System Identification

Control Engineering EN, 3rd year B.Sc.
Technical University of Cluj-Napoca
Romania

Lecturer: Lucian Buşoniu
Part I

Introduction to System Identification
Overall objective

System identification is the process of creating a model to describe the behavior of a dynamical system, from experimental data.
An informal example

Motion capture is one example where:

- The *system* is the human
- The *data* comprises the measured trajectories of the markers
- The *model* consists of representations of these trajectories (e.g. splines)
Table of contents

1. The system concept
2. The model concept
3. System identification workflow, with an example
4. Course logistics
A system is a part of the world with a well-defined interface, which is acted on by input and disturbance signals, and produces in response output signals.

The input can be controlled, but not the disturbance; often the disturbance cannot be measured, either. Note that the signals are functions of time, so the system evolves in time (it is dynamical).
System example: car

Consider the longitudinal (forward) motion of the car.

Inputs: Gas pedal position, gear, brake pedal position.

Output: Velocity.

Disturbance: Friction with varying road surfaces.
Consider a robot arm that, for example, must perform pick-and-place tasks.

Inputs: DC voltages on the link and end-effector motors.

Outputs: The positions of the links and of the end-effector.

Disturbances: Mass of the picked-up object (load), friction.
System example: aircraft

Consider the roll motion of the aircraft.

Input: Aileron deflection angle.

Output: Aircraft roll angle.

Disturbances: Wind, inputs from other control surfaces, etc.

Note that only a part of the overall system dynamics is studied. This type of simplification is commonly used.
System example: HIV infection

Inputs: Quantities of applied drugs (e.g. protease inhibitors, reverse transcriptase inhibitors).

Output: Counts of infected and healthy target cells; virus count; immune effector count (per milliliter).

Disturbances: Other infections, patient characteristics.
Other domains

The HIV example illustrates that the utility of system modeling and identification goes beyond typical cases studied in control (electrical, mechanical, hydraulic, pneumatic, such as the other systems described above).

Other application fields include:

- Chemical industry.
- Energy, transport, and water infrastructure.
- Signal processing.
- Economy.
- Social sciences (e.g. dynamics of social networks).
- Etc.
Table of contents

1. The system concept
2. The model concept
3. System identification workflow, with an example
4. Course logistics
An informal definition

A model is a description of the system that captures its essential behavior.

Crucial feature: the model is always an approximation (idealization, abstractization) of the real system.

This feature is necessary and also desirable: exact models are unfeasible, simpler models are easier to understand and use.
Types of models

1. Mental or verbal models
2. Graphs and tables
3. Mathematical models, with two subtypes:
 - First-principles, analytical models
 - Models from system identification

Examples follow.

Note this classification is useful but shouldn’t be taken too far. E.g. many graph models are closely related to models from system identification, and are of course “mathematical” in nature.
Mental / verbal models: example

The model consists of verbal rules such as:

- Turning the wheel causes the car to turn.
- Pressing the gas pedal makes the car accelerate.
- Pressing the brake pedal makes the car slow down.
- ...

Turning the wheel causes the car to turn.
Pressing the gas pedal makes the car accelerate.
Pressing the brake pedal makes the car slow down.
...

The model consists of verbal rules such as:
Graph models: example

Consider a hard drive read-write head, with input = motor voltage, and output = head position.
The model represents the system behavior in graph form, such as step response or frequency response (Bode diagram). The next lectures will deal with this type of model (step & impulse responses).

Connection: System Theory (recall step & impulse responses of 1st and 2nd order systems, Bode diagrams).
First-principles mathematical models

Physical laws are used to write down equations describing the system (e.g., force or mass balance equations). Models are usually continuous-time differential equations involving the inputs and outputs.

Characteristics:

- Remain valid for every operating point.
- Offer significant insight into the system’s behavior.
- Unfeasible if the system is too complex or poorly understood.

Connection: Process Modeling.
First-principles mathematical models: Example

\[
M(\theta)\ddot{\theta} + C(\theta, \dot{\theta})\dot{\theta} + G(\theta) = \tau
\]

Inputs: Motor torques in the joints, collected in the vector \(\tau \in \mathbb{R}^n \). \(n \) denotes the number of joints.

Output: Angles of the links, collected in the vector \(\theta \in [-\pi, \pi]^n \).

Note \(\tau \) and \(\theta \) are functions of time; for conciseness, argument \(t \) is not given. Also, the dot denotes differentiation w.r.t. time, e.g. \(\dot{\theta} = d\theta/dt \).

- **\(M \):** mass matrix
- **\(C \):** matrix of centrifugal and Coriolis forces
- **\(G \):** gravity vector (we do not give their expressions here).
Mathematical models from system identification

Obtained numerically from experimental data collected on the system.

Characteristics (compared to first-principles models):
- Usually valid *locally*, around an operating point.
- Give less physical insight.
- Easy to construct and use, the only option in many applications.

Main focus of this system identification course.

A detailed example is given in the next section.
If no prior information about the system is available, a generic structure will be chosen: **black-box** model.

Fully first-principles models are also called **white-box**.

Gray-box models are a middle-ground between black-box and first-principles models: the form of the model can be obtained from first principles, but some parameters are unknown and must be identified from experiments.

Example: equation $M(\theta)\ddot{\theta} + C(\theta, \dot{\theta})\dot{\theta} + G(\theta) = \tau$ for the robot arm available, but the friction coefficients in the joints are unknown.
Using the model

Models are useful for many purposes, some of the more important ones being:

- **Analyze** the model (e.g. to find features such as stability, time constants etc.)
- **Simulate** of the system’s response in new scenarios (e.g. how the HIV patient will respond to drugs). Allows studying scenarios that might be dangerous or expensive in the real system.
- **Predict** the system’s future output (e.g. weather prediction).
- **Design a controller** for the system, in order to achieve good behavior (e.g. fast response, small overshoot).
- **Design the system itself**, by obtaining insight into how the yet-unbuilt system will behave. (Since system is not available, requires first-principles modeling.)

Control design is the most relevant for us, as control engineers.

Connection: Control Engineering discipline (this year)
More on control design
Summary of connections with other disciplines

System identification uses knowledge from:

- Linear algebra
- Numerical calculus
- Process modeling
- System theory
- Optimization

and is useful for:

- Control engineering
- Continuous plant control
- Robot control systems
- etc.
Table of contents

1. The system concept
2. The model concept
3. System identification workflow, with an example
4. Course logistics
System identification often works in discrete time, as we will work in this example.

Usual scheme for identification in discrete-time:

\[\begin{align*}
 u(k) & \quad \rightarrow \quad \text{Hold} \quad \rightarrow \quad u(t) \\
 y(t) & \quad \rightarrow \quad \text{System} \quad \rightarrow \quad y(k)
\end{align*} \]

Here, we consider a flexible robot arm, \(u = \text{torque}, \ y = \text{arm acceleration} \). The data is obtained from the Daisy database (http://homes.esat.kuleuven.be/~smc/daisy/).
Workflow 0: Establish model purpose

Goal: *Simulate* the response of the flexible robot arm.
Workflow 1: Experiment design

A main part of experiment design consists of selecting the input signal (duration, sampling interval, shape). This signal should be sufficiently rich to bring out the interesting behavior in the system.

There are usually constraints: the system cannot be placed in dangerous conditions, cannot deviate too much from a profitable operating point, etc.
Workflow 1: Experiment design: Example

Input signal: \(u(k), k = 0, 1, 2, \ldots, N \)
Workflow 2: Experiment

Design experiment → Perform experiment and collect data → Choose model structure → Choose identification method and obtain model → Validate model

The experiment is performed and the output data is recorded.
Workflow 2: Experiment: Example

\[y(k), \; k = 0, 1, 2, \ldots, N \]
Workflow 2: Experiment: Example (continued)

We split the data into an *identification* set and a *validation* set (important later).

![Identification data](image1.png)

![Validation data](image2.png)
Workflow 3: Structure choice

The structure of the model is chosen: graphical model, or mathematical model.

Any knowledge and intuition about the system should be exploited to choose an appropriate structure: it should be flexible enough to lead to an accurate model, but simple enough to keep the estimation task well-conditioned.
Workflow 3: Structure choice: Example

We choose a so-called ‘ARX’ model structure, where the output $y(k)$ at the current discrete time step is computed based on to the previous inputs and outputs:

$$y(k) + a_1 y(k - 1) + a_2 y(k - 2) + a_3 y(k - 3) = b_1 u(k - 1) + b_2 u(k - 2) + b_3 u(k - 3) + b_4 u(k - 4) + e(k)$$

equivalent to

$$y(k) = -a_1 y(k - 1) - a_2 y(k - 2) - a_3 y(k - 3) + b_1 u(k - 1) + b_2 u(k - 2) + b_3 u(k - 3) + b_4 u(k - 4) + e(k)$$

$e(k)$ is the error made by the model at step k.

Model parameters: a_1, a_2, a_3 and b_1, \ldots, b_4.

(Recall y and u are data.)
Workflow 4: Model estimation

A method is chosen and applied to identify the parameters of the structure. Of course, which methods are appropriate depends on the structure chosen.
Workflow 4: Model estimation: Example

Identification consists of finding the parameters $a_1, a_2, a_3, b_1, \ldots, b_4$. We choose a method that minimizes the sum of the squared errors $\sum_{k=1}^{300} e^2(k)$ on the identification data. The actual algorithm will be presented later in the course.

The solution is:

$$a_1 = -2.24, \quad a_2 = 2.17, \quad a_3 = -0.83,$$
$$b_1 = -0.24, \quad b_2 = 0.45, \quad b_3 = -0.41, \quad b_4 = 0.22$$

which replaced in the structure gives the following approximate model:

$$y(k) = 2.24y(k-1) - 2.17y(k-2) + 0.83y(k-3)$$
$$\quad - 0.24u(k-1) + 0.45u(k-2) - 0.41u(k-3) + 0.22u(k-4)$$
Validation is a crucial step: the model must be good enough for our purposes. If validation is unsuccessful, some or all of the previous steps must be repeated.

E.g., the response (outputs) of the obtained model can be compared with the true response of the system, on validation data. This validation dataset should preferably be different from the set used for identification. (Either a different experiment is performed, or the experimental data is split into testing and validation subsets.)
Workflow 4: Model validation: Example

We use the validation data that we kept separate from the start:

Our goal of simulating the system output is achieved (for inputs that are “well represented” by the experimental input chosen).
Table of contents

1. The system concept
2. The model concept
3. System identification workflow, with an example
4. Course logistics
Prerequisites and literature

Prerequisites:
Dynamical systems and models, linear algebra, numerical methods, statistics, Matlab
(brief introductions to the required topics will be given along the way)

Literature

- Mandatory: lecture slides (written down in detail to give a self-contained, complete picture).

 Students may also optionally consult:

Credit for some ideas goes to the SysID course at Uppsala University, by K. Pelckmans.
http://www.it.uu.se/edu/course/homepage/systemid/vt12
Grading and schedule

Labs: acceptable solution needed to take participation into account.

Grading

- 2x20% = 40% – 2 lab tests: one-hour long, must apply (randomly chosen) methods studied at previous labs.
- 15% – lab questions: 5 minutes at start of each lab, from the relevant lecture material.
- 20% – project.
- 30% – final written exam.

Schedule: See website.
http://busoniu.net/teaching/sysid2017

Email lecturer: lucian@busoniu.net
or the TAs: zoltan.nagy@aut.utcluj.ro
marius.costandin@aut.utcluj.ro

On the website you can find:

- Detailed schedule
- Lecture slides
- Lab material
- Project information
- etc.
Black-box identification of nonlinear dynamical systems (preliminary step: approximation of static functions)

Deliverables:

- Matlab solution
- Report