
System Identification – Practical Assignment 8
Output error identification using the Gauss-Newton method

Logistics are as before, see previous labs.

You will develop a function with the exact signature:
[index, e1, de1, theta] = oeidentify

Each student is assigned an index number in the set 1-8, which needs to be saved to variable index at
the beginning of the function. The index dictates which data file the student should load. For instance,
if you have index 3, you load file lab8 3.mat. All these datafiles are already accessible from your
function code. Each file contains the identification data in variable id, and the validation data in variable
val. Hint: to increase execution speed and avoid timeouts, save the vectors of inputs and outputs to
separate arrays instead of always accessing the id object.

From prior knowledge, it is known that the system is first-order, without time delays, and only affected
by measurement noise e(k) at the output. This means that the following Output Error form is appropriate
to model it:

y(k) =
B(q−1)
F (q−1)

u(k) + e(k) =
bq−1

1 + fq−1
u(k) + e(k)

with the parameters θ = [f, b]>. Our objective will be to implement the prediction error method for
this particular model structure, using Gauss-Newton optimization. The algorithm is summarized at the
end of this description, in a more direct way than in the lectures and with extra hints, so as to help with
implementation. Triangle signs mark comments.

Requirements:

• Compute on paper the recursion formulas for ε(k), dε(k)
dθ = [dε(k)

df , dε(k)
db ]>. Hint: see first-order

ARMAX case exemplified in the lectures.

• For parameter values f = b = 1, apply the formulas obtained to compute the signals ε(k), dε(k)
(lines 4 and 6 of the pseudocode). Return the resulting sequences in e1, de1, where de1 is a
matrix with two rows and N columns, with dε(k) on column k. Note: Grader only checks the first
10 elements of the sequence. Hints: Keep in mind ε is scalar and dε is a column vector of two
elements. It may also be easier to not represent the signals at 0 explicitly, but code a special case
of the update formulas at k = 1 instead. The pseudocode already does this.

• Using the recursion formulas above at each iteration, implement the OE identification algorithm,
and run it on the identification data. Configure the algorithm as follows: θ1 = [f1, b1]> = [1, 1]>,
α = 0.5, `max = 100, δ = 10−4. Return the entire sequence of parameter vectors computed in
theta, a matrix with two rows in which each column ` contains θ`. Note: Grader only checks the
first five parameter vectors, and the last one (at convergence). Hints: Make sure you understand
the structure of dV

dθ and H before you start coding. Use the real inverse (inv, not backslash) to
implement the update.

• For the near-optimal values of f and b obtained, create an OE model in the system identification
toolbox format, using idpoly. Note that the syntax of this function is idpoly(A,B,C,D,F,0,Ts)
where you need to specify the leading zero in B, the leading 1 in F , and the sampling time can
be found e.g. in the identification dataset. Use compare to see how the model performs on the
validation data. Note: Grader checks whether you validated, but you do not need to return the
actual model output (since validating θ already took care of model correctness).

• If you still have time, tune α, δ and `max (as well as perhaps θ1), so as to improve performance.

1



1: choose stepsize α, initial parameters θ1, threshold δ, and max iterations `max

2: initialize iteration index ` = 1
3: repeat

. lines 4-9 run with the current value of the parameters, θ`

4: compute directly ε(1), dε(1), using ε(0) = 0, dε(0) = [0, 0]>, y(0) = 0, u(0) = 0
5: for k = 2, . . . , N do . mind the starting index of the loop!
6: compute ε(k), dε(k)

dθ with the recursive formulas found . make sure dε(k)
dθ is a 2x1 vector

7: end for
. make sure dV

dθ is a 2x1 vector, H and its inner summation terms are 2x2 matrices
8: compute gradient of the objective function, dV

dθ = 2
N

∑N
k=1 ε(k)dε(k)

dθ

9: compute approximate Hessian of the objective function, H = 2
N

∑N
k=1

dε(k)
dθ

[
dε(k)

dθ

]>
10: update θ with Gauss-Newton formula: θ`+1 = θ` − αH−1 dV

dθ . use inv, not \
11: increment counter: ` = ` + 1
12: until ‖θ` − θ`−1‖ ≤ δ, or ` > `max

2


