System Identification — Practical Assignment 8
Output error identification using the Gauss-Newton method

Logistics

e This practical assignment should be carried out by each student separately, if at all possible. Oth-
erwise, if there are more students than computers, students may team up in groups of 2.

e The assignment solution consists of Matlab code. Develop this code in a single Matlab script. This
code will be checked and run by the teacher during the lab class, and your attendance to the lab
will only be registered if you have a working, original solution. Validated attendances for all the
labs are necessary for eligibility to the exam. Moreover, at most two labs can be recovered at the
end of the semester, which means accumulating three or more missing labs leads to ineligibility.

e Discussing ideas amongst the students is encouraged; however, directly sharing and borrowing
pieces of code is forbidden, and any violation of this rule will lead to disqualification of the solu-
tion.

Assignment description

Each student is assigned an index number by the lecturer. Then, the student downloads the files that form
the basis of the assignment from the course webpage:
http://busoniu.net/teaching/sysid2019

There is a datafile, containing the identification data in variable id, and separately the validation data in
variable val. Both of these variables are objects of type i ddat a from the system identification toolbox
of Matlab, see doc iddata.

From prior knowledge, it is known that the system is first-order, without time delays, and only affected
by measurement noise e(k) at the output. This means that the following Output Error form is appropriate

to model it:
B(q™) _ bt
F(g™1) 1+ fqt

with the parameters # = [f,b] . Our objective will be to implement the prediction error method for this
particular model structure, using Gauss-Newton optimization. The algorithm is summarized next, in a
more direct way than in the lectures, so as to help with implementation.

y(k) = u(k) + e(k) (k) +e(k)

Requirements:

e Compute the recursion formulas required by the algorithm, on paper or at the whiteboard. Hint:
follow the line of the first-order ARMAX case exemplified in the lectures.

e Implement the algorithm, and run it on the identification data starting from nonzero initial param-
eters.

e For the near-optimal values of f and b obtained, create an OE model in the system identification
toolbox format, using idpoly. Note that the syntax of this functionis idpoly (A, B,C,D,F,0,Ts)
where you need to specify the leading zero in B, the leading 1 in F’, and the sampling time can
be found e.g. in the identification dataset. Use compare to see how the model performs on the
validation data.



choose stepsize «, initial parameters 6y, threshold §, and max iterations fyax
initialize iteration counter £ = 0
compute recursion formulas for ¢(k), d;(ok) = [de(k) da(k)]T

af > ~db
repeat
with the current parameters 6,:
simulate (apply recursion formulas) to find (%), d‘z(: ), fork=1,...,N

compute gradient of the objective function, ‘ﬁl—‘g = % Z]kvzl e(k) dsd(ek

T
compute approximate Hessian of the objective function, H = % fcvzl dsd(ek ) [ds(k)]

—

apply Gauss-Newton update formula: 6y, = 0y — aH ™! %
increment counter: ¢ = ¢ + 1
until ||0; — 0,_1|| < 0, or £,y Was reached

e If the model is not satisfactory, tune «, & and ¢y, (as well as perhaps 6y), so as to improve
performance.



