
System Identification – Practical Assignment 8

Output error identification using the Gauss-Newton method

Logistics

• This practical assignment should be carried out by each student separately, if at all possible. In

extremis, only if there are more students than computers, students may team up in groups of 2.

• The assignment solution consists of Matlab code. This code will be checked and run by the teacher

during the lab class, and your attendance to the lab will only be registered if you have a working,

original solution. Validated attendances for all the labs are necessary for eligibility to the exam.

Moreover, at most two labs can be recovered at the end of the semester, which means accumulating

three or more missing labs at any point during the semester automatically leads to final ineligibility.

• Discussing ideas among students is encouraged; however, directly sharing and borrowing pieces

of code is forbidden, and any violation of this rule will lead to disqualification of the solution.

Assignment description

Each student is assigned an index number by the lecturer. Then, the student downloads the files that form

the basis of the assignment from the course webpage:

http://busoniu.net/teaching/sysid2018

There is a datafile, containing the identification data in variable id, and separately the validation data in

variable val. Both of these variables are objects of type iddata from the system identification toolbox

of Matlab, see doc iddata.

From prior knowledge, it is known that the system is first-order, without time delays, and only affected

by measurement noise e(k) at the output. This means that the following Output Error form is appropriate

to model it:

y(k) =
B(q−1)

F (q−1)
u(k) + e(k) =

bq−1

1 + fq−1
u(k) + e(k)

with the parameters θ = [f, b]⊤. Our objective will be to implement the prediction error method for this

particular model structure, using Gauss-Newton optimization. The algorithm is summarized next, in a

more direct way than in the lectures, so as to help with implementation.

initialize iteration counter ℓ = 0
compute recursion formulas for ε(k), dε(k)

dθ
= [dε(k)

df
,

dε(k)
db

]⊤

repeat

with the current parameters θℓ:

apply recursion formulas to find ε(k), dε(k)
dθ

, for k = 1, . . . , N

compute gradient of the objective function, dV
dθ

= 2
N

∑N
k=1 ε(k)dε(k)

dθ

compute approximate Hessian of the objective function, H = 2
N

∑N
k=1

dε(k)
dθ

[

dε(k)
dθ

]⊤

apply Gauss-Newton update formula: θℓ+1 = θℓ − αH−1 dV
dθ

increment counter: ℓ = ℓ + 1
until ‖θℓ − θℓ−1‖ ≤ δ, or ℓmax was reached

Requirements:
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• Compute the recursion formulas required by the algorithm, on paper or at the whiteboard. Hint:

check the first-order ARMAX case exemplified in the lectures.

• Implement the algorithm, and run it on the identification data starting from nonzero initial param-

eters.

• For the near-optimal values of f and b obtained, create an OE model in the system identification

toolbox format, using idpoly. Note that the syntax of this function is idpoly(A,B,C,D,F,0,Ts)

where you need to specify the leading zero in B, the leading 1 in F , and the sampling time can

be found e.g. in the identification dataset. Use compare to see how the model performs on the

validation data.

• If the model is not satisfactory, tune α, δ and ℓmax (as well as perhaps θ0), so as to improve

performance.
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