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Motivation

So far, we have been dealing with transient analysis of step-response
models. This mostly involved familiar concepts related to linear
systems and their time-domain responses.

Many upcoming methods for system identification require additional
tools: linear regression and some concepts from probability theory
and statistics. We will discuss these tools here.

In this part we redefine some notation (e.g. x , A) to have a different meaning
than in the rest of the course.
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Regression problem

Problem elements:

A collection of known samples y(k) ∈ R, indexed by
k = 1, . . . ,N: y is the regressed variable.
For each k , a known vector ϕ(k) ∈ Rn: contains the regressors
ϕi(k), i = 1, . . . ,n, ϕ(k) = [ϕ1(k), ϕ2(k) . . . , ϕn(k)]>.
An unknown parameter vector θ ∈ Rn.

Objective: identify the behavior of the regressed variable from the
data, using the linear model:

y(k) = ϕ>(k)θ

Linear regression is classical and very common, e.g. it was used by
Gauss to compute the orbits of the planets in 1809.
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Regression problem: Two major uses

1 k is a time variable, and we wish to model the time series y(k).
2 k is just a data index, and ϕ(k) = φ(x(k)) where x is an input of

some unknown function g. Then y(k) is the corresponding
output (possibly corrupted by noise), and the goal is to identify a
model of g from the data.
This problem is also called function fitting, function
approximation, or supervised learning.

unknown g(x) ĝ(x)

?
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Function approximation: Basis functions

For function approximation, the regressors φi(x) in:

φ(x(k)) = [φ1(x(k)), φ2(x(k)), . . . , φn(x(k))]>

are also called basis functions.
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Function approximation: Motivating example 1

We study the yearly income y (in EUR) of a person based on their
education level x1 and job experience x2 (both measured in years).

We are given a set of tuples (x1(k), x2(k), y(k)) from a representative
set of persons. The goal is to predict the income of any other person
by knowing how educated (x1) and experienced (x2) they are.

Take basis functions φ(x) = [x1, x2,1]>. So we expect the
income to behave like θ1x1 + θ2x2 + θ3 = φ>(x)θ, growing linearly
with education and experience (from some minimum level).
Regression involves finding the parameters θ in order to best fit
the given data.
Reality is of course more complicated... so we would likely need
more input variables, better basis functions, etc.
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Function approximation: Motivating example 2

We study the reaction time y (in ms) of a driver based on their age x1
(in years) and fatigue x2 (e.g. on a scale from 0 to 1).

We are given a set of tuples (x1(k), x2(k), y(k)) from a representative
set of persons of various ages and stages of fatigue. The goal is to
predict the rection time of any other person by knowing how old (x1)
and tired (x2) they are.
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Regressors example 1: Polynomial of k

Suitable for time series modeling.

y(k) = θ1 + θ2k + θ3k2 + . . .+ θnkn−1

=
[
1 k k2 . . . kn−1

]

θ1
θ2
θ3
. . .
θn


= ϕ>(k)θ
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Regressors example 2: Polynomial of x

Suitable for function approximation. For instance,
polynomial of degree 2 with two input variables x = [x1, x2]

>:

y(k) = θ1 + θ2x1(k) + θ3x2(k) + θ4x2
1 (k) + θ5x2

2 (k) + θ6x1(k)x2(k)

=
[
1 x1(k) x2(k) x2

1 (k) x2
2 (k) x1(k)x2(k)

]

θ1
θ2
θ3
θ4
θ5
θ6


= φ>(x(k))θ = ϕ>(k)θ

Connection: Project part 1
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Regressors example 3: Gaussian basis functions

Suitable for function approximation:

φi(x) = exp
[
− (x − ci)

2

b2
i

]
(1-dim);

= exp

− d∑
j=1

(xj − cj)
2

b2
j

 (d-dim)
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Regressors example 4: Interpolation

Suitable for function approximation.

d-dimensional grid of points in the input space.
(Multi)-Linear interpolation between the points.
Equivalent with pyramidal basis functions (triangular in 1-dim)
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Linear system

Writing the model for each of the N data points, we get a linear
system of equations:

y(1) = ϕ1(1)θ1 + ϕ2(1)θ2 + . . . ϕn(1)θn

y(2) = ϕ1(2)θ1 + ϕ2(2)θ2 + . . . ϕn(2)θn

· · ·
y(N) = ϕ1(N)θ1 + ϕ2(N)θ2 + . . . ϕn(N)θn

Recall that in function approximation, ϕi(k) = φi(x(k))

This system can be written in a matrix form:
y(1)
y(2)

...
y(N)

 =


ϕ1(1) ϕ2(1) . . . ϕn(1)
ϕ1(2) ϕ2(2) . . . ϕn(2)
· · · · · · · · · · · ·

ϕ1(N) ϕ2(N) . . . ϕn(N)

 ·

θ1
θ2
θ3
. . .
θn


Y = Φθ

with newly introduced variables Y ∈ RN and Φ ∈ RN×n.
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Least-squares problem

If N = n, the system can be solved with equality.

In practice, it is a good idea to use N > n, due e.g. to noise. In this
case, the system can no longer be solved with equality, but only in an
approximate sense.

Error at k : ε(k) = y(k)− ϕ>(k)θ,
error vector ε = [ε(1), ε(2), . . . , ε(N)]>.
Objective function to be minimized:

V (θ) =
1
2

N∑
k=1

ε(k)2 =
1
2
ε>ε

Least-squares problem

Find the parameter vector θ̂ that minimizes the objective function:

θ̂ = arg min
θ

V (θ)



Linear regression Probability & Statistics Regression discussion

Parenthesis: Optimization problem

Given a function V of variables θ, which may be the least-squares
objective, or any other function:

find the optimal function value minθ V (θ) and variable values
θ∗ = arg minθ V (θ) that achieve the minimum.

Note that in the case of linear regression, we use the notation θ̂; while
θ̂ is still the true solution to the optimization problem given the data, it
is still an estimate because the data is noisy
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Formal regression solution

After applying some linear algebra:

θ̂ = (Φ>Φ)−1Φ>Y

Remarks:

The optimal objective value is
V (θ̂) = 1

2 [Y>Y − Y>Φ(Φ>Φ)−1Φ>Y ].
Matrix Φ>Φ must be invertible. This boils down to a good choice
of the model (order n, regressors ϕ) and having informative data.
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Alternative expression

Φ>Φ =
N∑

k=1

ϕ(k)ϕ>(k),Φ>Y =
N∑

k=1

ϕ(k)y(k)

So the solution can be written:

θ̂ =

[
N∑

k=1

ϕ(k)ϕ>(k)

]−1 [
N∑

k=1

ϕ(k)y(k)

]

Advantage: matrix Φ of size N × n no longer has to be computed,
only smaller matrices and vectors are required, of size n × n and n,
respectively.
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Solving the linear system

In practice both these inversion-based techniques perform poorly
from a numerical point of view. Better algorithms exist, such as
so-called orthogonal triangularization.

In most cases, MATLAB is competent in choosing a good algorithm. If
Φ is stored in variable PHI and Y in Y, then the command to solve the
linear system using matrix left division (backslash) is:

theta = PHI \ Y;

Better control of the algorithm is obtained by using function
linsolve instead of matrix left division.
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Analytical example: Estimating a scalar

Model:
y(k) = b = 1 · b = ϕ(k)θ

where ϕ(k) = 1∀k , θ = b.

For all N data points:

y(1) = ϕ(1)θ = 1 · b
· · ·

y(N) = ϕ(N)θ = 1 · b

In matrix form: y(1)
...

y(N)

 =

1
...
1

 θ
Y = Φθ



Linear regression Probability & Statistics Regression discussion

Analytical example: Estimating a scalar (continued)

θ̂ = (Φ>Φ)−1Φ>Y

=

[
1 · · · 1

] 1
...
1



−1 [

1 · · · 1
] y(1)

...
y(N)


= N−1 [

1 · · · 1
] y(1)

...
y(N)


=

1
N

(y(1) + . . .+ y(N))

Intuition: Estimate is the average of all measurements, filtering out
the noise.
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Example: Approximating the “banana” function

Function g(x1, x2) = (1− x1)
2 + 100[(x2 + 1.5)− x2

1 ]2, called
Rosenbrock’s banana function (unknown to the algorithm).
Approximation data: 200 input points (x1, x2), randomly
distributed over the space [−2,2]× [−2,2]; and corresponding
outputs y = g(x1, x2), affected by noise.
Validation data: a uniform grid of 31× 31 points over
[−2,2]× [−2,2] with their corresponding (noisy) outputs.
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Banana function: Results with polynomial

Polynomial of degree 4 in the two input variables (15 parameters):
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Banana function: Results with radial basis functions

Recall radial basis functions:

Results with 6× 6 RBFs, with
centers on an equidistant grid and
width equal to the distance
between two centers:
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Banana function: Results with interpolation

Recall pyramidal basis functions
from interpolation:

Results with a 6× 6 interpolation
grid (corresponding to 6× 6 basis
functions):
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Probability: Formal definition

Preliminary concepts:

Outcome ω, taking possible values in the sample space Ω, ω ∈ Ω

Event A, defined as a subset of Ω, A ⊆ Ω (with some extra
technical conditions on valid events)

Definition
A probability measure P is a function mapping possible events into
probability values in [0,1], satisfying the conditions:

1 0 ≤ P(A) ≤ 1 (valid probabilities)
2 P(Ω) = 1 (the entire sample space must have probability 1)
3 If events A1, . . . ,Am are disjoint, then

P(A1 ∪ A2 ∪ · · · ∪ Am) = P(A1) + P(A2) + · · ·+ P(Am). This must
hold even as m →∞.

Much of this section follows Chapter 5 of the SysID lecture notes at Uppsala
University, by K. Pelckmans.
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Probability: Example

Consider as an example the precipitation on a given day, and to make
the definitions precise let h denote precipitation in mm.

Sample set: e.g. Ω = {dry (h = 0),drizzle (0 < h ≤ 2), rain (2 <
h ≤ 10),downpour (h > 10)}, with the outcomes ω taking any of
these values.
Event A: any one of the outcomes, e.g. A = {drizzle}, and in
addition any union of outcomes, such as
A = {drizzle} ∪ {rain} ∪ {downpour}; call A = wet.

Then, one example of probability measure is P({dry}) = 0.5,
P({drizzle}) = 0.2, P({rain}) = 0.2, P({downpour}) = 0.1, and we
use condition 3 to generate the probabilities of combined events; e.g.
P(wet) = 0.2 + 0.2 + 0.1 = 0.5. Note that conditions 1 and 2
(P(Ω) = 1) are satisfied.
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Probability: Independence

The joint probability of two events A and B is defined as
P(A,B) := P(A ∩ B).

Definition

Two events A and B are called independent if P(A,B) = P(A)P(B).

Examples:

The event of rolling a 6 with a dice is independent of the event of
getting a 6 at the previous roll (or, indeed, any other value and
any previous roll).
The event of rolling two consecutive 6-s, however, is not
independent of the previous roll!

(Incidentally, failing to understand the first example leads to the
so-called gambler’s fallacy. Having just had a long sequence of
bad–or good–games at the casino, means nothing for the next game!)
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Random variable

Definition
A random variable is a function X : Ω → X defined on the sample set
Ω, taking values in some arbitrary space X .

Intuitively, random variables associate interesting quantities to the
outcomes. A specific (deterministic) value of X is denoted x . Such a
value is called a realization of X .

The probability of X taking value x is the probability of all outcomes
leading to x :

P(X = x) = P({ω |X (ω) = x })

where the first, shorter notation is used for convenience.



Linear regression Probability & Statistics Regression discussion

Random variable: Example

An urn contains 10 colored balls numbered from 1 to 10; the first 2
balls are white, the others 8 are black. The sample space is
Ω = {1, . . . ,10}. Balls are drawn from the urn following a uniform
distribution, corresponding to P({i}) = 1/10, ∀i .

The random variable is the color of the ball,
X : Ω → {white,black}, defined by X (1) = X (2) = white,
X (3) = · · · = X (10) = black.
The probability of drawing a white ball is
P(X = white) = P({1,2}) = 1/5.
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Discrete random variable

If set X is discrete, then so is the random variable. Two possibilities:

X contains a finite number n of elements
X contains infinitely many elements that can be indexed by
natural numbers 0,1,2, . . . (mathematical term: “countable”).

In this case, a sufficient representation of the probability distribution is
the PMF:

Definition
The probability mass function (PMF) of X is the list of the probabilities
of all individual values p(x0),p(x1), . . . .

Example: Ball color is a discrete random variable, with finitely many
(two) values, and its PMF is p(white) = 1/5, p(black) = 4/5.
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Continuous random variable: Motivation

In the weather example, we wish to characterize the precise quantity
of precipitation h ∈ [0,hmax] where hmax is some reasonable
maximum. Assume each value h has equal probability. (For
completeness, take sample space Ω = [0,hmax] so that random
variable H is the identity, H(ω) = ω).

But there are continuously, infinitely many values in the interval
[0,hmax], so P(h) must be 0 for any h! (Otherwise, since the
probabilities are equal, P([0,hmax]) →∞ and condition 1 of the
probability definition does not hold.) So, we cannot define a
meaningful PMF.
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Continuous random variable: CDF and PDF

Meaningful probabilities can only be defined for “continuous” subsets.

Definitions
The cumulative distribution function (CDF) of a continuous random
variable X : Ω → R is:

F (x) := P(X ≤ x) = P({ω |X (ω) ≤ x })

From the CDF, define the probability density function (PDF):

f (x) :=
dF (x)

dx

Remarks:

The PDF is the correspondent to the PMF from the discrete case.
For any set Z ⊆ X , P(X ∈ Z ) =

∫
x∈Z f (x) (in the discrete case,

P(X ∈ Z ) =
∑

x∈Z P(x)).
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Example: Gaussian

Similar in shape, but not in meaning, with Gaussian basis functions.

fG(x) =
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
Parameters: mean µ, and variance σ2 (their meaning is clarified later)

The Gaussian distribution arises very often in nature: e.g., distribution
of IQs in a human population. It is also called the normal distribution,
and denoted N (µ, σ2).
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Practical probabilities

In engineering, we usually consider numerical random variables and
often work directly with their PMF p(x) or PDF f (x).

The underlying sample space Ω, outcomes ω, and events A are rarely
made explicit.
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Expected value

Definition

E {X} =

{∑
x∈X p(x)x for discrete random variables∫

x∈X f (x)x for continuous random variables

Intuition: the average of all values, weighted by their probability; the
value “expected” beforehand given the probability distribution.

The expected value is also called mean, or expectation.

Examples:

For a fair dice with X the value of a face,
E {X} = 1

6 1 + 1
6 2 + . . .+ 1

6 6 = 7/2.
If X is distributed with PDF f (x) = fG(x), Gaussian, then
E {X} = µ.
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Expected value of a function

Consider a function g : X → R, depending on some random variable
X . Then g(X ) is itself a random variable, and:

E {g(X )} =

{∑
x∈X p(x)g(x) if discrete∫

x∈X f (x)g(x) if continuous
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Variance

Definition

Var {X} = E
{
(X − E {X})2} = E

{
X 2}− (E {X})2

Intuition: the “spread” of the random values around the expectation.

Var {X} =

{∑
x∈X p(x)(x − E {X})2 if discrete∫

x∈X f (x)(x − E {X})2 if continuous

=

{∑
x∈X p(x)x2 − (E {X})2 if discrete∫

x∈X f (x)x2 − (E {X})2 if continuous

Examples:

For a fair dice, Var {X} = 1
6 12 + 1

6 22 + . . .+ 1
6 62− (7/2)2 = 35/12.

If X is distributed with PDF f (x) = fG(x), Gaussian, then
Var {X} = σ2.
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Notation

We will generically denote E {X} = µ and Var {X} = σ2.

Quantity σ =
√

Var {X} is called standard deviation.
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Covariance

Definition

Cov {X ,Y} = E {(X − E {X})(Y − E {Y})} = E {(X − µX )(Y − µY )}

where µX , µY denote the means (expected values) of the two random
variables.

Intuition: how much the two variables “change together” (positive if
they change in the same way, negative if they change in opposite
ways).

Remark: Var {X} = Cov {X ,X}.
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Uncorrelated variables

Definition

Random variables X and Y are uncorrelated if Cov {X ,Y} = 0.
Otherwise, they are correlated.

Examples:

The education level of a person is correlated with their income.
Hair color is uncorrelated with income (or at least it should be,
ideally).

Remarks:

If X and Y are independent, they are uncorrelated.
But the reverse is not necessarily true! Variables can be
uncorrelated and still dependent.
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Vectors of random variables

Consider a vector X = [X1, . . . ,XN ]> where each Xi is a continuous,
real random variable. This vector has a joint PDF f (x), with x ∈ RN .

Definitions
Expected value and covariance matrix of X :

E {X} := [E {X1} , . . . ,E {XN}]> = [µ1, . . . , µN ]>, denoted µ ∈ RN

Cov {X} :=


Cov {X1,X1} Cov {X1,X2} · · · Cov {X1,XN}
Cov {X2,X1} Cov {X2,X2} · · · Cov {X2,XN}

· · · · · · · · · · · ·
Cov {XN ,X1} Cov {XN ,X2} · · · Cov {XN ,XN}


= E

{
(X − µ)(X − µ)>

}
, denoted Σ ∈ RN,N

Remarks: Cov {Xi ,Xi} = Var {Xi}. Also, Cov
{

Xi ,Xj
}

= Cov
{

Xj ,Xi
}

,
so matrix Σ is symmetrical.
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Example: Multivariate Gaussian (normal)

The PDF of a vector X with a Gaussian joint distribution can be
written:

f (x) =
1

(2π)N
√

det(Σ)
exp

(
−(x − µ)Σ−1(x − µ)>

)
parameterized by the vector mean µ and covariance matrix Σ
(assumed positive definite, so det(Σ) > 0 and Σ−1 exists).
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Stochastic process

Definition
A stochastic process X is a sequence of random variables
X = (X1, . . . ,Xk , . . . ,XN).

It is in fact just a vector of random variables, with the additional
structure that the index in the vector has the meaning of time step k .

In system identification, signals (e.g., inputs, outputs) will often be
stochastic processes evolving over discrete time steps k .
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Zero-mean white noise

Definition

The stochastic process X is zero-mean white noise if: ∀k , E {Xk} = 0
(zero-mean), and ∀k , k ′ 6= k , Cov {Xk ,Xk ′} = 0 (the values at different
steps are uncorrelated). In addition, the variance Var {Xk} must be
finite ∀k .

Stated concisely using vector notation: mean µ = E {X} = 0 ∈ RN

and covariance matrix Σ = Cov {X} is diagonal (with positive finite
elements on the diagonal).

In system identification, noise processes often affect signal
measurements, and we will sometimes assume that the noise is white
and zero-mean.
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Stationary process

Signal values at different time steps can be correlated (e.g. when
they depend on the output of some dynamic system). Nevertheless,
signals are sometimes required to be stationary, in the sense:

Definition

The stochastic process X is stationary if ∀k , E {Xk} = µ, and
∀k , k ′, τ , Cov {Xk ,Xk+τ} = Cov {Xk ′ ,Xk ′+τ}.

The mean is the same at every step, whereas the covariance
depends on only the relative positions of time steps, not their
absolute positions.
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Geometrical interpretation

The space of all measurement vectors Y is an N-dimensional,
linear/vector space.
Denote the i th column of matrix Φ by ψi , i = 1, . . . ,n. Note
ψi = [ϕi(1), . . . , ϕi(N)]>.
Then, the space of solutions representable by the regressors is
an n-dimensional subspace spanned by vectors ψ1, . . . , ψn. A
solution is achieved by choosing some parameter values
θ1, . . . , θn and taking the linear combination

∑n
i=1 θiψi .

The least-squares solution Ŷ is the projection of the
measurement vector Y on this subspace.
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Theoretical analysis: Assumptions

1 There exists a true parameter vector θ0 so that the data satisfy:

y(k) = ϕ>(k)θ0 + e(k)

2 The stochastic process e(k) is zero-mean white noise, with
variance σ2 at every step.

Intuition: The assumptions say that the true data can be represented
by the chosen model, up to some errors that are well-behaved in a
statistical sense.

Remark: The new errors e(k) have different meaning from ε(k)
before (e(k) are the ideal errors for the true θ0, while ε(k) are the real
errors for the parameters θ found in practice).
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Theoretical analysis: Guarantees

Theorem

1 The solution θ̂ of the least-squares problem is an unbiased
estimate of θ0. This means: E

{
θ̂
}

= θ0 where the expectation is
with respect to the probability distribution of the data.

2 The covariance matrix of the solution is:

Cov
{
θ̂
}

= σ2(Φ>Φ)−1

Intuition: Part 1 says that the solution makes (statistical) sense, while
Part 2 can be interpreted as measuring the confidence in the solution.
E.g., smaller errors e(k) have smaller variance σ2, which means the
covariances are smaller – i.e. better confidence that θ̂ is close to the
true value θ0.

Remark: σ2 is unknown, but can be estimated as 2V (bθ)
N−n (recall that we

know V (θ̂) = 1
2 [Y>Y − Y>Φ(Φ>Φ)−1Φ>Y ]).
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Model choice

Assume that given a model size n, we have a way to generate
regressors ϕ(k) that make the model more expressive (e.g., basis
functions on a finer grid). Then we expect the objective function to
behave as follows:

So we can grow n incrementally and stop when there are no
significant improvements in V , or the error Vval on the validation data
starts growing.

Remark: With noisy data, increasing n too much can lead to
overfitting: good performance on the training data, but poor
performance on other data. Validation on a separate dataset is
essential in practice!


	Linear regression
	Regression problem and solution
	Examples

	Concepts of probability theory and statistics
	Mathematical foundations
	Practical use in system identification

	Analysis and discussion of linear regression
	Analysis and discussion of linear regression


