
System Identification – Practical Assignment 6
ARX model identification

Logistics are as before, see previous labs.

Assignment description

In this assignment we will identify ARX models (autoregressive with exogenous input), using least-
squares, linear regression. See the course material, Part V: ARX Identification.

You will develop a function with the exact signature:
[index, PHI, theta, ypred, ysim] = findarx

Each student is assigned an index number in the set 1-8, which needs to be saved to variable index at
the beginning of the function. The index dictates which data file the student should load. For instance,
if you have index 3, you load file lab6 3.mat. All these datafiles are already accessible from your
function code. Each file contains the identification data in variable id, and the validation data in variable
val.

It is known from prior knowledge that the system does not have any time delay, and is of order at most 3.

Requirements:

• Plot and examine the data supplied.

• Implement ARX identification explicitly using linear regression, as described in the lecture. Recall
that the regressors are −y(k − 1), . . . ,−y(k − na), u(k − 1), . . . , u(k − nb). Your code should
preferably work for any values of na and nb. Use the same order of regressors as above (therefore,
the parameters will be in the order a1, . . . , ana, b1, . . . , bnb).

• To allow for the possibility of disturbances that do not satisfy the ARX model structure, we will
take na = nb = 9, three times larger than the largest possible order. Identify an ARX model with
these orders. Return the matrix of regressors in PHI, and the resulting parameter vector in theta.
(Validating PHI will ensure that you are building the system of equations right.) Before returning
theta, display its value at the console (after issuing format long).

• Implement prediction and simulation with the computed model on the validation data. Keep in
mind that for simulation, knowledge about the real outputs of the system is not available, so we
can only use previous outputs of the model itself; in particular y(k− i) in the model formula must
be replaced by its previously simulated value ŷ(k − i), for i = 1, . . . , na. Plot the predicted and
simulated output against the real one, and compute the MSEs in prediction and validation. Return
the predicted and simulated outputs in ypred, ysim respectively.

• Optionally, if you still have time – or if you have bugs and want a known good solution – identify
models with the same values of na, nb as above, but this time with the Matlab arx function.
Compare the results with those that you obtained using your code, and verify that the two results
are similar.

Please make sure to include your plots, even if they are not validated explicitly in the tests (we will use
them to evaluate solutions).

Important: Signals at negative or zero time steps should be taken equal to zero. Hints: When you
predict and simulate on the validation data, do it iteratively for each time step. To reduce the probability

1



of timeouts, instead of working with objects and structures (e.g. id.y), save the data directly into arrays
(e.g. yid), as Matlab is much faster with arrays.

Relevant functions from the System Identification toolbox: arx, plot, compare. When the ident
toolbox function has the same name as a function in another toolbox – like in the case of compare,
which overloads the MPC toolbox implementation – write e.g. doc ident/compare to get the doc-
umentation of the ident variant. See also doc ident for the full documentation of the toolbox.

2


