
Project Assignment

System Identification 2017

Logistics

This MATLAB-based project assignment is a compulsory part of the System Identification course in the

Control Engineering B.Sc. program of the Technical University of Cluj-Napoca. It will be graded and

the mark counts for 20% in the final grade of the course. The assignment is carried out in groups of

two students, and should take around 20 hours per person to solve, depending on your experience with

MATLAB. Each group will receive their own data sets. To receive them, form groups and send as soon

as possible an e-mail to the lecturer Lucian Buşoniu at lucian@busoniu.net. Please, mention the

names of the two members of your group and their e-mail addresses. The assignment must be worked

out in the form of a short written report (in English, one report per group).

Please email the report in PDF format to the lecturer at the same address. Do not forget to include

your names on the title page of the report. It is required to include in the report complete listings of

the MATLAB code (functions and scripts) that you developed for solving the assignment problems. In

addition to that, your code must also be sent as a ZIP file, with the same email in which you send the

report. Use MATLAB version R2006b or higher and mention the version you used.

The deadline for the full report and code is December 17th 2017, 24:00 (midnight) at the latest. In

addition, an intermediary version of the report and code with the first problem solution must be sent by

November 19th 2017, 24:00. In case of delays, each newly entered day of delay results in a 2 point

decrease in the maximum grade for the assignment (for instance, delivering the full report on December

19th at 00:10 AM leads to a maximum grade of 6 since the second day of delay has been entered).

Note that it is strictly forbidden to take over results from other students, as well as copy text from

online resources. Failing to obey this rule constitutes plagiarism and will lead to your solution being

disqualified, which results in ineligibility for the exam.

The assignment consists of two problems, both using polynomial approximators. In the first problem,

the polynomial is used to model the behavior of an unknown function. The second problem concerns

data-driven black-box modeling of an unknown dynamical system.

Fitting an unknown function

A data set of input-output pairs is given, where the outputs are generated by an unknown, nonlinear but

static function f . The outputs are corrupted by noise, which is assumed to be additive and zero-mean

Gaussian. The function has two input variables and one output variable. You will have to develop a

model for this function, using a polynomial approximator. A second data set generated using the same

function is provided for validating the developed model. The two data sets will be given as a MATLAB

data file, containing one structure for each set. The training data structure is named id and the validation

data structure val. Each of these structures contains the following fields:

• A set of grid coordinates X for the inputs, where X is a cell array of two vectors, each vector

X{dim} containing n grid points for input dimension dim.

• A set of corresponding outputs Y, a matrix of size n × n, where Y(i,j) is equal to the value of

f at point (X{1}(i),X{2}(j)).

• The same data is provided in a different, ‘flattened’ format: the inputs Xflat, a wide matrix

containing the n2 input points, one on each column, and the corresponding row vector of outputs

Yflat.

The ‘structured’ variants X and Y are easier to use for creating graphs, while the ‘flat’ variants are more

suitable to fitting and using the approximator.
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Your polynomial approximator g should have a configurable degree m. For example, for the first few

values of m, the approximator has the form:

m = 1, ĝ(x) = [1, x1, x2] · θ = θ1 + θ2x1 + θ3x2

m = 2, ĝ(x) = [1, x1, x2, x
2

1, x
2

2, x1x2] · θ = θ1 + θ2x1 + θ3x2 + θ4x
2

1 + θ5x
2

2 + θ6x1x2

m = 3, ĝ(x) = [1, x1, x2, x
2

1, x
2

2, x
3

1, x
3

2, x1x2, x
2

1x2, x1x
2

2] · θ

where the first two polynomials have been made explicit for clarity. To increase numerical stability, you

may want to rescale the input variables x1, x2 from their arbitrary initial intervals [a1, b1], [a2, b2] to the

interval [−1, 1], in which case your code should handle this internally. You can find out the intervals

from the range of the data.

Once the degree m has been chosen, model fitting consists of finding the optimal parameter vector θ

so that g(x) best matches f(x) on the identification dataset, in a least-squares sense. This can be done

with linear regression, keeping in mind that g is linear in the parameters (even though it is nonlinear in

the variables x). Details can be found in the lectures, Part 3: Mathematical Background, see the linear

regression sections. The regressors for the polynomial case here are the powers of x1 and x2, e.g. for

m = 2 they are 1, x1, x2, x2
1
, x2

2
, x1x2.

The requirements are given next. Program such an approximator of configurable degree m. Try to fit

approximators of varying degrees, so as to obtain the most accurate one. Validation should always be

performed on the different, validation dataset. Report the mean squared errors for both sets and show

a representative plot for the fit on the training and the validation data sets (true values compared to

approximator outputs). Discuss the results, including the choice of degree and the quality of the model

fit on the two data sets, relating them to the discussion during lectures on model choice and overfitting in

regression.

While MATLAB can automate polynomial regression, it is strongly recommended that you code the

approximator and regression procedure on your own, because you will need the insight in the second part

of the project, which does not have an off-the-shelf implementation in MATLAB. For some inspiration

you can look at your solution to practical assignment 4, Linear regression for function approximation,

and inside the function rbfapprox which was provided in the beginning of that lab.

Black-box system identification

Before working on this part of the project, you will need background on linear ARX models. Part 5 of

the lectures, ARX identification, focuses on this, and is taught in lecture 6.

A dataset is given, measured on an unknown dynamic system with one input and one output. The

order of the dynamics is not larger than three, and the dynamics may be nonlinear while the output may

be affected by noise. Your task is to develop a black-box model for this system, using a polynomial,

nonlinear ARX model. A second data set measured on the same system is provided for validating the

developed model. The two data sets will be given in a MATLAB data file, with variables id and val

containing the two sets as objects of type iddata from the System Identification toolbox. Recall that

the input, output, and sampling time are available on fields u, y, Ts respectively. As a backup in case

the system identification toolbox is not installed on the computer, id array and val array contain

the same two datasets but now in an array format, with the structure: time values on the first column,

input on the second column, and output on the last column.

Consider model orders na, nb, and delay nk, following the convention of the arx MATLAB function.

Let the vector of delayed outputs and inputs be denoted by d = [y(k−1), y(k−2), . . . , y(k−na), u(k−
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nk), u(k − nk − 1), . . . , u(k − nk − nb + 1)]T . Then, the nonlinear ARX model has the structure:

ŷ(k) = − p1(d)y(k − 1) − p2(d)y(k − 2) − . . . − pna(d)y(k − na)

z1(d)u(k − nk) + z2(d)u(k − nk − 1) + . . . + znb(d)u(k − nk − nb + 1)
(1)

where each pi and zj is a polynomial of the variables in d. Note that these polynomials replace the

constant coefficients of the linear ARX model, leading to a model that is nonlinear in the delayed vari-

ables d for any polynomial degrees greater than zero. If the polynomials all have degree zero, then the

model reduces back to the linear one. The parameters of the model are the coefficients in each of these

polynomials. For clarity, we exemplify the case when all the polynomials are of degree m = 1, and

na = nb = nk = 1. Then, d = [y(k − 1), u(k − 1)]T and there are just two polynomials in the model,

one for y(k − 1) and one for u(k − 1):

ŷ(k) = − p1(d)y(k − 1) + z1(d)u(k − 1)

Each of these polynomials is of degree 1, e.g. p1(d) = a1 + a2y(k − 1) + a3u(k − 1), and similarly for

z1(d). Therefore, written explicitly the model is:

ŷ(k) = − [a1 + a2y(k − 1) + a3u(k − 1)]y(k − 1) + [b1 + b2y(k − 1) + b3u(k − 1)]u(k − 1)

= − a1y(k − 1) − a2y(k − 1)2 − a3u(k − 1)y(k − 1)

+ b1u(k − 1) + b2y(k − 1)u(k − 1) + b3u(k − 1)2
(2)

Crucially, model (1) is still linear in the parameters (in the example (2), ai and bj) so linear regression can

still be used to identify these parameters. However, if the model is left in the default form (1), there is a

problem: some of the regressors are linearly dependent, which if unaddressed, would lead to singularities

in the linear system of equations. To make the model well-conditioned, these multiple terms of the same

form should be combined into one, with a single coefficient/parameter. For the example model (2), the

product y(k − 1)u(k − 1) appears twice, and these two terms should be combined:

ŷ(k) = −a1y(k − 1) − a2y(k − 1)2 + b1u(k − 1) + b3u(k − 1)2 + cy(k − 1)u(k − 1) (3)

where c = −a3 + b2.

The requirements follow. Code a function that generates such an ARX model, for configurable model

orders na, nb, delay nk, and polynomial degrees. For simplicity you can set all the polynomials to

have degree m. Make sure to group the linearly dependent terms as explained above, to avoid numerical

problems. Code also the linear regression procedure to identify the parameters, and the usage of the

model on arbitrary input data. Note that the model should be usable in two modes:

• One-step-ahead prediction, which uses knowledge of the real delayed outputs of the system; in the

example, we would apply (3) at step k with variables y(k − 1), u(k − 1) on the right-hand side.

• Simulation, in which knowledge about the real outputs is not available, so we can only use previous

outputs of the model itself; in the example we would replace y(k− 1) on the right-hand side of (3)

by the previously simulated value ŷ(k − 1).

Identify such a nonlinear ARX model using the identification data, and validate it on the validation data.

Choose carefully the model orders and the delay, as well as the polynomial degree. To reduce the search

space you may take na = nb. Report the one-step-ahead prediction error, and the simulation error for

both the identification and the validation sets (use the mean squared error). Show a representative plot

3



for the fit on the training and the validation data sets, for both simulation and prediction. Discuss the

results, including the quality of the model fit on the two data sets.

The presentation above is self-contained, but you may e.g. look at the following papers for additional

technical insight:

1. H. Peng et al., RBF-ARX model-based nonlinear system modeling and predictive control with

application to a NOx decomposition process, Control Engineering Practice 12, pages 191–203,

2007. Here the model is explained in Sections 2.1-2.2, and uses tunable radial basis functions

instead of polynomials.

2. L. Ljung, System Identification, Wiley Encyclopedia of Electrical and Electronics Engineering,

2007. Available as technical report LiTH-ISY-R-2809. See Section 4 for nonlinear models, again

mainly using basis functions.

Matlab programming and other remarks

Strive for a compact and elegant MATLAB code, avoid the use of loops (for, while, etc.) and

if-then-else constructs where vector operations would be easier and more readable. Search for

“vectorization” in the MATLAB help system for helpful tips on the proper MATLAB programming style.

However, do not exaggerate with applying vectorization: if the code is clearer with loops or if statements,

use them.

If you are less familiar with programming in MATLAB, the following pointers may help. Type doc at the

command line to access the documentation. A good initial read is the Getting Started with Matlab node

of the documentation. Matrices and Arrays, Programming Basics, and Plotting Basics are also useful.

It is preferable that each group brings their own laptop to the project classes, and always works on the

same laptop for the project. This is to prevent incompatibilities between the MATLAB versions installed

on your computers and the University computers. If this is not possible for you, please discuss with the

lecturer.
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