
System Identification – Practical Assignment 9
Instrumental variable methods

Logistics are as before, see previous labs.

You will develop a function with the exact signature:
[index, Z10, phi10, theta] = ividentify

Each student is assigned an index number in the set 1-8, which needs to be saved to variable index at
the beginning of the function. The index dictates which data file the student should load. For instance,
if you have index 3, you load file lab9 3.mat. All these datafiles are already accessible from your
function code. Each file contains the identification data in variable id, and the validation data in variable
val. Hint: to increase execution speed and avoid timeouts, save the vectors of inputs and outputs to
separate arrays instead of always accessing the id object.

From prior knowledge, it is known that the system is of the order given in variable n in the data file; and
that the disturbance is not white noise, but colored. Thus, for all models we will use na = nb =n, the
value from the datafile.

Your task is to implement the IV algorithm using instruments based on ARX-outputs. To solve the
identification problem efficiently in Matlab, it will be useful to rewrite the IV system of equations in a
form amenable to matrix left division. To that end, let us take equation (8.3) from the lecture slides and
rewrite it as: [
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or equivalently: Φ̃θ = Ỹ

where the (na + nb) × (na + nb) matrix Φ̃ = 1
N

∑N
k=1 Z(k)ϕT (k) and the (na + nb) × 1 vector

Ỹ = 1
N

∑N
k=1 Z(k)y(k). Note the tildes, which signify that these quantities are variants of the regressors

and of the original system outputs, “modified” by the IVs.

In the equation above, the instrument vector is:

Z(k) = [−ŷ(k − 1), . . . ,−ŷ(k − na), u(k − 1), . . . , u(k − nb)]T

where the outputs ŷ are simulated with the ARX model found earlier. Do not use predicted outputs, as
those are correlated with the disturbance and will likely break the IV method!

Requirements:

• Using Matlab function arx, identify an ARX model of orders na = nb =n and inspect its quality
on the validation dataset.

• Implement the IV algorithm stated above, to find a model with the same na and nb. As an inter-
mediate verification step, return Z(10) and ϕ(10) in variables Z10 and phi10. Finally, return the
resulting parameter vector θ in theta.

• Create an IV model in the idpoly format using θ, and compare the quality of this IV model with
that of the original ARX model, on the validation dataset, using compare.
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Hints:

• For simplicity, you can fill in the vectors Z directly from the simulated ARX outputs ŷ, rather than
defining polynomials C and D. You can use Matlab functions to compute ŷ.

• Always ensure that you are working with the right-sized vectors and matrices. In particular, Z, ϕ,
and Ỹ must be (na+nb)×1 vectors; whereas Φ̃ and each of its inner summation terms Z(k)ϕT (k)
must be (na + nb)× (na + nb) matrices.

• Solve the matrix equation using \.

• Once you have your polynomials A and B as vectors of coefficients in increasing powers of q−1,
use idpoly(A, B, [], [], [], 0, Ts) to generate the IV model, where Ts is the sam-
pling period. Do not forget that all vectors of polynomial coefficients must always contain the
leading constant coefficients (i.e. for power 0 of the argument q−1), which must be 1 in A, and 0
in B.

• You can compare the quality of several models at once, using the syntax: compare(val,
model1, model2, ...).
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