aircraft's response to emergency pilot inputs, that may be dangerous to apply to the real system.

Special ages			
000000000000000000000000000000000000000	000000	00	0000
Method development	Matlab example	Accuracy guarantee	Nonlinear ARX

Special case of ARX: FIR

Setting A = 1 (na = 0) in ARX, we get:

$$y(k) = B(q^{-1})u(k) + e(k) = \sum_{j=1}^{nb} b_j u(k-j) + e(k)$$
$$= \sum_{i=0}^{M-1} h(j)u(k-j) + e(k)$$

the FIR model from correlation analysis!

To see this, take nb = M - 1, and $b_j = h(j)$. Note h(0), the impulse response at time 0, is assumed 0 - i.e. system does not respond instantaneously to changes in input.

ARX:
$$A(q^{-1})y(k) = B(q^{-1})u(k) + e(k)$$

FIR: $y(k) = B(q^{-1})u(k) + e(k)$

Since ARX includes relationships between current and previous outputs, it will be sufficient to take orders *na* and *nb* equal to the order of the dynamical system.

FIR needs a sufficiently large order *nb* (or length *M*) to model the entire transient regime of the impulse response (in principle, we only recover the correct model as $M \rightarrow \infty$).

 \Rightarrow more parameters \Rightarrow more data needed to identify them.

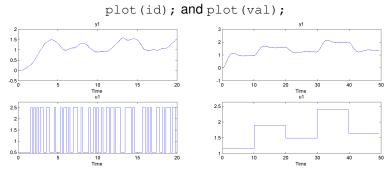
Method development	Matlab example	Accuracy guarantee	Nonlinear ARX
Table of conte	ents		

Method development

3 Accuracy guarantee

4 Nonlinear ARX

Consider we are given the following, separate, identification and validation data sets.



Remarks: Identification input: a so-called *pseudo-random binary signal*. Validation input: a sequence of steps.

Method development	Matlab example ○●○○○○	Accuracy guarantee	Nonlinear ARX
Identifying an	ARX model		

model = arx(id, [na, nb, nk]);

Arguments:

Identification data.

Array containing the orders of A and B and the delay nk.

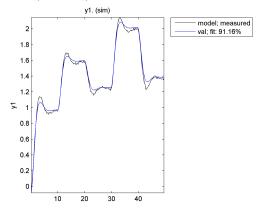
Structure different from theory: includes explicitly a minimum delay *nk* between inputs and outputs, useful for systems with time delays.

$$\begin{aligned} y(k) + a_1 y(k-1) + a_2 y(k-2) + \ldots + a_{na} y(k-na) \\ &= b_1 u(k-nk) + b_2 u(k-nk-1) + \ldots + b_{nb} u(k-nk-nb+1) + e(k) \\ A(q^{-1}) y(k) &= B(q^{-1}) u(k-nk) + e(k), \text{ where:} \\ A(q^{-1}) &= (1+a_1q^{-1}+a_2q^{-2}+\ldots+a_{na}q^{-na}) \\ B(q^{-1}) &= (b_1+b_2q^{-1}+b_{nb}q^{-nb+1}) \end{aligned}$$

The theoretical structure is obtained by setting nk = 1. For nk > 1, we can also transform the new structure into the theoretical one by using a *B* polynomial of order nk + nb - 1, with nk - 1 leading zeros: $B_{\text{theor}}(q^{-1}) = 0q^{-1} + \dots 0q^{-nk+1} + b_1q^{-nk} + \dots + b_{nb}q^{-nk-nb+1}$

Model validation		
Method development Matlab e	Accuracy guarantee	Nonlinear ARX

Assuming the system is second-order, *in the ARX form*, and without time delay, we take na = 2, nb = 2, nk = 1. Validation: compare (model, val);



Results are quite bad.

		ection	00	0000
00000000000000000000000000000000000000				
	000000000000000000	000000	00	0000

Alternate idea: try many different structures and choose the best one.

```
Na = 1:15;
Nb = 1:15;
Nk = 1:5;
NN = struc(Na, Nb, Nk);
V = arxstruc(id, val, NN);
```

- struc generates all combinations of orders in Na, Nb, Nk.
- arxstruc identifies for each combination an ARX model (on the data in 1st argument), simulates it (on the data in the 2nd argument), and returns all the MSEs on the first row of V (see help arxstruc for the format of V).

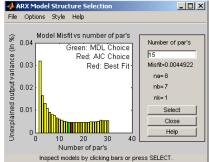
Method development	Matlab example OOOO●O	Accuracy guarantee	Nonlinear ARX
Structure selecti	on (continued)		

To choose the structure with the smallest MSE:

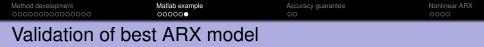
```
N = selstruc(V, 0);
```

For our data, N = [8, 7, 1].

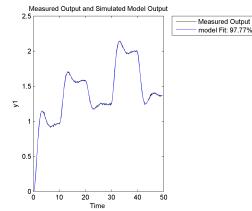
Alternatively, graphical selection: N = selstruc(V, 'plot'); Then click on bar corresponding to best (red) model and "Select", "Close".



(Later we learn other structure selection criteria than smallest MSE.)



model = arx(id, N); compare(model, val);



A better fit is obtained. However, 8th order systems are rare in real life, so something else is likely going on... we will see later.

Table of conten			0000
Method development	Matlab example	Accuracy guarantee	Nonlinear ARX

Method development

2 Matlab example

Accuracy guarantee

4 Nonlinear ARX

Main result	000000		0000
Method development	Matlab example	Accuracy guarantee	Nonlinear ARX

Assumptions

• There exists a true parameter vector θ_0 so that:

$$y(k) = \varphi^{\top}(k)\theta_0 + v(k)$$

with v(k) a stationary stochastic process independent from u(k). **2** $E \{\varphi(k)\varphi^{\top}(k)\}$ is a nonsingular matrix.

$$E \{\varphi(k)v(k)\} = 0.$$

Theorem

ARX identification is consistent: the estimated parameters $\hat{\theta}$ converge to the true parameters θ_0 , in the limit as $N \to \infty$.

Assumption 1 is equivalent to the existence of true polynomials A₀(q⁻¹), B₀(q⁻¹) so that:

$$A_0(q^{-1})y(k) = B_0(q^{-1})u(k) + v(k)$$

To motivate Assumption 2, recall

$$\widehat{\theta} = \left[\frac{1}{N}\sum_{k=1}^{N}\varphi(k)\varphi^{\top}(k)\right]^{-1}\left[\frac{1}{N}\sum_{k=1}^{N}\varphi(k)y(k)\right]$$

As $N \to \infty$, $\frac{1}{N} \sum_{k=1}^{N} \varphi(k) \varphi^{\top}(k) \to \mathrm{E} \left\{ \varphi(k) \varphi^{\top}(k) \right\}.$

- E {\(\varphi(k)\)\)\)\) is nonsingular if the data is "sufficiently informative" (e.g., u(k) should not be a simple feedback from y(k); see Söderström & Stoica for more discussion).
- E {φ(k)v(k)} = 0 e.g. if v(k) is white noise. Later on, we will discuss in more detail Assumption 3 and the role of E {φ(k)v(k)} = 0.

Method development	Matlab example	Accuracy guarantee	Nonlinear ARX
Table of conte	ents		

Method development

2 Matlab example

3 Accuracy guarantee

Nonlinear ABX structure						
Method development	Matlab example	Accuracy guarantee	Nonlinear ARX ●000			

Recall standard ARX:

$$y(k) = -a_1 y(k-1) - a_2 y(k-2) - \dots - a_{na} y(k-na)$$

$$b_1 u(k-1) + b_2 u(k-2) + \dots + b_{nb} u(k-nb) + e(k)$$

Linear dependence on delayed outputs $y(k-1), \ldots, y(k-na)$ and inputs $u(k-1), \ldots, u(k-nb)$.

Nonlinear ARX (NARX) generalizes this to any nonlinear dependence:

$$y(k) = g(y(k-1), y(k-2), \dots, y(k-na), u(k-1), u(k-2), \dots, u(k-nb); \theta) + e(k)$$

Function *g* is parameterized by $\theta \in \mathbb{R}^n$, and these parameters can be tuned to fit identification data and thereby model a particular system.

Polynomial N/		00	0000
000000000000000000000000000000000000000	000000	00	0000
Method development	Matlab example	Accuracy guarantee	Nonlinear ARX

In our particular case, *g* is a polynomial of degree *m* in the delayed outputs and inputs:

 $y(k) = p(y(k-1), \dots, y(k-na), u(k-1), \dots, u(k-nb)) + e(k)$ =: p(d(k)) + e(k)

where $d(k) = [y(k-1), \dots, y(k-na), u(k-1), \dots, u(k-nb)]^{\top}$ is the vector of delayed signals.

E.g., for orders na = nb = 1 (so $d(k) = [y(k-1), u(k-1)]^{\top}$) and degree m = 1, the model is:

$$y(k) = ay(k-1) + bu(k-1) + c + e(k)$$

which by further taking c = 0 recovers the linear ARX form

 Method development
 Mattab example
 Accuracy guarantee
 Nonlinear ARX

 000000
 00000
 00
 00

 Polynomial NARX (continued)

For the same na = nb = 1 and degree m = 2:

$$y(k) = ay(k-1) + bu(k-1) + cy(k-1)^{2} + du(k-1)^{2} + wu(k-1)y(k-1) + z + e(k)$$

- Do not confuse with polynomial form $A(q^{-1})y(k) = B(q^{-1})u(k) + e(k)$
- The parameters are now the coefficients of the polynomial, e.g. $\theta = [a, b, c, d, w, z]^{\top}$
- Linear regression works as usual, finding the parameters that minimize the MSE!
- Negative and zero-time *y* and *u* can be taken 0, assuming system in zero initial conditions

Method development	Matlab example	Accuracy guarantee	Nonlinear ARX 000●			
Recall prediction versus simulation						

One-step ahead prediction: True output sequence is known, delays vector d(k) is fully available:

$$\begin{aligned} x(k) = & [y(k-1), \dots, y(k-na), u(k-1), \dots, u(k-nb)]^{\perp} \\ \hat{y}(k) = & g(d(k); \hat{\theta}) \end{aligned}$$

Simulation: True outputs unknown, use the previously simulated outputs to construct an *approximation* of d(k):

$$\widehat{x}(k) = [\widehat{y}(k-1), \dots, \widehat{y}(k-na), u(k-1), \dots, u(k-nb)]^{\perp}$$
$$\widehat{y}(k) = g(\widehat{d}(k); \widehat{\theta})$$

Appendix: Multiple inputs and outputs

MIMO system

So far we considered $y(k) \in \mathbb{R}$, $u(k) \in \mathbb{R}$, Single-Input, Single-Output (SISO) systems

Many systems are Multiple-Input, Multiple-Output (MIMO). E.g., aircraft. Inputs: throttle, aileron, elevator, rudder. Outputs: airspeed, roll, pitch, yaw.

MIMO ARX

Consider next y(k), $e(k) \in \mathbb{R}^{ny}$, $u(k) \in \mathbb{R}^{nu}$. MIMO ARX model:

$$\begin{aligned} A(q^{-1})y(k) &= B(q^{-1})u(k) + e(k) \\ A(q^{-1}) &= I + A_1q^{-1} + \ldots + A_{na}q^{-na} \\ B(q^{-1}) &= B_1q^{-1} + \ldots + B_{nb}q^{-nb} \end{aligned}$$

where *I* is the $ny \times ny$ identity matrix, $A_1, \ldots, A_{na} \in \mathbb{R}^{ny \times ny}$, $B_1, \ldots, B_{nb} \in \mathbb{R}^{ny \times nu}$.

Concrete example

Take na = 1, nb = 2, ny = 2, nu = 3. Then:

$$\begin{aligned} A(q^{-1})y(k) &= B(q^{-1})u(k) + e(k) \\ A(q^{-1}) &= I + A_1 q^{-1} \\ &= I + \begin{bmatrix} a_1^{11} & a_1^{12} \\ a_1^{21} & a_1^{22} \end{bmatrix} q^{-1} \\ B(q^{-1}) &= B_1 q^{-1} + B_2 q^{-2} \\ &= \begin{bmatrix} b_1^{11} & b_1^{12} & b_1^{13} \\ b_1^{21} & b_1^{22} & b_1^{23} \end{bmatrix} q^{-1} + \begin{bmatrix} b_2^{11} & b_2^{12} & b_2^{13} \\ b_2^{21} & b_2^{22} & b_2^{23} \end{bmatrix} q^{-2} \end{aligned}$$

Concrete example (continued)

$$\begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} a_1^{11} & a_1^{12} \\ a_1^{21} & a_1^{22} \end{bmatrix} q^{-1} \end{pmatrix} \begin{bmatrix} y_1(k) \\ y_2(k) \end{bmatrix}$$

$$= \begin{pmatrix} \begin{bmatrix} b_1^{11} & b_1^{12} & b_1^{13} \\ b_1^{21} & b_1^{22} & b_1^{23} \end{bmatrix} q^{-1} + \begin{bmatrix} b_2^{11} & b_2^{12} & b_2^{13} \\ b_2^{21} & b_2^{22} & b_2^{23} \end{bmatrix} q^{-2} \end{pmatrix} \begin{bmatrix} u_1(k) \\ u_2(k) \\ u_3(k) \end{bmatrix} + \begin{bmatrix} e_1(k) \\ e_2(k) \end{bmatrix}$$

Explicit relationship:

$$y_{1}(k) + a_{1}^{11}y_{1}(k-1) + a_{1}^{12}y_{2}(k-1)$$

$$= b_{1}^{11}u_{1}(k-1) + b_{1}^{12}u_{2}(k-1) + b_{1}^{13}u_{3}(k-1)$$

$$+ b_{2}^{11}u_{1}(k-2) + b_{2}^{12}u_{2}(k-2) + b_{2}^{13}u_{3}(k-2) + e_{1}(k)$$

$$y_{2}(k) + a_{1}^{21}y_{1}(k-1) + a_{1}^{22}y_{2}(k-1)$$

$$= b_{1}^{21}u_{1}(k-1) + b_{1}^{22}u_{2}(k-1) + b_{1}^{23}u_{3}(k-1)$$

$$+ b_{2}^{21}u_{1}(k-2) + b_{2}^{22}u_{2}(k-2) + b_{2}^{23}u_{3}(k-2) + e_{2}(k)$$

Matlab example

Consider a continuous stirred-tank reactor:

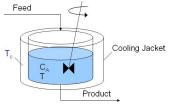


Image credit: mathworks.com

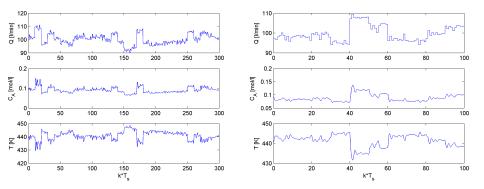
Input: coolant flow Q

Outputs:

- Concentration C_A of substance A in the mix
- Temperature *T* of the mix

Matlab: Experimental data

Left: identification, Right: validation



Appendix: Multiple inputs and outputs

Matlab: MIMO ARX, different from theory

$$\begin{aligned} \mathcal{A}(q^{-1})y(k) &= \mathcal{B}(q^{-1})u(k) + e(k) \\ \mathcal{A}(q^{-1}) &= \begin{bmatrix} a^{11}(q^{-1}) & a^{12}(q^{-1}) & \dots & a^{1ny}(q^{-1}) \\ a^{21}(q^{-1}) & a^{22}(q^{-1}) & \dots & a^{2ny}(q^{-1}) \\ \dots & a^{ny1}(q^{-1}) & a^{ny2}(q^{-1}) & \dots & a^{nyny}(q^{-1}) \end{bmatrix} \\ a^{ij}(q^{-1}) &= \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases} + a^{ij}_{1}q^{-1} + \dots + a^{ij}_{na_{ij}}q^{-na_{ij}} \\ B &= \begin{bmatrix} b^{11}(q^{-1}) & b^{12}(q^{-1}) & \dots & b^{1nu}(q^{-1}) \\ b^{21}(q^{-1}) & b^{22}(q^{-1}) & \dots & b^{2nu}(q^{-1}) \\ \dots & b^{ny1}(q^{-1}) & b^{ny2}(q^{-1}) & \dots & b^{nynu}(q^{-1}) \end{bmatrix} \\ b^{ij}(q^{-1}) &= b^{ij}_{1}q^{-nk_{ij}} + \dots + b^{ij}_{nb_{ij}}q^{-nk_{ij}-nb_{ij}+1} \end{aligned}$$

Matlab: Identifying the model

m = arx(id, [Na, Nb, Nk]);

Arguments:

- Identification data.
- Matrices with orders of polynomials in A, B, and delays nk:

$$Na = \begin{bmatrix} na_{11} & \dots & na_{1ny} \\ \dots & & \\ na_{ny1} & \dots & na_{nyny} \end{bmatrix}$$
$$Nb = \begin{bmatrix} nb_{11} & \dots & nb_{1nu} \\ \dots & & \\ nb_{ny1} & \dots & nb_{nynu} \end{bmatrix}$$
$$Nk = \begin{bmatrix} nk_{11} & \dots & nk_{1nu} \\ \dots & & \\ nk_{ny1} & \dots & nk_{nynu} \end{bmatrix}$$

Matlab: Results

Take *na* = 2, *nb* = 2, and *nk* = 1 everywhere in matrix elements: Na = [2 2; 2 2]; Nb = [2; 2]; Nk = [1; 1]; m = arx(id, [Na Nb Nk]);

compare(m, val);

